

Assessment of National Action Plan for the Reduction of GHG from Transport Sector in Indonesia

Presented on:

The 3rd Travelling Conference of Asian-German Knowledge Network for Transport and Logistics (AGKN), China, 13 February 2017

NOOR MAHMUDAH (Dr.)

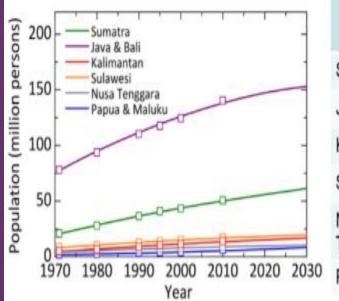
Senior Lecturer and Researcher, Department of Civil Engineering, Faculty of Engineering, Universitas Muhammadiyah Yogyakarta Secterary, The Indonesia Transportation Society (MTI/ITS) of DIY Member, The Eastern Asia Society for Transportation Studies (EASTS) Lecturer/Trainer, The Centre of Education and Training, Ministry of Public Works, the Government of Indonesia

DANANG PARIKESIT (Prof.)

Professor of Transportation and Senior Researcher, The Centre for Transportation and Logistics Studies, Universitas Gadjah Mada (UGM) President/Chairman, The Indonesia Transportation Society (MTI/ITS) Board of Director, The Eastern Asia Society for Transportation Studies (EASTS)

Policy Adviser to the Minister of Public Works, the Government of Indonesia

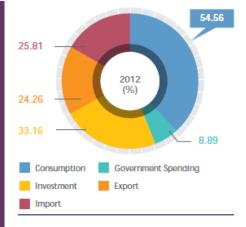
Outline


- Indonesia in a glance
- Indonesia global commitment in reducing GHG emission from transport sector
- Indonesia Transport Challenges: Paradox of high economic growth
- Study LPA: simulating national policy and visioning the future
- Future policy change: fundamental shift to more stringent policy with consistent practice

Indonesia in a glance

• The fourth largest country by population in the world after China, India and USA with 243.740 million people in 2011 and average growth rate of 1.4 percent from 2000-2010, which is 66.13 percent of the people are 15-64 years of age group. Average family size is 4-5 person In 2011, Indonesia reached 72.37 of HDI (BPS, 2013).

		1999 - 2010	2010- 2020	2020- 2030	
	Sumatra	1.4%	1.1%	1.0%	
	Java	0.9%	0.7%	0.4%	
	Kalimantan	1.6%	1.3%	1.1%	
	Sulawesi	1.2%	0.9%	0.7%	
	Nusa Tenggara	1.2%	0.9%	0.7%	
į,	Papua	2.5%	2.4%	2.2%	



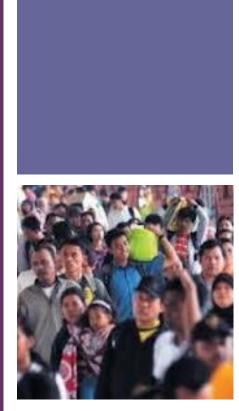
UMY-UGM-MTI

Indonesia in a glance (cont)

- In 2012, Indonesia is the biggest economy in ASEAN region and 17thbiggest in the world by GDP, dominated by household expenditure (MGI, 2013, BPS, 2013). Economy grew by average 5.2 percent per year from 2000 to 2010 (MGI, 2012).
- Java is as the economic center contributing 57.63 percent of GDP, which is dominated by secondary and tertiary economic sector.
- Indonesia now has 135 million middle income class or equal to 60 percent of total population with average income of USD 3.850 per capita (<u>BI, 2013</u>). Unemployment rate continue to decrease to 6 percent in 2012 from total 121 million work force (<u>BPS, 2013</u>), with informal sector absorbing 54 percent of total working force.

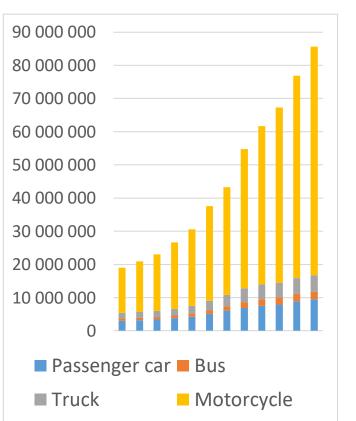


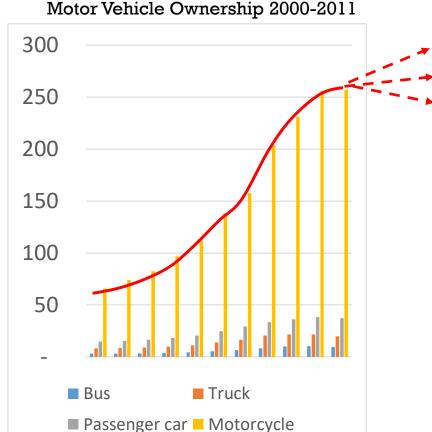
13 February 2017


2. Indonesia global commitment in reducing GHG emission from transport sector

- Unilateral reducing GHG emission 26% from BAU scenario by 2020 or 41% with international support
- Presidential Decree No 61 Year 2011 on National Action Plan on GHG Emission Reduction (RAN GRK)
- Transport Ministerial Regulation No 201 Year 2013 on National Action Plan on GHG Emission Reduction in Transport Sector employing AVOID – SHIT – IMPROVE approach
- Recently received USD 14 Million international support from German and UK

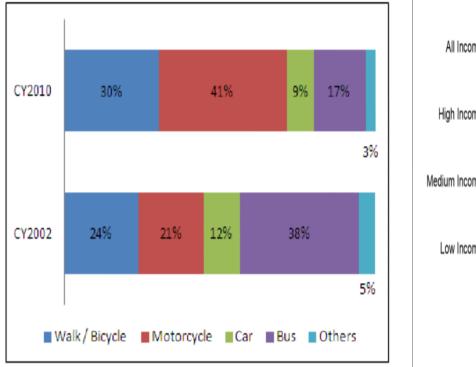
3. Indonesia Transport Challenges: Paradox of High Economic Growth

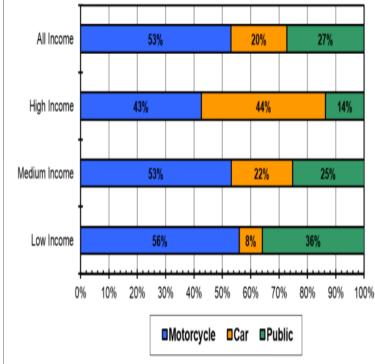

- Rapid motorization and vehicle ownership
- Diminishing share of public transport
- Urbanization coexist with inefficiency
- High consumption of energy and fuel subsidy



+ Rapid Motorization and Vehicle Ownership

Shift from motorcycle to car due to increasing income

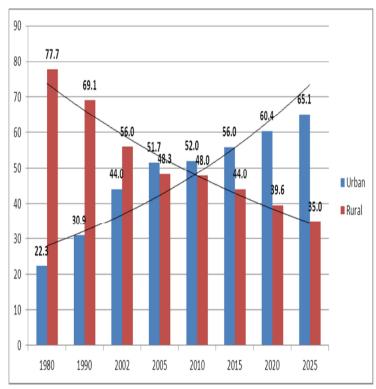

Growth of Vehicle number 2000-2011


Source: Indonesian Central Statistic Agency, 2013 UMY-UGM-MTI

+ Diminishing Public Transport Share

Dilapidating Public transport share and stigmatized as mode just for poor

Change of Mode Share, 2002 - 2010

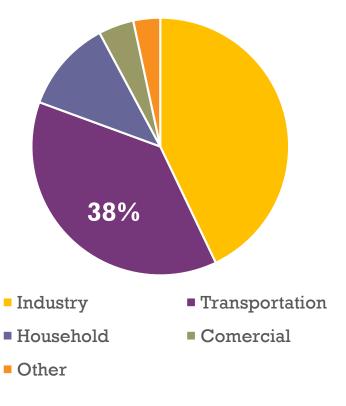

Mode Share by Income 2010

Sourse: JAPTrapis 2011

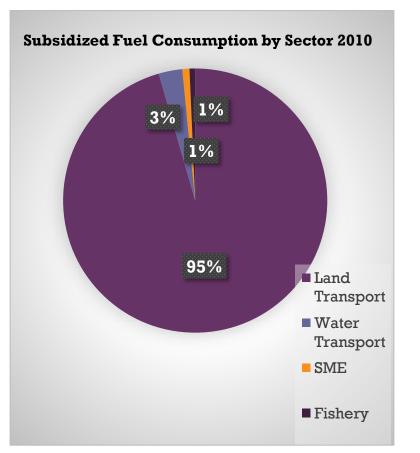
Sourse: JUTPI, 2010

+ Coexistence of Urbanization and Urban Inefficiency

Urban and Rural Population Trend in Indonesia



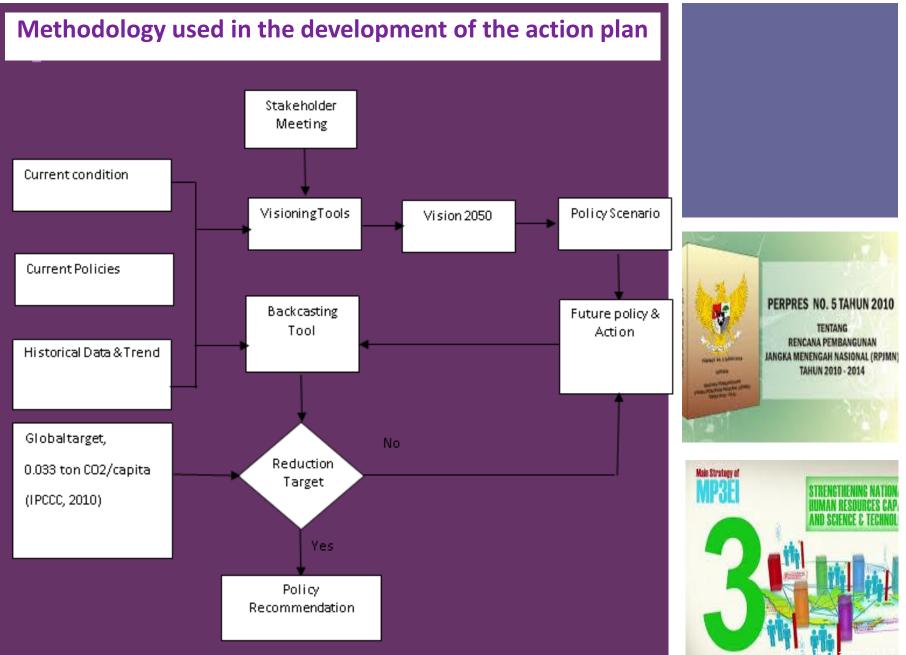
Source: Bappenas, BPS, United Nations Population Fund (UNFPA), Population statistics 2005.


City	Km/h	City	Km/h	
Bandun g	14.3	Surabaya	21	
Bogor	15.32	Medan	23.4	
Depok	21.4	Makassar	24.06	
Bekasi	21.86	Semarang	27	
Tangera ng	22	Palembang	28.54	
Bodetab ek	20.12	Metro City	24.8	

+ High consumption of energy and fuel subsidy

Fuel Consumption by Sector, 2011

Source: MEMR, 2012


Source:: Reforminer, 2010

4. Study LPA simulating national action plan and visioning future policy

- Development Policy: NLTDP (RPJMN), EMP (MP3EI)
- Mitigation Action Plan: NAP-GHG (RAN/RAD GRK)
- Visioning future policy

UMY-UGM-MTI

+ Possible Impact of RPJMN 2010-2014

Policies		Possible effects					
Economic growth 6.3 – 6.8% p.a	-	Increase of transport demand and activity					
Development of urban public services infrastructure.	-	Increase urbanization, mobility demand, efficiency, and reduce urban transport pollution					
Development of 19,370 km of road, inter-mode and inter-island infrastructure	-	Increase connectivity, demand for based transportation, inter-island people and goods transportation, and sea transport					
Enhancement transportation system and network in Jakarta, Bandung, Surabaya, and Medan	-	More efficient urban transport system Increase in urban mobility					
Implementation of National Multimode Transportation System	-	Increase of transport efficiency Reduce transport fuel consumption					
Urban electric railway transportation development	-	Increase in urban public transport trips More efficient commuting trips					
Energy savings and alternative fuel UMY-UGM-MTI	-	Demand for energy efficiency vehicle Decrease oil fuel consumption and increase alternative fuel utilization					

17

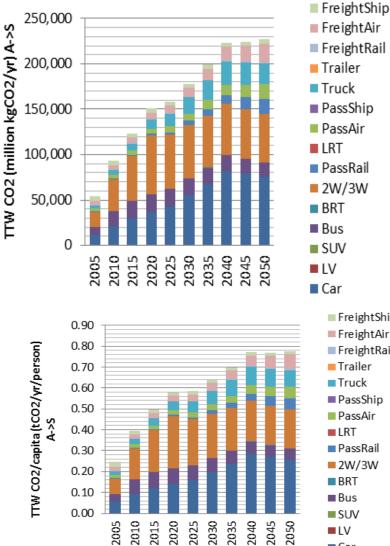
+ Possible impact of MP3EI 2010-2050

No	Policies		Possible effects
1	Promoting road infrastructure construction	-	Increase private vehicle population and demand, and increase road based freight
2	Revitalization of passenger and freight sea and river based transportation	-	Increase demand and volume of water based transportation
3	Increasing and betterment of air transportation	-	Increase air transportation demand and volume
4	Development of rail transportation	-	Increase rail based demand and volume
5	Reduction of cost for logistic system	-	Increase freight transport integration and efficiency

+ Possible Impact of RAN/RAD GRK

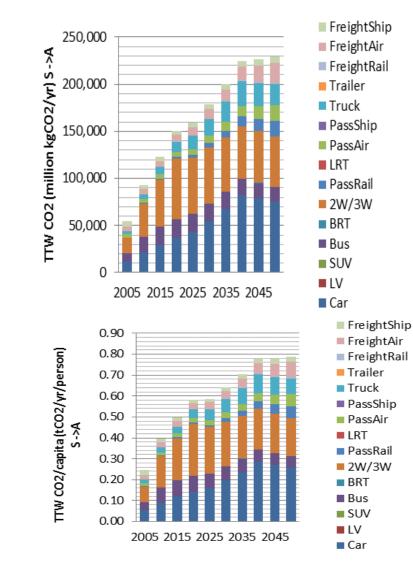
No	Policies		Effects
1	Development and implementation of ITS	-	Better travel plan and fuel efficiency,
2	Traffic Impact Control	-	Reduce congestion and emission
3	Congestion Charging and Road Pricing	-	Reduce private car usage, congestion, and fuel consumption
4	Revitalization of public transport system	-	Increase of public transport share and reduce private vehicle travel
5	Development of BRT system	-	Increase mode share of BRT, and fuel efficiency
6	Development of NMT	-	Better NMT share and fuel efficiency
7	Electrification of railway system	-	Increase rail passenger and shift from private vehicle
8	Emission standardization, labeling and emission based tax and	-	Reduce fuel consumption and emission
9	CNG converter kits	-	Reduce fuel consumption and CO2 emission
10	Eco driving and speed limitation	-	Reduce fuel consumption and vehicle emission

+ Improved RAN GRK Scenario

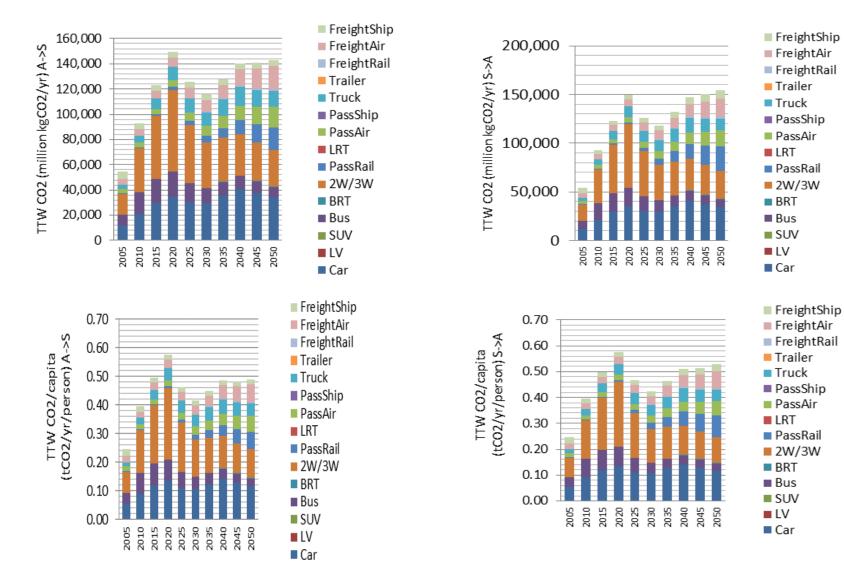

Business as Usual - BAU

- Respecting current policy taken by the government
- Predicting impact of current development and economic policy: RPJMN, MP3EI
- Elaborate scenario for current policies
- Considering dynamic in policy implementation

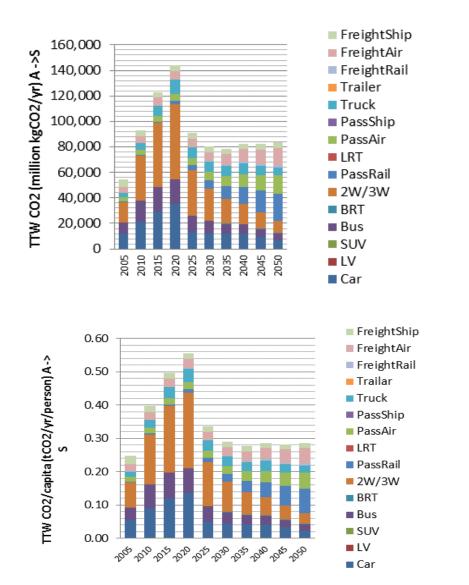
Improve RAN GRK

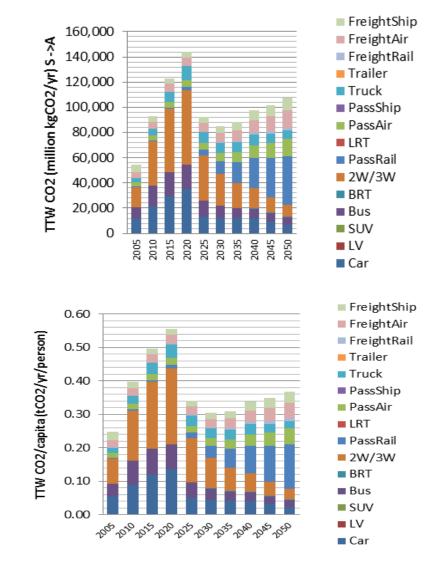

- Additional policy beyond RAN GRK
- Introduction of more AVOID policy options
- Advance vehicle technology
- Fuel pricing and alternative fuels
- Road pricing and behavioral change

1. Scenario I BAU (RPJP/RPJMN+MP3EI) Scenario I Estimation of total CO2 emission



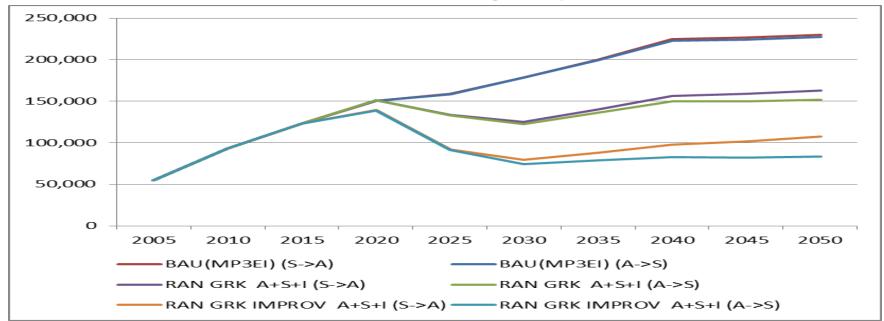
Car

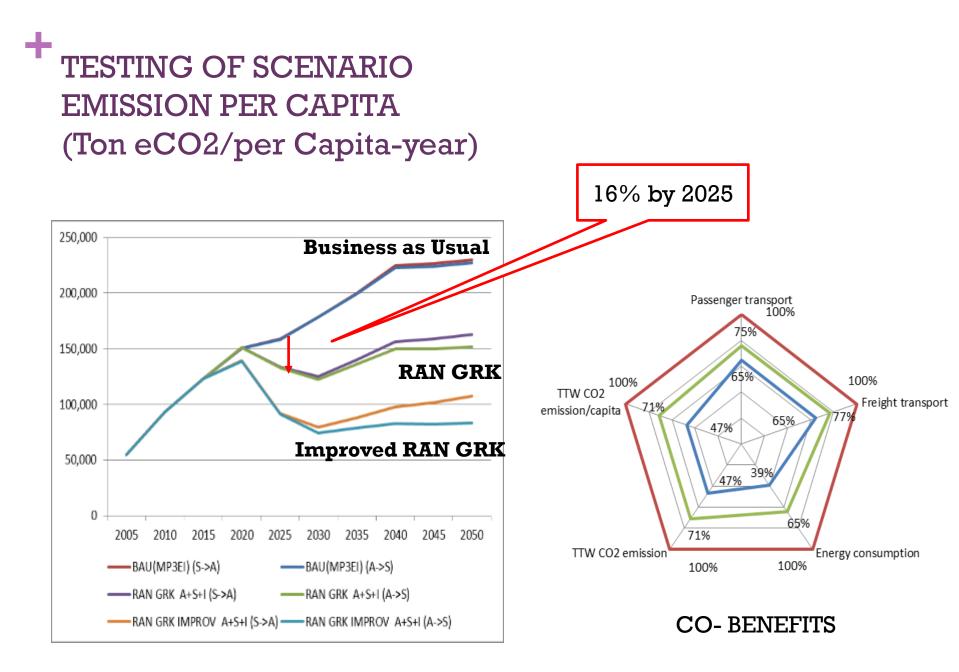

2. Scenario II RAN GRK


Scenario II Estimation of total CO2 emission

3. Scenario III IMPROVED RAN GRK

Scenario III Estimation of total CO2 emission





Scenarios Comparison

	2005	2010	2015	2020	2025	2030	2035	2040	2045	205
BAU(MP3EI) (A->S)	54,484	92,944	123,025	150,744	158,543	178,203	198,983	223,020	224,209	226,
BAU(MP3EI) (S->A)	54,484	92,944	123,025	150,744	158,650	178,653	199,951	224,737	226,412	229,
RAN GRK A+S+I (A->S)	54,484	92,944	123,025	151,069	132,990	122,673	135,845	149,527	149,645	151, [,]
RAN GRK A+S+I (S->A)	54,484	92,944	123,025	151,069	133,394	124,975	140,198	156,486	158,719	162,
RAN GRK IMPROV A+S+I (A->S)	54,484	92,944	123,025	139,068	90,959	74,430	78,664	82,621	82,243	83,5
RAN GRK IMPROV A+S+I (S->A)	54,484	92,944	123,025	139,132	92,017	79,513	88,091	97,630	101,697	107,

TTW CO2 (million kgCO2/yr)

Scenarios Comparison

The analyses for scenario comparisons for total emission are as follow

- Similar with the emission figure for per capita emission, the results from total emission also show that IMPROVED RAN scenario have better performance compared to RAN GRK.
- The RAN GRK will reduce the total emission by about 25 Mton CO2 to about 132 Mton in 2025 compared to BAU. On the other hand, IMPROVED RAN scenario will further reduce total CO2 emission by about 67 Mton to only 90 Mton by 2025.
- 3. The significant difference of results between A->S and S->A sequence for all three (BAU, RAN & IMPROVED RAN) can be seen in 2050. Significant difference especially can be seen in IMPROVED RAN scenario where the A->S sequence can reduce the total emission down to 80 Mton (lower that 90 Mton in 2025). At the same time, the S->A sequence cannot even hold the emission causing rebound of total emission to 107 Mton by 2050.

Co – Benefit from policy improvement

- Transport policies devised GHG mitigation, transport efficiency, system competitiveness and energy consumption.
- Policy improvement will create co-benefit in energy consumption (61% reduction) congestion relieve (35%).
- Transport competitiveness, energy efficiency and GHG emission reduction will achieving global commitment as well as improving the economic and local environmental condition

5. Visioning Future Policy

- Significant improvement is needed to achieve national commitment and meet global target
- Introduction of various "avoid" policies: promotion of TOD, higher fuel pricing,
- Shift to more advance vehicle technology and cleaner fuel options
- Push policy for transport behavioral changes: road and higher fuel pricing.
- Capacity building to manage and safe guard consistent policy implementation

Combination of transport competitiveness, energy efficiency and GHG emission reduction will help the Indonesian government achieving global climate change commitment as well as improving the economic and local environmental condition

13 February 2017