BAB IV

ANALISIS DAN PEMBAHASAN

4.1 UMUM

Pada tahap ini akan dijelaskan hasil simulasi program perbaikan profil tegangan dan rugi-rugi daya menggunakan metode aliran daya Newton-Rapson. Data yang dikumpulkan berasal dari laporan PLN selama tahun 2016, sedangkan data jenis dan ukuran penghantar mengikuti standar SPLN No. 064 tahun 1985. Setelah data-data dimasukkan kedalam program ETAP 12.6, simulasi yang pertama dilakukan adalah simulasi keadaan awal atau kondisi exsisting dari penyulang OGF 15 Bangau Sakti dimana hasil dari simulasi akan dibandingkan dengan hasil perhitungan secara manual. Selain itu hasil dari simulasi kondisi exsisting penyulang OGF 15 Bangau Sakti akan dilakukan perbaikan profil tegangan dan rugi-rugi daya. Terdapat tiga metode yang digunakan dalam perbaikan profil tegangan dan rugi-rugi daya yaitu perbaikan pertama menggunakan Load Tap Changer (LTC), perbaikan kedua menggunakan Kapasitor Bank dan perbaikan ketiga dengan penggantian luas penampang penghantar. Hasil dari ketiga perbaikan yang digunakan selanjutnya akan dibandingkan. Selanjutnya menghitung besarnya energi tidak tersalurkan saat pemadaman pada bulan November 2016 di penyulang OGF 15 Bangau Sakti.

4.2 Struktur Jaringan

4.2.1 Penyulang OGF 15 Bangau Sakti

Penyulang OGF 15 Bangau Sakti merupakan jaringan distribusi primer 20 KV radial yang disuplai dari trafo II 50 MVA Gardu Induk Garuda Sakti. Penyulang ini mempunyai beban total Trafo Distribusi sebesar 19.040 KVA yang tersebar di sepanjang jaringan yang dimulai dari GI Garuda Sakti sampai ke ujung jaringan di daerah Jl. Soekarno-Hatta Pekanbaru. Total Trafo Distribusi yang ada di penyulang OGF 15 Bangau Sakti berjumlah 124 Trafo Distribusi 3 fase. Panjang jaringan utama (*main feeder*) ± 18,605 km dari total keseluruhan panjang jaringan yang ada di penyulang OGF 15 Bangau Sakti yakni 51,150 km yang terdiri dari saluran udara tegangan menengah (SUTM) dan saluran kabel tegangan menengah (SKTM). Berikut data panjang jaringan dapat dilihat pada tabel 4.1.

Tabel 4.1 Data panjang jaringan PLN Rayon Panam

NO	Nama Penyulang	Panjang SUTM (KMS)	Panjang SKTM (KMS)	Total (SKTM+SUT M)
1	TARAI	71,8	14,38	86,18
2	UNRI	17,2	9,98	27,18
3	SUTTA	14,7	6,6	21,3
4	BANGAU SAKTI	<u>46,55</u>	<u>4,6</u>	<u>51,15</u>
5	LOBAK	35,91	5,2	41,11
6	PANAM	22,73	2,6	25,33
7	PANTAI CERMIN	92,3	2,5	94,8
8	KUALU	61,4	2,94	64,34
9	TAMAN KARYA	12,85	9,8	22,65
10	SUKAKARYA	23,4	12,76	36,16
11	CIPTAKARYA	42,59	16,6	59,19
	TOTAL	441,43	87,96	529,39

4.2.1 Karakteristik Beban

Sebagian besar Jenis beban pelanggan yang terpasang pada penyulang OGF 15 Bangau Sakti merupakan beban 1 fase. Walaupun terdapat beberapa pelanggan yang menggunakan beban 3 fase. Beberapa pelanggan yang menggunakan beban 3 fase tersebut adalah Mall, industri dan lain-lain. Berikut merupakan arus pembebanan puncak penyulang OGF 15 Bangau Sakti pada bulan November 2016 dapat terlihat pada tabel 4.2.

Tabel 4.2 Data pembebanan Penyulang OGF 15 Bangau Sakti pada bulan November 2016

Gardu Induk	Trafo Daya	Penyulang	Beban pada Bulan November (A)		
Induk			Maksimum	Rata-rata	
GARUDA	TD 2 50	GIGS,BANGAU-	220	317	
SAKTI	MVA	SAKTI	<u>338</u>	317	

4.3 Jaringan penghantar

Jaringan distribusi yang digunakan di penyulang OGF 15 Bangau Sakti merupakan jaringan distribusi 3 fase dimana seluruh trafo distribusi yang digunakan menggunakan trafo 3 fase. Kontruksi jaringan distribusi terdiri dari Saluran Udara Tegangan Menengah (SUTM) dan Saluran Kabel Tegangan Menengah (SKTM) 20 KV. Luas penampang kawat yang digunakan yaitu AAAC 240 mm² untuk jaringan utama (*main feeder*), AAAC 150 mm² untuk jaringan cabang 3 fase. Data tahanan (R) dan reaktansi (X_L) penghantar AAAC tegangan 20 KV (dikutip dari SPLN 064 tahun 1985) dapat dilihat pada tabel 4.3 dan 4.4. Sementara untuk data penelitian Jaringan dari GI Garuda Sakti sampai jaringan ujung penyulang OGF 15 Bangau Sakti dapat dilihat pada tabel 4.5.

Tabel 4.3 Data Tahanan (R) dan Reaktansi (X_L) penghantar AAAC tegangan 20 KV

Penampang Nominal	Impedansi Urutan Positif (Ω/Km)		Impedansi (Ω/I	KHA (A)	
(mm2)	R	X	R	X	(11)
16	2,0160	0,4036	2,1641	1,6911	105
25	1,2903	0,3895	1,4384	1,6770	135
35	0,9217	0,3790	1,0697	1,6665	170
50	0,6452	0,3678	0,7932	1,6553	210
70	0,4608	0,3572	0,6088	1,6047	255
95	0,3396	0,3449	0,4876	1,6324	320
120	0,2688	0,3376	0,4168	1,6251	365
150	0,2162	0,3305	0,3631	1,6180	425
185	0,1744	0,3239	0,3224	1,6114	490
240	0,1344	0,3158	0,2824	1,6033	585

 $\textbf{Tabel 4.4} \ \text{Data Tahanan (R)} \ \text{dan Reaktansi (X_L) penghantar XLPE Aluminium tegangan 24 KV}$

Penampang Nominal	Impedansi Urutan Positif (Ω/Km)		Impedansi (Ω/)	KHA	
(mm2)	R	X	R	X	(A)
150	0,206	0,104	0,356	0,312	272
240	0,125	0,097	0,275	0,290	358
300	0,100	0,094	0,250	0,282	398

 $\begin{tabular}{ll} \textbf{Tabel 4.5} Data total Tahanan (R) dan Reaktansi (X_L) pada simulasi penyulang OGF 15 Bangau \\ Sakti \end{tabular}$

Dari - Ke	Panjang	~ KIII)		Total (Ohm)		
	(Km)	R	X	R	X	
bus 02 - bus 03	4,6	0,125	0,097	0,575	0,4462	
bus 03 - bus 04	0,575	0,1344	0,3158	0,07728	0,181585	
bus 04 - bus 05	1,65	0,1344	0,3158	0,22176	0,52107	
bus 05 - bus 06	0,795	0,1344	0,3158	0,106848	0,251061	
bus 06 - bus 07	0,752	0,1344	0,3158	0,1010688	0,2374816	
bus 07 - bus 08	0,276	0,1344	0,3158	0,0370944	0,0871608	
bus 08 - bus 09	0,58	0,1344	0,3158	0,077952	0,183164	
bus 09 - bus 10	1,21	0,1344	0,3158	0,162624	0,382118	
bus 010 - bus 011	0,141	0,1344	0,3158	0,0189504	0,0445278	

Lanjutan tabel 4.5

Dari - Ke	Panjang	Z1 (Ol kr	nm per n)	Total	(Ohm)
	(Km)	R	X	R	X
bus 011 - bus 012	0,247	0,1344	0,3158	0,0331968	0,0780026
bus 012 - bus 013	0,146	0,1344	0,3158	0,0196224	0,0461068
bus 013 - bus 014	0,136	0,1344	0,3158	0,0182784	0,0429488
bus 014 - bus 015	0,26	0,1344	0,3158	0,034944	0,082108
bus 015 - bus 016	0,264	0,1344	0,3158	0,0354816	0,0833712
bus 016 - bus 017	0,588	0,1344	0,3158	0,0790272	0,1856904
bus 017 - bus 018	1,74	0,2162	0,3305	0,376188	0,57507
bus 018 - bus 019	0,866	0,2162	0,3305	0,1872292	0,286213
bus 019 - bus 020	0,603	0,2162	0,3305	0,1303686	0,1992915
bus 020 - bus 021	1,2	0,2162	0,3305	0,25944	0,3966
bus 020 - bus 022	1,42	0,2162	0,3305	0,307004	0,46931
bus 022 - bus 023	0,534	0,2162	0,3305	0,1154508	0,176487
bus 023 - bus 024	0,982	0,2162	0,3305	0,2123084	0,324551
bus 024 - bus 025	0,683	0,2162	0,3305	0,1476646	0,2257315
bus 025 - bus 026	1,131	0,2162	0,3305	0,2445222	0,3737955
bus 026 - bus 027	1,205	0,2162	0,3305	0,260521	0,3982525
bus 027 - bus 028	0,796	0,2162	0,3305	0,1720952	0,263078
bus 028 - bus 029	1,46	0,2162	0,3305	0,315652	0,48253
bus 04 - bus 030	0,915	0,2162	0,3305	0,197823	0,3024075
bus 07 - bus 031	1,45	0,2162	0,3305	0,31349	0,479225
bus 08 - bus 032	0,816	0,2162	0,3305	0,1764192	0,269688
bus 09 - bus 033	0,79	0,2162	0,3305	0,170798	0,261095
bus 010 - bus 034	0,196	0,1344	0,3158	0,0263424	0,0618968
bus 011 - bus 035	1,053	0,2162	0,3305	0,2276586	0,3480165
bus 012 - bus 036	1,068	0,2162	0,3305	0,2309016	0,352974
bus 014 - bus 037	1,028	0,2162	0,3305	0,222536	0,339754
bus 015 - bus 038	1,68	0,2162	0,3305	0,363216	0,55524
bus 016 - bus 039	2,4	0,2162	0,3305	0,51888	0,7932
bus 017 - bus 040	0,93	0,2162	0,3305	0,201066	0,307365
bus 018 - bus 041	0,96	0,2162	0,3305	0,207552 0,31728	
bus 019 - bus 042	0,834	0,2162	0,3305	0,1803108	0,275637
bus 022 - bus 043	0,77	0,2162	0,3305	0,166474	0,254485
bus 023 - bus 044	1,073	0,2162	0,3305	0,2319826	0,3546265
bus 024 - bus 045	1,54	0,2162	0,3305	0,332948	0,50897
bus 025 - bus 046	2,5	0,2162	0,3305	0,5405	0,82625

Lanjutan tabel 4.5

Dari - Ke	Panjang	Z1 (Ohm per km)		Total	(Ohm)
	(Km)	R	X	R	X
bus 026 - bus 047	0,905	0,2162	0,3305	0,195661	0,2991025
bus 027 - bus 048	2,7	0,2162	0,3305	0,58374	0,89235
bus 028 - bus 049	1,04	0,2162	0,3305	0,224848	0,34372

4.3.1 Pemodelan JTM penyulang OGF 15 Bangau Sakti

Untuk mempermudah dalam menganalisis maka pembuatan *Single Line Diagram* (SLD) penyulang OGF 15 Bangau Sakti dilakukan dengan mengelompokkan trafo-trafo distribusi menjadi beberapa wilayah percabangan. Untuk panjang jaringan menggunakan data yang terukur menggunakan *Google Maps* dimana data ini terdapat pada tabel 4.5. Besarnya beban pada setiap trafo diatur untuk mendapatkan arus pembebanan tertinggi sesuai data pembebanan pada tabel 4.2. Beban yang digunakan pada simulasi ini adalah beban *Lump load. Lump load* merupakan gabungan beban statis dan motor. Pengaturan beban tetap mempertimbangkan kapasitas trafo distribusi yang terpasang pada setiap percabangan.

Berikut adalah tabel dari data kapasitas trafo dan pembebanan terpasang pada wilayah-wilayah bus.

Tabel 4.6 Kapasitas Trafo dan pembebanan terpasang

No	Wilayah BUS	Kapasitas Trafo Distribusi (KVA)	Beban (KVA)
1	bus 03	160	80
2	bus 030 dari bus 04	320	160
3	bus 05	250	179

Lanjutan tabel 4.6

No	Wilayah BUS	Kapasitas Trafo Distribusi (KVA)	Beban (KVA)
4	bus 031 dari bus 07	460	363
5	bus 08	500	250
6	bus 032 dari bus 08	1350	675
7	bus 033 dari bus 09	650	404
8	bus 034 dari bus 010	250	113
9	bus 035 dari bus 011	160	137
10	bus 036 dari bus 012	300	244
11	bus 037 dari bus 014	700	478
12	bus 038 dari bus 015	760	418
13	bus 039 dari bus 016	1240	987
14	bus 040 dari bus 017	670	335
15	bus 018	2190	1183
16	bus 041 dari bus 018	160	80
17	bus 042 dari bus 019	160	86
18	bus 043 dari bus 022	160	85
19	bus 023	530	265
20	bus 044 dari bus 023	800	555
21	bus 045 dari bus 024	680	489
22	bus 046 dari bus 025	2170	1194
23	bus 047 dari bus 026	1030	566
24	bus 048 dari bus 027	2210	1216
25	bus 049 dari bus 028	880	484
26	bus 029	300	153

4.4 Hasil Simulasi Dan Analisis

4.4.1 Kondisi Exsisting Penyulang OGF 15 Bangau Sakti

Setelah dilakukan simulasi jaringan distribusi penyulang OGF 15 Bangau Sakti menggunakan metode aliran daya Newton-Rapshon dengan program ETAP 12.6 maka didapatkan hasil pada kondisi *exsisting* dengan arus pembebanan sebesar 338 A pada penyulang OGF 15 Bangau Sakti. Untuk mendapatkan arus

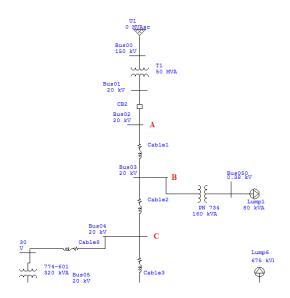
pembebanan tersebut pada penyulang OGF 15 Bangau Sakti diasumsikan pembebanan disetiap trafo distribusi antara 50% sampai 60% dari kapasitas trafo dengan total beban terpasang sebesar 11.179 KVA. *Single line diagram* pada kondisi *exsisting* dapat dilihat pada lampiran 1-0. Adapun hasil data yang didapatkan pada kondisi *exsisting* penyulang OGF 15 Bangau Sakti yang telah dihitung melalui simulasi ETAP 12.6 dimana hasilnya dapat dilihat pada tabel 4.7 berikut ini.

Tabel 4.7 Hasil data pada Kondisi Exsisting Penyulang OGF 15 Bangau Sakti

NO	Dari - Ke	Tegangan kirim (KV)	Tegangan terima (KV)	Panjang (KM)	Arus (A)	Jatuh tegangan Terukur (KV)
1	bus 02 - bus 03	19,732	19,59	4,6	338	0,142
2	bus 03 - bus 04	19,59	19,558	0,575	335,8	0,032
3	bus 04 - bus 05	19,558	19,467	1,65	331	0,091
4	bus 05 - bus 06	19,467	19,424	0,795	325,6	0,043
5	bus 06 - bus 07	19,424	19,383	0,752	325,6	0,041
6	bus 07 - bus 08	19,383	19,369	0,276	314,6	0,014
7	bus 08 - bus 09	19,369	19,341	0,58	286,9	0,028
8	bus 09 - bus 010	19,341	19,286	1,21	274,8	0,055
9	bus 010 - bus 011	19,286	19,279	0,141	271,4	0,007
10	bus 011 - bus 012	19,279	19,268	0,247	267,2	0,011
11	bus 012 - bus 013	19,268	19,262	0,146	259,8	0,006
12	bus 013 - bus 014	19,262	19,256	0,136	259,8	0,006
13	bus 014 - bus 015	19,256	19,245	0,26	245,3	0,011
14	bus 015 - bus 016	19,245	19,235	0,264	232,8	0,01
15	bus 016 - bus 017	19,235	19,215	0,588	202,8	0,02
16	bus 017 - bus 018	19,215	19,145	1,74	192,7	0,07

Lanjutan tabel 4.7

NO	Dari - Ke	Tegangan kirim (KV)	Tegangan terima (KV)	Panjang (KM)	Arus (A)	Jatuh tegangan Terukur (KV)
17	bus 018 - bus 019	19,145	19,117	0,866	154,7	0,028
18	bus 019 - bus 020	19,117	19,098	0,603	152,1	0,019
19	bus 020 - bus 021	19,098	19,098	1,2	0	0
20	bus 020 - bus 022	19,098	19,053	1,42	152,1	0,045
21	bus 022 - bus 023	19,053	19,036	0,534	149,5	0,017
22	bus 023 - bus 024	19,036	19,01	0,982	124,6	0,026
23	bus 024 - bus 025	19,01	18,995	0,683	109,6	0,015
24	bus 025 - bus 026	18,995	18,977	1,131	73,4	0,018
25	bus 026 - bus 027	18,977	18,963	1,205	56,3	0,014
26	bus 027 - bus 028	18,963	18,96	0,796	19,4	0,003
27	bus 028 - bus 029	18,96	18,958	1,46	4,7	0,002
28	bus 04 - bus 030	19,558	19,557	0,915	4,8	0,001
29	bus 07 - bus 031	19,383	19,38	1,45	11	0,003
30	bus 08 - bus 032	19,369	19,365	0,816	20,2	0,004
31	bus 09 - bus 033	19,341	19,339	0,79	12,2	0,002
32	bus 010 - bus 034	19,286	19,286	0,196	3,4	0
33	bus 011 - bus 035	19,279	19,278	1,053	4,2	0,001
34	bus 012 - bus 036	19,268	19,267	1,068	7,4	0,001
35	bus 014 - bus 037	19,256	19.253	1,028	14,5	0,003
36	bus 015 - bus 038	19,245	19.241	1,68	12,6	0,004
37	bus 016 - bus 039	19,235	19.22	2,4	29,9	0,015
38	bus 017 - bus 040	19,215	19.214	0,93	10,1	0,001
39	bus 018 - bus 041	19,145	19.145	0,96	2,4	0
40	bus 019 - bus 042	19,117	19.117	0,834	2,6	0
41	bus 022 - bus 043	19,053	19.052	0,77	2,6	0,001


Lanjutan tabel 4.7

NO	Dari - Ke	Tegangan kirim (KV)	Tegangan terima (KV)	Panjang (KM)	Arus (A)	Jatuh tegangan Terukur (KV)
42	bus 023 - bus 044	19,036	19.032	1,073	16,9	0,004
43	bus 024 - bus 045	19,01	19.005	1,54	15	0,005
44	bus 025 - bus 046	18,995	18.976	2,5	36,2	0,019
45	bus 026 - bus 047	18,977	18.974	0,905	17,2	0,003
46	bus 027 - bus 048	18,963	18.942	2,7	36,9	0,021
47	bus 028 - bus 049	18,96	18.957	1,04	14,7	0,003

Dari data tabel 4.7 dapat dilihat bahwa pada kondisi *exsisting* penyulang OGF 15 Bangau Sakti mengalami penurunan tegangan hingga ujung jaringan utama (*main feeder*) yaitu pada bus 29 dengan nilai tegangan sebesar 18,958 KV dan di ujung percabangan bus 48 dengan nilai tegangan sebesar 18,942 KV. Bus 48 merupakan bus percabangan yang memiliki tegangan yang paling rendah dari semua bus percabangan yang ada. Dari data tersebut dapat dilihat bahwa Tegangan pada bus 26 sampai bus 29 pada jaringan utama dan bus 46 sampai bus 49 pada jaringan percabangan memiliki tegangan dibawah tegangan 19 KV. Dimana pada penelitian ini batas minimal tegangan yang diperbolehkan tidak kurang dari 19 KV dari tegangan nominal jaringan tegangan menengah 20 KV.

Perhitungan jatuh tegangan dan rugi daya untuk setiap bagian jaringan (jarak antar bus) dilakukan dari titik sumber ke titik bus yang berada didepannya. Untuk menghitung jatuh tegangan dilakukan dengan asumsi dimana titik sumber adalah titik A dan jaringan bus didepannya adalah titik B begitupun untuk

menghitung jatuh tegangan dan rugi daya pada bus yang lain dengan menggunakan asumsi yang sama.

Gambar 4.1 single line diagram OGF 15 Bangau Sakti

Berdasarkan gambar 4.1 dapat dilihat untuk mengetahui besarnya jatuh tegangan pada titik B dapat menggunakan rumus persamaan 2.12:

$$\Delta V_{p3\emptyset} = \sqrt{3} \times (I_{C/f}R\cos\theta + I_{C/f}X\sin\theta) \times L$$

Dimana Ip adalah arus perfase yaitu $I_R = I_S = I_T$. Karena pada simulasi ini menggunakan penghantar 3-3C/fase. Maka terlebih dahulu mencari besarnya arus kondukor perfase, untuk mencari besarnya arus konduktor perfase dilakukan dengan persamaan berikut:

$$I_{C/fase} = I_P / 3$$

$$= 338 / 3$$

$$= 112,6 A$$

Faktor daya pada simulasi ETAP di penyulang OGF 15 Bangau Sakti pada kondisi *exsisting* bus 02 sebesar 0,82, dimana faktor daya ini bernilai demikian karena pada beban *lump load* diasumsikan mempunyai faktor daya 0,85.

 $\cos \theta = 0.82$

 $\sin \theta = 0.56$

R = 0,125 Ohm

 $X_L = 0.0973 \text{ Ohm}$

Panjang jaringan = 4.6 km

= 0.141 KV

Jadi dengan memasukkan pada persamaan 2.12 menjadi:

$$\Delta V_{p3\emptyset} = \sqrt{3} \times ((112.6 \times 0.125 \times 0.824) + (112.6 \times 0.0973 \times 0.56)) \times 4.6$$

$$= 141.28 \text{ V}$$

Dengan dilakukannya rumus yang sama untuk semua penghantar dengan mengacu pada data tahanan pada tebel 4.5 dan data arus pada tabel 4.7 didapatkan hasil pada tabel 4.8 berikut.

Tabel 4.8 Data jatuh tegangan terukur dan jatuh tegangan terhitung

NO	Dari - Ke	Panjan g (KM)	Arus coduktor/fa se (A)	Jatuh Tegangan Terukur (KV)	Jatuh Tegangan Terhitung (KV)
1	bus 02 - bus 03	4,6	112,6	0,142	0,141
2	bus 03 - bus 04	0,575	111,9	0,032	0,032
3	bus 04 - bus 05	1,65	110,3	0,091	0,090

Lanjutan tabel 4.8

NO	Dari - Ke	Panjan g (KM)	Arus coduktor/fa se (A)	Jatuh Tegangan Terukur (KV)	Jatuh Tegangan Terhitung (KV)
4	bus 05 - bus 06	0,795	108,5	0,043	0,042
5	bus 06 - bus 07	0,752	108,5	0,041	0,040
6	bus 07 - bus 08	0,276	104,9	0,015	0,014
7	bus 08 - bus 09	0,58	95,6	0,028	0,027
8	bus 09 - bus 010	1,21	91,6	0,055	0,055
9	bus 010 - bus 011	0,141	90,5	0,007	0,006
10	bus 011 - bus 012	0,247	89,1	0,011	0,010
11	bus 012 - bus 013	0,146	86,6	0,006	0,006
12	bus 013 - bus 014	0,136	86,6	0,006	0,005
13	bus 014 - bus 015	0,26	81,8	0,011	0,010
14	bus 015 - bus 016	0,264	77,6	0,01	0,010
15	bus 016 - bus 017	0,588	67,6	0,02	0,019
16	bus 017 - bus 018	1,74	64,2	0,07	0,055
17	bus 018 - bus 019	0,866	51,6	0,028	0,028
18	bus 019 - bus 020	0,603	50,7	0,019	0,019
19	bus 020 - bus 021	1,2	0,0	0	0
20	bus 020 - bus 022	1,42	50,7	0,046	0,045
21	bus 022 - bus 023	0,534	49,8	0,016	0,016
22	bus 023 - bus 024	0,982	41,5	0,026	0,025
23	bus 024 - bus 025	0,683	36,5	0,015	0,015
24	bus 025 - bus 026	1,131	24,5	0,018	0,017
25	bus 026 - bus 027	1,205	18,8	0,014	0,014
26	bus 027 - bus 028	0,796	6,5	0,003	0,003
27	bus 028 - bus 029	1,46	1,6	0,002	0,001
28	bus 04 - bus 030	0,915	1,6	0,001	0,0009

Lanjutan tabel 4.8

NO	Dari - Ke	Panjan g (KM)	Arus coduktor/fa se (A)	Jatuh Tegangan Terukur (KV)	Jatuh Tegangan Terhitung (KV)
29	bus 07 - bus 031	1,45	3,7	0,003	0,003
30	bus 08 - bus 032	0,816	6,7	0,004	0,003
31	bus 09 - bus 033	0,79	4,1	0,002	0,002
32	bus 010 - bus 034	0,196	1,1	0,001	0,001
33	bus 011 - bus 035	1,053	1,4	0,001	0,0009
34	bus 012 - bus 036	1,068	2,5	0,001	0,001
35	bus 014 - bus 037	1,028	4,8	0,003	0,003
36	bus 015 - bus 038	1,68	4,2	0,004	0,004
37	bus 016 - bus 039	2,4	10,0	0,015	0,015
38	bus 017 - bus 040	0,93	3,4	0,002	0,001
39	bus 018 - bus 041	0,96	0,8	0,001	0,001
40	bus 019 - bus 042	0,834	0,9	0	0,0004
41	bus 022 - bus 043	0,77	0,9	0	0,0004
42	bus 023 - bus 044	1,073	5,6	0,004	0,003
43	bus 024 - bus 045	1,54	5,0	0,005	0,004
44	bus 025 - bus 046	2,5	12,1	0,019	0,019
45	bus 026 - bus 047	0,905	5,7	0,003	0,003
46	bus 027 - bus 048	2,7	12,3	0,021	0,020
47	bus 028 - bus 049	1,04	4,9	0,003	0,003

Berdasarkan data tabel 4.8 dapat dilihat bahwa pada kondisi *exsisting* penyulang OGF 15 Bangau Sakti mengalami penurunan tegangan hingga ujung jaringan utama (*main feeder*) yaitu pada bus 29 dengan nilai tegangan sebesar 18,958 KV dan di ujung percabangan bus 48 dengan nilai tegangan sebesar 18,942

KV. Berdasarkan nilai tegangan tersebut, maka dapat diketahui jatuh tegangan pada ujung jaringan penyulang OGF 15 Bangau Sakti. Tegangan pada sisi pangkal jaringan atau sisi *outgoing* GI pada bus 2 sebesar 19,732 KV. Tegangan bus 2 mempresentasikan sebagai tegangan kirim (Vs) sedangkan tegangan pada bus 29 dan bus 48 merupakan tegangan terima (Vr) dengan nilai sebesar pada bus 29 yaitu 18,958 KV dan bus 48 yaitu 18,942 KV. Maka untuk menghitung jatuh tegangan pada penyulang OGF 15 Bangau Sakti adalah:

Jatuh tegangan
$$\Delta V$$
 bus $29 = \text{Vs} - \text{Vr}$

$$= 19,732 - 18,958$$

$$= 0,774 \text{ KV}$$
Jatuh tegangan % bus $29 = \frac{\Delta V}{Vs} \times 100\%$

$$= \frac{0,774}{19,732} \times 100\%$$

= 3,92 %

Dan pada bus 48

Jatuh tegangan
$$\Delta V$$
 bus $48 = Vs - Vr$
= $19,732 - 18,942$
= $0,79 \text{ KV}$

Jatuh tegangan % bus $48 = \frac{\Delta V}{Vr} \times 100\%$

$$= \frac{0.79}{19.732} \times 100\%$$
$$= 4.00\%$$

Dari hasil perhitungan tersebut, maka dapat diketahui bahwa pada kondisi *exsisting* penyulang OGF 15 Bangau Sakti mengalami jatuh tegangan pada bus 29 sebesar 0,774 KV atau 3,92 % dan pada bus 48 sebesar 0,79 KV atau 4,00 %.

Untuk menghitung rugi-rugi daya aktif dan reaktif pada penghantar pada penyulang OGF 15 Bangau Sakti dapat dilakukan dengan persamaan 2.15 dan persamaan 2.19 berikut:

Rugi-rug daya aktif

$$P_{losses10} = (I_{C/f}^2 \times R \times L) \times 3 C/fase$$

= $(112,6^2 \times 0,125 \times 4,6) \times 3 C/fase$
= $21870 W$
= $21,87 KW$

Untuk mencari rugi daya aktif 3 fase menggunakan persamaan 2.16 berikut:

$$P_{losses3\emptyset} = 3 \times P_{losses1\emptyset}$$
$$= 3 \times 21,87$$
$$= 65,612 KW$$

Rugi-rugi daya reaktif

$$Q_{losses10} = (I_{C/f}^2 \times X \times L) \times 3C/fase$$

= $(112,6^2 \times 0,0973 \times 4,6) \times 3C/fase$
= $17024 \ VAR$
= $17,024 \ KVAR$

Untuk mencari rugi daya reaktif 3 fase menggunakan persamaan 2.20 berikut:

$$Q_{losses3\emptyset} = 3 \times Q_{losses1\emptyset}$$
$$= 3 \times 17,024$$
$$= 51,072 \, KVAR$$

Dengan dilakukannya rumus yang sama untuk semua penghantar dengan mengacu pada data tahanan pada tebel 4.5 dan data arus pada tabel 4.7 didapatkan hasil pada tabel 4.9.

Tabel 4.9 Data rugi-rugi daya terukur dan rugi-rugi daya terhitung

NO	NO Dari - Ke		Arus C/fase	0	Daya ukur	Rugi Terhi	<u> </u>
		(KM)	(A)	KW	KVAR	KW	KVAR
1	bus 02 - bus 03	4,6	112,6	65,743	51,174	65,612	51,072
2	bus 03 - bus 04	0,575	111,9	8,712	20,471	8,709	20,463
3	bus 04 - bus 05	1,65	110,3	24,295	57,087	24,281	57,054
4	bus 05 - bus 06	0,795	108,5	11,328	26,617	11,320	26,599

Lanjutan tabel 4.9

NO.	D	Panjang	Arus		Daya	Rugi	
NO	Dari - Ke	(KM)	C/fase		ukur	Terhi	
5	bus 06 - bus 07	0,752	(A) 108,5	KW 10,715	KVAR 25,177	KW 10,708	KVAR 25,161
6	bus 07 - bus 08	0,276	104,9	3,672	8,627	3,660	8,600
7	bus 08 - bus 09	0,58	95,6	6,419	15,082	6,411	15,066
8	bus 09 - bus 010	1,21	91,6	12,28	28,853	12,280	38,394
9	bus 010 - bus 011	0,141	90,5	1,396	3,28	1,396	3,282
10	bus 011 - bus 012	0,247	89,1	2,371	5,57	2,371	5,573
11	bus 012 - bus 013	0,146	86,6	1,324	3,112	1,324	3,112
12	bus 013 - bus 014	0,136	86,6	1,234	2,899	1,233	2,898
13	bus 014 - bus 015	0,26	81,8	2,103	4,942	2,104	4,944
14	bus 015 - bus 016	0,264	77,6	1,922	4,517	1,922	4,518
15	bus 016 - bus 017	0,588	67,6	3,251	7,639	3,250	7,637
16	bus 017 - bus 018	1,74	64,2	13,975	21,363	8,674	20,383
17	bus 018 - bus 019	0,866	51,6	4,449	6,801	4,484	6,858
18	bus 019 - bus 020	0,603	50,7	3,016	4,61	3,016	4,610
19	bus 020 - bus 021	1,2	0,0	0	0	0	0
20	bus 020 - bus 022	1,42	50,7	7,101	10,855	7,099	10,857
21	bus 022 - bus 023	0,534	49,8	2,561	3,915	2,576	3,939
22	bus 023 - bus 024	0,982	41,5	3,288	5,027	3,290	5,030
23	bus 024 - bus 025	0,683	36,5	1,767	2,701	1,770	2,706
24	bus 025 - bus 026	1,131	24,5	1,318	2,014	1,320	2,019

Lanjutan tabel 4.9

NO	Dari - Ke	Panjang	Arus C/fase		Daya ukur	Rugi Terhi	
1,0	Duii Re	(KM)	(A)	KW	KVAR	KW	KVAR
25	bus 026 - bus 027	1,205	18,8	0,821	1,255	0,828	1,266
26	bus 027 - bus 028	0,796	6,5	0,064	0,098	0,065	0,100
27	bus 028 - bus 029	1,46	1,6	0,007	0,01	0,007	0,011
28	bus 04 - bus 030	0,915	1,6	0,004	0,007	0,004	0,006
29	bus 07 - bus 031	1,45	3,7	0,038	0,058	0,038	0,059
30	bus 08 - bus 032	0,816	6,7	0,072	0,11	0,071	0,108
31	bus 09 - bus 033	0,79	4,1	0,025	0,039	0,025	0,039
32	bus 010 - bus 034	0,196	1,1	0	0,001	0,0004	0,0007
33	bus 011 - bus 035	1,053	1,4	0,004	0,006	0,004	0,006
34	bus 012 - bus 036	1,068	2,5	0,013	0,019	0,012	0,019
35	bus 014 - bus 037	1,028	4,8	0,046	0,071	0,046	0,070
36	bus 015 - bus 038	1,68	4,2	0,057	0,088	0,057	0,088
37	bus 016 - bus 039	2,4	10,0	0,465	0,711	0,446	0,713
38	bus 017 - bus 040	0,93	3,4	0,02	0,031	0,020	0,031
39	bus 018 - bus 041	0,96	0,8	0,001	0,002	0,001	0,001
40	bus 019 - bus 042	0,834	0,9	0,001	0,002	0,002	0,002
41	bus 022 - bus 043	0,77	0,9	0,001	0,002	0,001	0,001
42	bus 023 - bus 044	1,073	5,6	0,066	0,101	0,065	0,100
43	bus 024 - bus 045	1,54	5,0	0,074	0,114	0,074	0,114
44	bus 025 - bus 046	2,5	12,1	0,708	1,082	0,712	0,670

Lanjutan tabel 4.9

NO Dari - Ke		Panjang (KM) Arus C/fase	Rugi Daya Terukur		Rugi Daya Terhitung		
		(KIVI)	(A)	KW	KVAR	KW	KVAR
45	bus 026 - bus 047	0,905	5,7	0,057	0,088	0,057	0,087
46	bus 027 - bus 048	2,7	12,3	0,795	1,215	0,794	1,215
47	bus 028 - bus 049	1,04	4,9	0,049	0,074	0,048	0,074
	Tot	al		197,628	327,517		

Dari hasil perhitungan jatuh tegangan dan rugi-rugi daya dengan menggunakan rumus diatas didapatkan hasil yang sama seperti hasil pengukuran pada program ETAP 12.6 hanya berbeda selisih beberapa angka dibelakang koma. Hal ini membuktikan tidak ada perbedaan hasil antara perhitungan menggunakan program ETAP dan perhitungan menggunakan rumus.

Untuk mencari rugi-rugi total daya aktif dan reaktif pada penghantar yaitu dengan cara menjumlahkan seluruh rugi-rugi daya yang terdapat pada setiap panjang penghantar. Rugi-rugi daya aktif pada penghantar sebesar 197,628 KW dan rugi-rugi daya reaktif pada penghantar sebesar 327,517 KVAR. Selanjutnya untuk mencari rugi-rugi daya total pada peyulang Bangau Sakti yaitu dengan menjumlahkan rugi-rugi daya pada penghantar dan rugi-rugi daya pada trafo distribusi. Untuk data rugi-rugi daya aktif dan reaktif pada tafo distribusi dapat dilihat pada tabel 4.10.

Tabel 4.10 Rugi-rugi Daya Trafo Distribusi

ID	Ruig-ru	ıgi Daya
ID	KW	KVAR
491,246	2,799	8,65
774-601	1,769	5,465
PN 597	2,898	8,955
PN 674	1,037	3,203
PN 734	0,882	2,726
T1	8,832	261
T2	1,146	3,542
T5	6,556	20,258
T7	3,406	24,174
Т9	4,511	17,863
T10	4,588	14,178
T12	5,926	23,469
T13	2,867	16,601
T14	8,167	57,969
T15	3,009	11,915
T16	0,91	2,812
T17	1,057	3,265
T18	2,72	8,403
T22	4,923	28,504
T23	6,519	25,815
T24	4,563	48,684
T25	3,236	22,97
T26	4,658	49,699
T27	3,388	19,614
T28	1,8	5,563
T30	4,383	46,762
T33	2,41	9,544
Total	98,96	751,183

Maka untuk mencari rugi-rugi daya total penyulang dapat dilakukan seperti perhitungan dibawah ini:

Rugi daya aktif penyulang = rugi daya aktif penghantar + rugi daya aktif trafo

Rugi daya reaktif penyulang = rugi daya reaktif penghantar + rugi daya reaktif trafo

$$= 327,517 + 751,183$$

= 1078,7 KVAR

Rugi daya semu penyulang = $\sqrt{P^2 + Q^2}$

$$=\sqrt{296.588^2+1078.7^2}$$

= 1.118,73 KVA

% rugi daya =
$$\frac{1.118,73}{11.557} \times 100\%$$

Dari data diatas terlihat bahwa pada penyulang OGF 15 bangau sakti profil tegangan pada bus 26 sampai bus 29 pada jaringan utama dan bus 46 sampai bus 49 pada jaringan percabangan memiliki tegangan dibawah tegangan 19 KV. Dimana pada penelitian ini batas minimal tegangan yang diperbolehkan tidak kurang dari 19 KV dari tegangan nominal jaringan tegangan menengah 20 KV. Jatuh tegangan pada ujung jaringan masih dalam batas toleransi yang ditentukan yakni 4,00 % dari batas toleransi 5 %. Selanjutnya rugi-rugi daya yang terjadi pada penyulang OGF 15 Bangau sakti masih dalam batas yang ditentukan yakni 9,6 % dari batas toleransi 10 %.

Karena profil tegangan pada penyulang OGF 15 Bangau sakti dibawah batas tegangan minimal maka dilakukan perbaikan profil tegangan untuk menaikkan profil tegangan diatas batas minimal tegangan 19 KV dengan perbaikan ini maka akan mengurangi jatuh tegangan yang terjadi dan juga rugi-rugi daya yang terjadi akan ikut berkurang.

4.4.2 Skenario Perbaikan Dengan Pengaturan *Tap Changer* Trafo Daya 50 MVA

Setelah dilakukan skenario pengaturan *tap changer* pada trafo daya 50 MVA di Gardu Induk Garuda Sakti, kemudian dilakukan simulasi menggunakan program ETAP 12.6. Pengaturan *tap changer* ini dilakukan dengan menambah jumlah lilitan sekunder dari tafo daya secara otomatis. Dalam skenario perbaikan ini digunakan tap 2,5 % dari nilai lilitan awal sekunder. Pengaturan *tap changer* pada trafo daya 50 MVA Gardu Induk Garuda Sakti pada penyulang OGF 15 Bangau Sakti dapat dilihat pada lampiran 1-1. Dari hasil simulasi didapatkan data berupa nilai tegangan pada setiap bus. Berikut tegangan sebelum dan setelah dilakukan skenario perbaikan pengaturan *tap changer* dapat dilihat pada tabel 4.11.

Tabel 4.11 Tegangan sebelum dan setelah dilakukan skenario perbaikan pengaturan tap changer

NO	ID	Tegangan sebelum perbaikan tap changer (KV)	Tegangan setelah perbaikan tap changer (KV)
1	bus 02	19,732	20,224
2	bus 03	19,59	20,085
3	bus 04	19,558	20,053
4	bus 05	19,467	19,964
5	bus 06	19,424	19,921
6	bus 07	19,383	19,881
7	bus 08	19,369	19,867
8	bus 09	19,341	19,84
9	bus 010	19,286	19,786
10	bus 011	19,279	19,779
11	bus 012	19,268	19,769
12	bus 013	19,262	19,762
13	bus 014	19,256	19,757
14	bus 015	19,245	19,746
15	bus 016	19,235	19,736
16	bus 017	19,215	19,717
17	bus 018	19,145	19,648
18	bus 019	19,117	19,62
19	bus 020	19,098	19,601
20	bus 021	19,098	19,601
21	bus 022	19,053	19,557
22	bus 023	19,036	19,541
23	bus 024	19,01	19,515
24	bus 025	18,995	19,5
25	bus 026	18,977	19,483

Lanjutan tabel 4.11

NO	ID	Tegangan sebelum perbaikan tap changer (KV)	Tegangan setelah perbaikan tap changer (KV)
26	bus 027	18,963	19,469
27	bus 028	18,96	19,466
28	bus 029	18,958	19,465
29	bus 030	19,557	20,052
30	bus 031	19,38	19,878
31	bus 032	19,365	19,864
32	bus 033	19,339	19,838
33	bus 034	19,286	19,786
34	bus 035	19,278	19,779
35	bus 036	19,267	19,767
36	bus 037	19,253	19,754
37	bus 038	19,241	19,742
38	bus 039	19,22	19,721
39	bus 040	19,214	19,715
40	bus 041	19,145	19,647
41	bus 042	19,117	19,62
42	bus 043	19,052	19,556
43	bus 044	19,032	19,537
44	bus 045	19,005	19,511
45	bus 046	18,976	19,481
46	bus 047	18,974	19,48
47	bus 048	18,942	19,449
48	bus 049	18,957	19,463

Pada kondisi setelah dilakukkannya perbaikan pengaturan *tap changer* pada trafo daya. Tegangan bus 2 mengalami kenaikan menjadi 20,224 KV sedangkan pada bus 29 dan bus 48 juga mengalami kenaikan menjadi pada bus 29 yaitu 19,465 KV dan bus 48 yaitu 19,449 KV. Sehingga jatuh tegangan pada kondisi ini adalah sebagai berikut:

Jatuh tegangan
$$\Delta V$$
 bus $29 = \text{Vs} - \text{Vr}$
 $= 20,224 - 19,465$
 $= 0,759 \text{ KV}$
Jatuh tegangan % bus $29 = \frac{\Delta V}{Vr} \times 100\%$
 $= \frac{0,759}{20,224} \times 100\%$
 $= 3,75 \%$

Dan pada bus 48

Jatuh tegangan
$$\Delta V$$
 bus $48 = \text{Vs} - \text{Vr}$

$$= 20,224 - 19,449$$

$$= 0,775 \text{ KV}$$
Jatuh tegangan % bus $48 = \frac{\Delta V}{Vr} \times 100\%$

$$= \frac{0,775}{20,224} \times 100\%$$

$$= 3,83 \%$$

Dari hasil perhitungan tersebut, maka dapat diketahui bahwa pada kondisi setelah dilakukan skenario perbaikan pengaturan *tap changer*. Penyulang OGF 15 Bangau Sakti mengalami jatuh tegangan pada bus 29 sebesar 0,759 KV atau 3,75 % dan pada bus 48 sebesar 0,775 KV atau 3,83 %. Berdasarkan hasil tersebut pengaturan *tap changer* hanya menaikkan tegangan pada penyulang akan tetapi besarnya jatuh tegangan sebelum dan setelah dilakukanya pengaturan *tap changer* hanya berkurang sedikit. Hal ini dikarenakan pada perbaikan pengaturan *tap changer* ini hambatan pada jaringan masih tetap sama dan arus yang mengalir pada penyulang hanya menurun sedikit yang awalnya 338 A menjadi 332,3 A. Penurunan arus ini mempunyai faktor penting terhadap berkurangnya jatuh tegangan pada penyulang. Dimana semakin kecil arus yang mengalir pada penyulang OGF 15 Bangau Sakti dengan hambatan yang sama maka jatuh tegangan pada penyulang persentase penurunan jatuh tegangan pada bus 29 dan bus 48 pada penyulang OGF 15 Bangau Sakti dengan persamaan berikut:

% Penurunan
$$\Delta V$$
 bus $29 = \frac{\Delta V - \Delta V'}{\Delta V} \times 100\%$

$$= \frac{0,774 - 0,759}{0,774} \times 100\%$$

$$= 1,93 \%$$
% Penurunan ΔV bus $48 = \frac{\Delta V - \Delta V'}{\Delta V} \times 100\%$

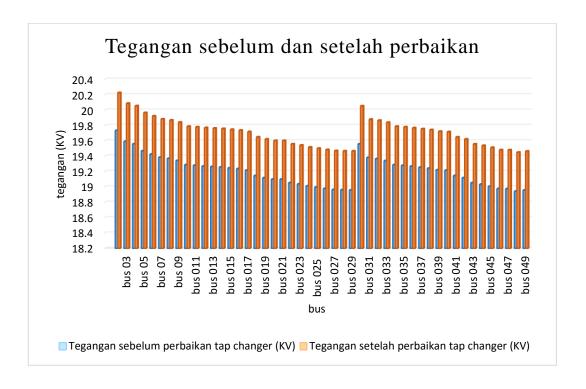
$$= \frac{0,79 - 0,775}{0.79} \times 100\%$$

Dari skenario perbaikan yang telah dilakukan menghasilkan penurunan jatuh tegangan pada bus 29 sebesar 0,015 KV atau 1,93 % dan pada bus 48 sebesar 0,015 KV atau 1,89 % dari kondisi *exsisting*.

Berdasarkan skenario perbaikan pengaturan *tap changer* diatas maka dapat diketahui besarnya persentase kenaikan profil tegangan pada bus 29 dan bus 48 penyulang OGF 15 Bangau Sakti dengan persamaan berikut:

% kenaikan profil tegangan bus
$$29 = \frac{v'-v}{v} \times 100\%$$

$$= \frac{19,465 - 18,958}{19,465} \times 100\%$$


$$= 2,5 \%$$
% kenaikan profil tegangan bus $48 = \frac{v'-v}{v} \times 100\%$

$$= \frac{19,449 - 18,942}{19,449} \times 100\%$$

$$= 2,5 \%$$

Dari skenario perbaikan yang telah dilakukan menghasilkan kenaikan tegangan pada bus 29 dan bus 48 sebesar 2,5 % atau 0,507 KV dari kondisi *exsisting*. Karena pengaturan *tap changer* dilakukan pada trafo daya maka seluruh bus pada penyulang OGF 15 Bangau Sakti juga mengalami kenaikan tegangan sebesar 2,5 % atau 0,507 KV.

Berdasarkan tabel 4.11 tegangan hasil simulasi aliran daya penyulang OGF 15 Bangau Sakti menghasilkan grafik perbandingan tegangan bus 20 KV pada kondisi sebelum dan setelah dilakukan perbaikan pengaturan *tap changer* yang terlihat pada gambar 4.2.

Gambar 4.2 Grafik tegangan Penyulang OGF 15 Bangau Sakti

Terlihat pada gambar 4.2 tersebut menunjukkan tegangan bus 20 KV mulai dari bus 2 hingga ujung jaringan yaitu bus 29 dan bus 48. Pada kondisi sebelum dilakukan perbaikan tegangan pada bus 2 sebesar 19,732 KV, seterusnya mengalami penurunan pada bus 29 dan pada bus percabangan 48 yang menjadi titik bus terendah yaitu sebesar 18,958 KV dan 18,942 KV.

Sedangkan pada kondisi setelah dilakukan perbaikan pengaturan *tap changer* pada trafo daya, tegangan pada setiap bus mengalami kenaikan. Pada ujung jaringan bus 29 dan ujung percabangan 48 yang semula sebelum dilakukan

perbaikan bertegangan 18,958 KV pada bus 29 dan 18,942 KV pada bus 48 mengalami kenaikan menjadi 19,465 KV pada bus 29 dan 19,449 KV pada bus 48. Hal ini disebabkan penyulang OGF 15 Bangau Sakti pada sisi tegangan kirim ini dinaikkan menjadi 20,5 KV sehingga tegangan disetiap bus menjadi naik pula.

Skenario perbaikan pengaturan tap changer pada trafo daya mempunyai dampak yakni menyebabkan meningkatnya rugi-rugi daya yang terjadi pada trafo daya. Hal ini disebabkan oleh bertambahnya nilai impedansi trafo pada saat proses perbaikan tegangan. Saat proses perbaikan tersebut, trafo secara otomatis akan menaikkan jumlah lilitan sekunder agar dapat menjaga tegangan keluaran tetap bernilai konstan. Penambahan jumlah lilitan sekunder itulah yang menaikkan nilai impedansi trafo. Pada skenario perbaikan pengaturan tap changer ini walaupun rugi-rugi daya pada trafo daya meningkat akan tetapi rugi-rugi daya yang terjadi pada penyulang OGF 15 Bangau Sakti mengalami penurunan. Hal ini disebabkan pada pengaturan tap changer kenaikan pada sisi tegangan outgoing trafo menjadi 20,5 KV kemudian arus yang mengalir pada penyulang mengalami penurunan dari yang awalnya 338 A menjadi 332,3 A. Penurunan arus ini mempunyai faktor penting terhadap berkurangnya rugi-rugi daya pada penyulang. Dimana semakin kecil arus yang mengalir pada penyulang OGF 15 Bangau Sakti dengan hambatan yang sama maka rugi-rugi daya pada penyulang akan semakin berkurang. Berikut perbedaan rugi-rugi daya yang terjadi pada penyulang OGF 15 Bangau Sakti sebelum dan setelah pengaturan tap changer tersebut dapat dilihat pada tabel 4.12.

Tabel 4.12 Rugi-rugi daya sebelum dan setelah pengaturan *Tap Changer*

	Rugi Daya						
ID		ngaturan <i>Tap</i> Inger	Setelah Per	ngaturan <i>Tap</i> unger			
	KW	KVAR	KW	KVAR			
T1	8,8	260,5	9,0	264,4			
Cable1	65,7	51,2	63,5	49,4			
Cable2	8,7	20,5	8,4	19,8			
PN 734	0,9	2,7	0,9	2,6			
Cable3	24,3	57,1	23,5	55,1			
Cable8	0,0	0,0	0,0	0,0			
Cable4	11,3	26,6	10,9	25,7			
PN 597	2,9	9,0	2,8	8,7			
Cable5	10,7	25,2	10,3	24,3			
Cable6	0,0	0,1	0,0	0,1			
Cable9	3,7	8,6	3,5	8,3			
Cable11	6,4	15,1	6,2	14,6			
UNRI	0,1	0,1	0,1	0,1			
491,246	2,8	8,7	2,7	8,4			
BINA KRIDA	0,0	0,0	0,0	0,0			
Cable12	12,3	28,9	11,9	27,9			
Cable14	1,4	3,3	1,3	3,2			
Cable27	0,0	0,0	0,0	0,0			
BALAM SAKTI	0,0	0,0	0,0	0,0			
Cable15	2,4	5,6	2,3	5,4			
Cable16	1,3	3,1	1,3	3,0			
MAYAR SAKTI	0,0	0,0	0,0	0,0			
Cable17	1,2	2,9	1,2	2,8			
Cable18	2,1	4,9	2,0	4,8			
MERAK SAKTI	0,0	0,1	0,0	0,1			
Cable19	1,9	4,5	1,9	4,4			
KUTILANG	0,1	0,1	0,1	0,1			
Cable20	3,3	7,6	3,1	7,4			
RAJAWALI	0,5	0,7	0,4	0,7			
Cable21	14,0	21,4	13,5	20,6			
DAHLIA	0,0	0,0	0,0	0,0			
Cable22	4,4	6,8	4,3	6,6			
KAMBOJA	0,0	0,0	0,0	0,0			
T30	4,4	46,8	4,2	45,2			
ANGGREK	0,0	0,0	0,0	0,0			
Cable23	3,0	4,6	2,9	4,4			

Lanjutan tabel 4.12

	Rugi Daya					
ID		ngaturan <i>Tap</i> <i>unger</i>	Setelah Pengaturan <i>Tap</i> <i>Changer</i>			
	KW	KVAR	KW	KVAR		
Cable24	7,1	10,9	6,9	10,5		
Cable39	0,0	0,0	0,0	0,0		
Cable40	2,6	3,9	2,5	3,8		
Cable43	3,3	5,0	3,2	4,9		
Cable45	0,1	0,1	0,1	0,1		
DAMAI LANGGENG	2,4	9,5	2,3	9,2		
T33	1,8	2,7	1,7	2,6		
Cable47	0,1	0,1	0,1	0,1		
JL KARYAWAN	1,3	2,0	1,3	1,9		
Cable49	0,7	1,1	0,7	1,0		
MUHAJIRIN	0,8	1,3	0,8	1,2		
Cable51	0,1	0,1	0,1	0,1		
RAWA BENING	0,1	0,1	0,1	0,1		
Cable53	0,8	1,2	0,8	1,2		
TEROPONG	0,0	0,1	0,0	0,1		
JL BARU	0,0	0,0	0,0	0,0		
UJUNG JARINGAN	0,0	0,0	0,0	0,0		
T28	1,8	5,6	1,7	5,4		
774-601	1,8	5,5	1,7	5,3		
T5	6,6	20,3	6,3	19,6		
T7	3,4	24,2	3,3	23,4		
T9	4,5	17,9	4,4	17,3		
T2	1,1	3,5	1,1	3,4		
T18	2,7	8,4	2,6	8,1		
T10	4,6	14,2	4,4	13,7		
T12	5,9	23,5	5,7	22,7		
T13	2,9	16,6	2,8	16,0		
T14	8,2	58,0	7,9	56,0		
T15	3,0	11,9	2,9	11,5		
T16	0,9	2,8	0,9	2,7		
T17	1,1	3,3	1,0	3,2		
PN 674	1,0	3,2	1,0	3,1		
T22	4,9	28,5	4,8	27,5		
T23	6,5	25,8	6,3	24,9		
T24	4,6	48,7	4,4	47,0		
T25	3,2	23,0	3,1	22,2		
T26	4,7	49,7	4,5	48,0		

Lanjutan tabel 4.12

ID	Rugi Daya			
	Sebelum Pengaturan <i>Tap</i>		Setelah Pengaturan <i>Tap</i>	
	Changer		Changer	
	KW	KVAR	KW	KVAR
T27	3,4	19,6	3,3	18,9
TOTAL	296,6	1078,7	286,8	1054,4

Pada kondisi *exsisting* penyulang OGF 15 Bangau Sakti, beban penyulang OGF 15 Bangau Sakti menyerap total daya aktif dan daya reaktif sebesar 9.526 KW dan 6.544 KVAR melalui trafo daya di GI. Pada kondisi ini penyulang OGF 15 Bangau Sakti mengalami rugi-rugi daya aktif sebesar 296,6 KW dan rugi daya reaktif sebesar 1.078,7 KVAR.

Setelah dilakukan skenario perbaikan pengaturan *tap changer* pada trafo daya. Beban penyulang OGF 15 Bangau Sakti menyerap total daya aktif dan daya reaktif sebesar 9.608 KW dan 6.573 KVAR melalui trafo daya. Dari skenario perbaikan ini rugi-rugi berkurang dimana daya aktif menjadi sebesar 286,8 KW dan daya reaktif menjadi sebesar 1.054,4 KVAR. Berdasarkan tabel 4.12 maka dapat diketahui besarnya persentase berkurangnya rugi-rugi daya aktif dan daya reaktif pada penyulang OGF 15 Bangau Sakti dengan persamaan berikut:

% berkurangnya
$$\Delta P = \frac{\Delta P - \Delta P'}{\Delta P} \times 100\%$$

= $\frac{296.6 - 28.8}{296.6} \times 100\%$
= 3,30 %

% berkurangnya
$$\Delta Q = \frac{\Delta Q - \Delta Q'}{\Delta Q} \times 100\%$$

$$= \frac{1.078,7 - 1.05,4}{1.078,7} \times 100\%$$

$$= 2,25 \%$$

Dari skenario perbaikan yang telah dilakukan mengurangi rugi-rugi daya aktif sebesar 9,8 KW atau 3,30 % dan daya reaktif sebesar 24,3 KVAR atau 2,25 % dari kondisi *exsisting*.

4.4.3 Skenario Perbaikan Dengan Pemasangan Kapasitor Bank

Dalam melakukan skenario perbaikan ini terlebih dahulu menetukan parameter Kapasitor Bank yang paling baik melalui perhitungan dasar yaitu penetapan jumlah nilai Kapasitor Bank yang akan dipasang melalui persamaan 2.27 berikut:

$$Qc = P(\tan \emptyset_a - \tan \emptyset_b)$$

Dimana, P = daya aktif (KW)

Qc = kapasitas kapasitor (KVAr)

 $tan Ø_a = tangen sudut faktor daya awal$

 $\tan \phi_b = \text{tangen sudut faktor daya yang diinginkan}$

Faktor daya pada simulasi ETAP di penyulang OGF 15 Bangau Sakti pada kondisi *exsisting* bus 02 sebesar 0,824, dimana faktor daya ini bernilai demikian karena pada beban *lump load* diasumsikan mempunyai faktor daya 0,85.

Untuk mencari daya aktif (P) melalui persamaan 2.1 Berikut:

$$P = \sqrt{3} \times V \times I \times \cos \emptyset$$

$$= \sqrt{3} \times 19,732 \times 338 \times \cos 0,824$$
$$= 9.521,47 \text{ KW}$$

Daya aktif (P) pada perhitungan ini menggunakan daya aktif (P) yang terhitung di atas pada kondisi *exsisting* yakni sebesar 9.521,47 KW. Dengan data ini perbaikan dari faktor daya yang diinginkan adalah sebesar 0,95. Maka nilai kapasitor yang sesuai dengan kebutuhan dapat dihitung melalui persamaan 2.27 berikut:

$$Qc = P(\tan \phi_a - \tan \phi_b)$$

$$\tan \phi_a = \cos^{-1}(0.824)$$

$$\tan \phi_b = \cos^{-1}(0.95)$$

Maka

$$Qc = 9.521,47(\tan(\cos^{-1}(0,824)) - \tan(\cos^{-1}(0,95)))$$
$$= 3.417,49 \ KVAR$$

Maka pada skenario perbaikan ini mengguanakan Kapasitor Bank yang bernilai 3.417,49 KVAR sebagai pembantu perbaikan profil tegangan dan rugi daya pada jaringan.

Setelah dilakukan pencarian penempatan Kapasitor Bank yang paling optimal. Didapatkan penempatan yang paling optimal adalah pada bus 18. Penempatan kapasitor bank pada penyulang OGF 15 Bangau Sakti dapat dilihat pada lampiran 1-2. Dari hasil simulasi didapatkan data berupa nilai tegangan pada

setiap bus. Berikut tegangan sebelum dan setelah dilakukan skenario perbaikan pemasangan Kapasitor Bank dapat dilihat pada tabel 4.13.

Tabel 4.13 Tegangan sebelum dan setelah pemasangan Kapasitor Bank

	Tegangan sebelum		Tegangan setelah	
NO	ID	perbaikan Kapasitor Bank (KV)	perbaikan Kapasitor Bank (KV)	
1	has 02	19,732	19,86	
2	bus 02	19,59	19,744	
3	bus 03	19,558	19,722	
	bus 04	19,467	19,66	
4	bus 05	19,424	19,631	
5	bus 06		·	
6	bus 07	19,383	19,604	
7	bus 08	19,369	19,594	
8	bus 09	19,341	19,577	
9	bus 010	19,286	19,543	
10	bus 011	19,279	19,54	
11	bus 012	19,268	19,533	
12	bus 013	19,262	19,529	
13	bus 014	19,256	19,526	
14	bus 015	19,245	19,52	
15	bus 016	19,235	19,515	
16	bus 017	19,215	19,505	
17	bus 018	19,145	19,467	
18	bus 019	19,117	19,44	
19	bus 020	19,098	19,421	
20	bus 021	19,098	19,421	
21	bus 022	19,053	19,376	
22	bus 023	19,036	19,36	
23	bus 024	19,01	19,334	

Lanjutan tabel 4.13

		Tegangan sebelum	Tegangan setelah
NO	ID	perbaikan Kapasitor Bank	perbaikan Kapasitor Bank
		(KV)	(KV)
24	bus 025	18,995	19,319
25	bus 026	18,977	19.302
26	bus 027	18,963	19,288
27	bus 028	18,96	19,285
28	bus 029	18,958	19,283
29	bus 030	19,557	19,721
30	bus 031	19,38	19,601
31	bus 032	19,365	19,591
32	bus 033	19,339	19,575
33	bus 034	19,286	19,543
34	bus 035	19,278	19,539
35	bus 036	19,267	19,531
36	bus 037	19,253	19,523
37	bus 038	19,241	19,516
38	bus 039	19,22	19,5
39	bus 040	19,214	19,503
40	bus 041	19,145	19,467
41	bus 042	19,117	19,439
42	bus 043	19,052	19,376
43	bus 044	19,032	19,356
44	bus 045	19,005	19,33
45	bus 046	18,976	19,3
46	bus 047	18,974	19,298
47	bus 048	18,942	19,267
48	bus 049	18,957	19,281

Pada kondisi setelah dilakukkannya perbaikan pemasangan Kapasitor Bank pada bus 18. tegangan bus 2 mengalami kenaikan menjadi 19,86 KV sedangkan pada bus 29 dan bus 48 juga mengalami kenaikan menjadi pada bus 29 yakni 19,283 KV dan bus 48 yakni 19,267 KV. Sehingga jatuh tegangan pada kondisi ini adalah sebagai berikut:

Jatuh tegangan
$$\Delta V$$
 bus $29 = \text{Vs} - \text{Vr}$
= 19,86 - 19,283
= 0,577 KV
Jatuh tegangan % bus $29 = \frac{\Delta V}{Vs} \times 100\%$
= $\frac{0,577}{19,86} \times 100\%$
= 2,9 %

Dan pada bus 48

Jatuh tegangan
$$\Delta V$$
 bus $48 = \text{Vs} - \text{Vr}$
= 19,86 - 19,267
= 0,593 KV
Jatuh tegangan % bus $48 = \frac{\Delta V}{Vr} \times 100\%$
= $\frac{0,593}{19,86} \times 100\%$
= 2,98 %

Dari hasil perhitungan tersebut, maka dapat diketahui bahwa pada kondisi setelah dilakukan skenario perbaikan pemasangan Kapasitor Bank. Penyulang OGF 15 Bangau Sakti mengalami jatuh tegangan pada bus 29 sebesar 0,577 KV atau 2,9% dan pada bus 48 sebesar 0,593 KV atau 2,98%. Berdasarkan data diatas maka dapat diketahui besarnya persentase penurunan jatuh tegangan pada bus 29 dan bus 48 pada penyulang OGF 15 Bangau Sakti dengan persamaan berikut:

% Penurunan
$$\Delta V$$
 bus $29 = \frac{\Delta V - \Delta V'}{\Delta V} \times 100\%$

$$= \frac{0,774 - 0,577}{0,774} \times 100\%$$

$$= 25,45 \%$$
% Penurunan ΔV bus $48 = \frac{\Delta V - \Delta V'}{\Delta V} \times 100\%$

$$= \frac{0,79 - 0,593}{0,79} \times 100\%$$

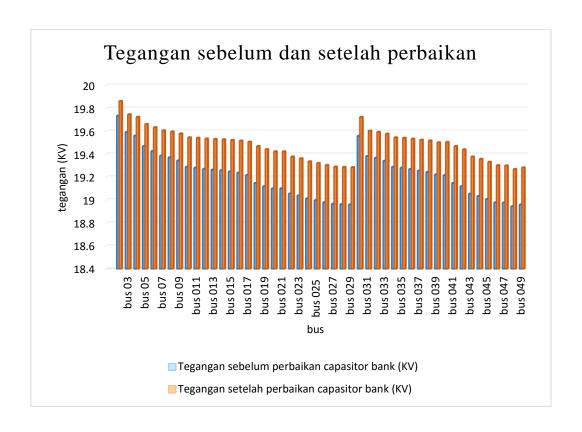
$$= 24,93 \%$$

Dari skenario perbaikan yang telah dilakukan menghasilkan penurunan jatuh tegangan pada bus 29 sebesar 0,197 KV atau 25,45 % dan pada bus 48 sebesar 0,197 KV atau 24,93 % dari kondisi *exsisting*.

Berdasarkan skenario perbaikan pemasangan kapasitor bank diatas maka dapat diketahui besarnya persentase kenaikan profil tegangan pada bus 29 dan bus 48 penyulang OGF 15 Bangau Sakti dengan persamaan berikut:

% kenaikan profil tegangan *bus*
$$29 = \frac{v'-v}{v} \times 100\%$$

$$= \frac{19,283 - 18,958}{19,283} \times 100\%$$
$$= 1,68 \%$$


% kenaikan profil tegangan *bus*
$$48 = \frac{V'-V}{V} \times 100\%$$

$$= \frac{19,267 - 18,942}{19,267} \times 100\%$$

$$= 1,68 \%$$

Dari skenario perbaikan yang telah dilakukan menghasilkan kenaikan tegangan pada bus 29 dan bus 48 sebesar 1,68 % atau 0,325 KV dari kondisi *exsisting*. Karena pemasangan kapasitor bank dilakukan pada bus 18 maka seluruh bus pada penyulang OGF 15 Bangau Sakti juga mengalami kenaikan tegangan yang bervariasi.

Berdasarkan tabel 4.13 tegangan hasil simulasi aliran daya penyulang OGF 15 Bangau Sakti menghasilkan grafik perbandingan tegangan bus 20 KV pada kondisi sebelum dan setelah dilakukan perbaikan pemasangan Kapasitor Bank yang terlihat pada gambar 4.3.

Gambar 4.3 Grafik tegangan Penyulang OGF 15 Bangau Sakti

Terlihat pada gambar 4.3 tersebut menunjukkan tegangan bus 20 KV mulai dari bus 2 hingga ujung jaringan yaitu bus 29 dan bus 48. Pada kondisi sebelum dilakukan perbaikan tegangan pada bus 2 sebesar 19,732 KV, seterusnya mengalami penurunan pada bus 29 dan pada bus percabangan 48 yang menjadi titik bus terendah yaitu sebesar 18,958 KV dan 18,942 KV.

Sedangkan pada kondisi setelah dilakukan perbaikan pemasangan Kapasitor Bank, tegangan pada setiap bus mengalami kenaikan. Pada ujung jaringan utama bus 29 dan ujung percabangan 48 yang semula sebelum dilakukan perbaikan bertegangan 18,958 KV pada bus 29 dan 18,942 KV pada bus 48 mengalami kenaikan menjadi 19,283 KV pada bus 29 dan 19,267 KV pada bus 48. Hal ini disebabkan karena Kapasitor Bank yang dipasang pada penyulang OGF 15 Bangau

Sakti akan menghasilkan arus *leading* (I_C) yang akan mengkompensasi arus *lagging* yang diserap oleh beban (I_L), sehingga akan timbul kondisi saling meniadakan antara arus *lagging* dan arus *leading* (I_L-I_C). Dengan demikian arus total yang mengalir ke beban akan mengalami penurunan. Dimana arus yang mengalir pada kondisi *exsisting* sebesar 338 A setelah pemasangan Kapasitor Bank arus yang mengalir menjadi 292,8 A. Dengan menurunnya arus yang mengalir pada penyulang mengakibatkan jatuh tegangan yang terjadi pada penyulangOGF 15 Bangau Sakti akan berkurang.

Seperti halnya jatuh tegangan, rugi-rugi daya pada jaringan pun akan mengalami penurunan. Berkurangnya rugi-rugi daya tersebut terjadi karena arus total yang mengalir pada penyulang OGF 15 Bangau Sakti mengalami penurunan, akibatnya arus kompensasi (Ic) yang dihasilkan oleh kapasitor bank akan mengurangi arus *lagging* (I_L) yang diserap oleh beban. Dimana arus yang mengalir pada kondisi *exsisting* sebesar 338 A setelah pemasangan Kapasitor Bank arus yang mengalir menjadi 292,8 A Dengan demikian dengan berkurangnya arus yang mengalir pada penyulang dengan tahanan pada jaringan tetap maka rugi-rugi daya aktif (I²R) dan daya reaktif (I²X) yang terjadi pada penyulang OGF 15 Bangau Sakti akan berkurang. Berikut perbedaan rugi-rugi daya yang terjadi pada penyulang OGF 15 Bangau Sakti sebelum dan setelah pemasangan Kapasitor Bank tersebut dapat dilihat pada tabel 4.14.

Tabel 4.14 Rugi-rugi daya sebelum dan setelah pemasangan Kapasitor Bank

	Rugi Daya				
ID		emasangan	Setelah Pemasangan		
ID.	Kapasitor Bank		Kapasito	or Bank	
	KW	KVAR	KW	KVAR	
T1	8,8	260,5	6,6	195,3	
Cable1	65,7	51,2	49,3	38,4	
Cable2	8,7	20,5	6,5	15,3	
PN 734	0,9	2,7	0,9	2,7	
Cable3	24,3	57,1	18,1	42,6	
Cable8	0,0	0,0	0,0	0,0	
Cable4	11,3	26,6	8,4	19,8	
PN 597	2,9	9,0	2,9	8,8	
Cable5	10,7	25,2	8,0	18,7	
Cable6	0,0	0,1	0,0	0,1	
Cable9	3,7	8,6	2,7	6,4	
Cable11	6,4	15,1	4,6	10,9	
UNRI	0,1	0,1	0,1	0,1	
491,246	2,8	8,7	2,8	8,5	
BINA KRIDA	0,0	0,0	0,0	0,0	
Cable12	12,3	28,9	8,8	20,7	
Cable14	1,4	3,3	1,0	2,3	
Cable27	0,0	0,0	0,0	0,0	
BALAM SAKTI	0,0	0,0	0,0	0,0	
Cable15	2,4	5,6	1,7	4,0	
Cable16	1,3	3,1	0,9	2,2	
MAYAR SAKTI	0,0	0,0	0,0	0,0	
Cable17	1,2	2,9	0,9	2,1	
Cable18	2,1	4,9	1,5	3,5	
MERAK SAKTI	0,0	0,1	0,0	0,1	
Cable19	1,9	4,5	1,3	3,1	
KUTILANG	0,1	0,1	0,1	0,1	
Cable20	3,3	7,6	2,2	5,2	
RAJAWALI	0,5	0,7	0,5	0,7	
Cable21	14,0	21,4	9,5	14,5	
DAHLIA	0,0	0,0	0,0	0,0	
Cable22	4,4	6,8	4,3	6,6	
KAMBOJA	0,0	0,0	0,0	0,0	
T30	4,4	46,8	4,3	45,7	
ANGGREK	0,0	0,0	0,0	0,0	
Cable23	3,0	4,6	2,9	4,5	
Cable24	7,1	10,9	0,0	0,00	

Lanjutan tabel 4.14

	Rugi Daya				
ID		emasangan or Bank	Setelah Per Kapasito		
	KW	KVAR	KW	KVAR	
Cable39	0,0	0,0	6,9	10,6	
Cable40	2,6	3,9	0,0	0,0	
Cable43	3,3	5,0	2,5	3,8	
Cable45	0,1	0,1	3,2	4,9	
DAMAI LANGGENG	2,4	9,5	0,1	0,1	
T33	1,8	2,7	2,4	9,3	
Cable47	0,1	0,1	1,7	2,6	
JL KARYAWAN	1,3	2,0	0,1	0,1	
Cable49	0,7	1,1	1,3	2,0	
MUHAJIRIN	0,8	1,3	0,7	1,1	
Cable51	0,1	0,1	0,8	1,2	
RAWA BENING	0,1	0,1	0,1	0,1	
Cable53	0,8	1,2	0,1	0,1	
TEROPONG	0,0	0,1	0,8	1,2	
JL BARU	0,0	0,0	0,0	0,1	
UJUNG JARINGAN	0,0	0,0	0,0	0,0	
T28	1,8	5,6	1,8	5,4	
774-601	1,8	5,5	1,7	5,4	
T5	6,6	20,3	6,5	19,9	
T7	3,4	24,2	3,4	23,8	
Т9	4,5	17,9	4,4	17,6	
T2	1,1	3,5	1,1	3,5	
T18	2,7	8,4	2,7	8,2	
T10	4,6	14,2	4,5	13,9	
T12	5,9	23,5	5,8	23,0	
T13	2,9	16,6	2,8	16,3	
T14	8,2	58,0	8,0	56,8	
T15	3,0	11,9	2,9	11,7	
T16	0,9	2,8	0,9	2,7	
T17	1,1	3,3	1,0	3,2	
PN 674	1,0	3,2	1,0	3,1	
T22	4,9	28,5	4,8	27,9	
T23	6,5	25,8	6,4	25,2	
T24	4,6	48,7	4,5	47,6	
T25	3,2	23,0	3,2	22,5	
T26	4,7	49,7	4,6	48,6	

Lanjutan tabel 4.14

	Rugi Daya			
ID	Sebelum Pemasangan Kapasitor Bank		Setelah Pemasangan Kapasitor Bank	
	KW	KVAR	KW	KVAR
T27	3,4	19,6	3,3	19,2
TOTAL	296,6	1078,7	246,7	925,7

Pada kondisi *exsisting* penyulang OGF 15 Bangau Sakti, beban penyulang OGF 15 Bangau Sakti menyerap total daya aktif dan daya reaktif sebesar 9.526 KW dan 6.544 KVAR melalui trafo daya di GI. Pada kondisi ini penyulang OGF 15 Bangau Sakti mengalami rugi-rugi daya aktif sebesar 296,6 KW dan rugi daya reaktif sebesar 1.078,7 KVAR.

Setelah dilakukan skenario perbaikan pemasangan Kapasitor Bank. Beban penyulang OGF 15 Bangau Sakti menyerap total daya aktif dan daya reaktif sebesar 9.531 KW dan 3.252 KVAR melalui trafo daya. Dari skenario perbaikan ini rugirugi berkurang dimana daya aktif menjadi sebesar 246,7 KW dan daya reaktif menjadi sebesar 925,7 KVAR. Berdasarkan tabel 4.14 maka dapat diketahui besarnya persentase berkurangnya rugi-rugi daya aktif dan daya reaktif pada penyulang OGF 15 Bangau Sakti dengan persamaan berikut:

% Berkurangnya
$$\Delta P = \frac{\Delta P - \Delta P'}{\Delta P} \times 100\%$$

$$= \frac{296,6 - 246,7}{296,6} \times 100\%$$

$$= 16,82 \%$$

% Berkurangnya $\Delta Q = \frac{\Delta Q - \Delta Q'}{\Delta Q} \times 100\%$

$$=\frac{1.078,7-925,7}{1.078,7}\times100\%$$

Dari skenario perbaikan yang telah dilakukan menghasilakan berkurangnya rugi-rugi daya aktif sebesar 49,9 KW atau 16,82 % dan daya reaktif sebesar 153 KVAR atau 14,18 % dari kondisi *exsisting*.

4.4.4 Skenario Perbaikan Dengan Pengantian Luas Penampang Penghantar

Pada perbaikan ini penggantian Luas Penampang penghantar dilakukan dipenghantar utama (*main feeder*) yang masih mengunakan luas penampang 150 mm², dimana pada penyulang OGF 15 Bangau Sakti penghantar yang masih menggunakan ukuran 150 mm² mempunyai panjang jaringan ± 10,625 km. kemudian Setelah dilakukan skenario penggantian luas penampang penghantar yang mula digunakan adalah AAAC dengan nilai 150 mm² kemudian diganti menjadi 240 mm² dengan panjang jaringan yang sama. Penggantian luas penampang penghantar pada penyulang OGF 15 Bangau Sakti dapat dilihat pada lampiran 1-3. Maka dari hasil simulasi didapatkan data berupa nilai tegangan pada setiap bus. Berikut tegangan sebelum dan setelah dilakukan skenario penggantian luas penampang dapat dilihat pada tabel 4.15.

Tabel 4.15 Tegangan sebelum dan setelah penggantian Luas Penampang

NO	ID	Tegangan Sebelum Perbaikan Penggantian Kabel (KV)	Tegangan Setelah Perbaikan Penggantian Kabel (KV)
1	bus 02	19,732	19,733
2	bus 03	19,59	19,591
3	bus 04	19,558	19,558
4	bus 05	19,467	19,467
5	bus 06	19,424	19,424
6	bus 07	19,383	19,383
7	bus 08	19,369	19,369
8	bus 09	19,341	19,341
9	bus 010	19,286	19,286
10	bus 011	19,279	19,28
11	bus 012	19,268	19,269
12	bus 013	19,262	19,262
13	bus 014	19,256	19,256
14	bus 015	19,245	19,246
15	bus 016	19,235	19,236
16	bus 017	19,215	19,216
17	bus 018	19,145	19,16
18	bus 019	19,117	19,138
19	bus 020	19,098	19,123
20	bus 021	19,098	19,123
21	bus 022	19,053	19,087
22	bus 023	19,036	19,074
23	bus 024	19,01	19,054
24	bus 025	18,995	19,042
25	bus 026	18,977	19,028
26	bus 027	18,963	19,017

Lanjutan tabel 4.15

NO	ID	Tegangan Sebelum Perbaikan Penggantian Kabel (KV)	Tegangan Setelah Perbaikan Penggantian Kabel (KV)
27	bus 028	18,96	19,014
28	bus 029	18,958	19,013
29	bus 030	19,557	19,558
30	bus 031	19,38	19,38
31	bus 032	19,365	19,366
32	bus 033	19,339	19,339
33	bus 034	19,286	19,286
34	bus 035	19,278	19,279
35	bus 036	19,267	19,267
36	bus 037	19,253	19,253
37	bus 038	19,241	19,241
38	bus 039	19,22	19,221
39	bus 040	19,214	19,214
40	bus 041	19,145	19,16
41	bus 042	19,117	19,138
42	bus 043	19,052	19,087
43	bus 044	19,032	19,07
44	bus 045	19,005	19,049
45	bus 046	18,976	19,023
46	bus 047	18,974	19,025
47	bus 048	18,942	18,996
48	bus 049	18,957	19,011

Pada kondisi setelah dilakukkannya perbaikan penggantian luas penampang penghantar pada jaringan. tegangan bus 2 mengalami kenaikan menjadi 19,733 KV

sedangkan pada bus 29 dan bus 48 juga mengalami kenaikan menjadi pada bus 28 yaitu 19,013 KV dan bus 48 yaitu 18,996 KV. Sehingga jatuh tegangan pada kondisi ini adalah sebagan berikut:

Jatuh tegangan
$$\Delta V$$
 bus $29 = \text{Vs} - \text{Vr}$
= 19,733 - 19,013
= 0,72 KV
Jatuh tegangan % bus $29 = \frac{\Delta V}{Vs} \times 100\%$
= $\frac{0,72}{19,733} \times 100\%$
= 3,64 %

Dan pada bus 48

$$= 19,733 - 18,996$$

$$= 0,737 \text{ KV}$$
Jatuh tegangan % bus 48 = $\frac{\Delta V}{Vr} \times 100\%$

$$= \frac{0,737}{19,733} \times 100\%$$

$$= 3,73 \%$$

Jatuh tegangan ΔV bus 48 = Vs - Vr

Dari hasil perhitungan tersebut, maka dapat diketahui bahwa pada kondisi setelah dilakukan skenario perbaikan penggantian luas penampang penghantar.

Penyulang OGF 15 Bangau Sakti mengalami jatuh tegangan pada bus 29 sebesar 0,317 KV atau 1,60 % dan pada bus 48 sebesar 0,737 KV atau 3,73 %. Penurunan jatuh tegangan ini hanya sedikit dikarenakan panggantian luas penampang hanya dilakukan di jaringan utama (*main feeder*) yang masih menggunakan ukuran 150 mm² menjadi 240 mm². Arus yang mengalir pada penyulang hanya mengalami sedikit penurunan dimana pada kondisi awal arusnya sebesar 338 A berkurang menjadi 337,8 A. Hal ini menyebabkan penurunan jatuh tegangan tidak memberi pengaruh yang besar terhadap nilai tegangan yang terjadi di ujung jaringan. Nilai tegangan pada bus 48 sebesar 18,996 KV masih dibawah toleransi yang digunakan yakni tidak kurang dari 19 KV. Berdasarkan data diatas maka dapat diketahui besarnya persentase penurunan jatuh tegangan pada bus 29 dan bus 48 pada penyulang OGF 15 Bangau Sakti dengan persamaan berikut:

% Penurunan
$$\Delta V$$
 bus $29 = \frac{\Delta V - \Delta V'}{\Delta V} \times 100\%$

$$= \frac{0,774 - 0,72}{0,774} \times 100\%$$

$$= 6,97\%$$
% Penurunan ΔV bus $48 = \frac{\Delta V - \Delta V'}{\Delta V} \times 100\%$

$$= \frac{0,79 - 0,737}{0,79} \times 100\%$$

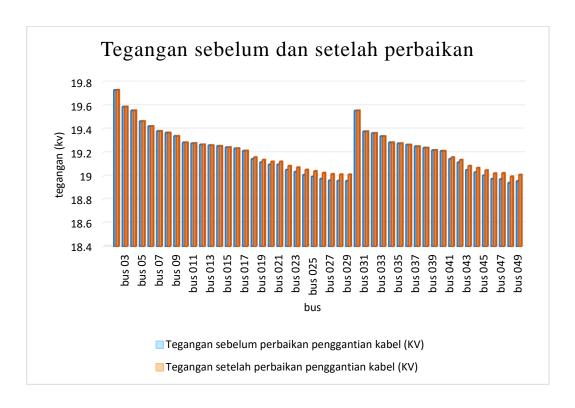
$$= 6,70\%$$

Dari skenario perbaikan yang telah dilakukan menghasilkan penurunan jatuh tegangan pada bus 29 sebesar 0,054 KV atau 6,97 % dan pada bus 48 sebesar 0,053 KV atau 6,70 % dari kondisi *exsisting*.

Berdasarkan skenario perbaikan penggantian luas penampang penghantar diatas maka dapat diketahui besarnya persentase kenaikan profil tegangan pada bus 29 dan bus 48 penyulang OGF 15 Bangau Sakti dengan persamaan berikut:

% kenaikan profil tegangan bus
$$29 = \frac{v'-v}{v} \times 100\%$$

$$= \frac{19,013 - 18,958}{19,013} \times 100\%$$


$$= 0,28 \%$$
% kenaikan profil tegangan bus $48 = \frac{v'-v}{v} \times 100\%$

$$= \frac{18,996 - 18,942}{18,996} \times 100\%$$

$$= 0.28 \%$$

Dari skenario perbaikan yang telah dilakukan menghasilkan kenaikan tegangan pada bus 29 dan bus 48 sebesar 0,28 % atau 0,055 KV dari kondisi *exsisting*. Karena penggantian luas penampang penghantar dilakukan pada penghantar penyulang yang masih menggunakan ukuran 150 mm² menjadi 240 mm² maka seluruh bus pada penyulang OGF 15 Bangau Sakti juga mengalami kenaikan tegangan yang bervariasi.

Berdasarkan tabel 4.15 tegangan hasil simulasi aliran daya OGF 15 Bangau Sakti menghasilkan grafik perbandingan tegangan bus 20 KV pada kondisi sebelum dan setelah dilakukan perbaikan penggantian luas penampang penghantar yang terlihat pada gambar 4.4.

Gambar 4.4 Grafik tegangan Penyulang OGF 15 Bangau Sakti

Terlihat pada gambar 4.4 tersebut menunjukkan tegangan bus 20 KV mulai dari bus 2 hingga ujung saluran yaitu bus 28 dan bus 48. Pada kondisi sebelum dilakukan perbaikan tegangan pada bus 2 sebesar 19,732 KV, seterusnya mengalami penurunan pada bus 29 sebesar 18,958 KV dan pada bus percabangan 48 yang menjadi titik bus terendah yaitu sebesar 18,942 KV.

Sedangkan pada kondisi setelah dilakukan perbaikan penggantian luas penampang penghantar, tegangan pada jaringan utama (*main feeder*) bus 2 sampai

bus 17 dan jaringan percabangan bus 30 sampai 40 masih pada tegangan awal. Kenaikan terjadi pada jaringan utama (*main feeder*) bus 18 sampai 29 dan jaringan percabangan bus 41 sampai 49. Pada ujung jaringan utama (*main feeder*) bus 29 dan ujung percabangan 48 yang semula sebelum dilakukan perbaikan bertegangan 18,958 KV pada bus 29 dan 18,942 KV pada bus 48 mengalami kenaikan sebesar 19,013 KV pada bus 29 dan 18,996 KV pada bus 48. Pada bus 29 tegangan yang diterima sudah dalam batas toleransi akan tetapi pada bus 48 tegangan yang diterima masih dibawah tegangan minimal yang ditentukan. Hal ini disebabkan karena penggantian luas penampang hanya disebagian jaringan penyulang OGF 15 Bangau Sakti saja tidak dilakukan penggantian di seluruh jaringan utama (*main feeder*).

Skenario perbaikan penggantian luas penampang penghantar pada penyulang OGF 15 Bangau Sakti juga akan mengurangi rugi-rugi daya total yang terjadi pada penyulang. Pengurangan rugi-rugi daya ini diakibatkan oleh berkurangnya nilai resistansi dan reaktansi penghantar pada penyulang OGF 15 Bangau Sakti. Dengan demikian rugi-rugi daya aktif (I²R) dan rugi-rugi daya reakif (I²X) pada penyulang OGF 15 Bangau Sakti akan mengalami penurunan. Akan tetapi penurunan dari rugi-rugi daya pada skenario ini hanya sedikit dikarenakan perbaikan yang dilakukan hanya mengganti sebagian penghantar saja. Arus yang mengalir pada penyulang hanya mengalami sedikit penurunan dimana pada kondisi awal arusnya sebesar 338 A berkurang menjadi 337,8 A. Hal ini meyebabkan rugi-rugi daya aktif (I²R) dan rugi-rugi daya reakif (I²X) yang terjadi tidak terlalu besar.

Berikut perbedaan rugi-rugi daya yang terjadi pada penyulang OGF 15 Bangau Sakti tersebut dapat dilihat pada tabel 4.16.

Tabel 4.16 Rugi-rugi daya sebelum dan setelah penggantian Luas Penampang

	Rugi Daya				
ID		enggantian abel		Setelah Penggantian Kabel	
	KW	KVAR	KW	KVAR	
T1	8,8	260,5	8,8	260,1	
Cable1	65,7	51,2	65,6	51,1	
Cable2	8,7	20,5	8,7	20,4	
PN 734	0,9	2,7	0,9	2,7	
Cable3	24,3	57,1	24,3	57,0	
Cable8	0,0	0,0	0,0	0,0	
Cable4	11,3	26,6	11,3	26,6	
PN 597	2,9	9,0	2,9	9,0	
Cable5	10,7	25,2	10,7	25,1	
Cable6	0,0	0,1	0,0	0,1	
Cable9	3,7	8,6	3,7	8,6	
Cable11	6,4	15,1	6,4	15,1	
UNRI	0,1	0,1	0,1	0,1	
491,246	2,8	8,7	2,8	8,6	
BINA KRIDA	0,0	0,0	0,0	0,0	
Cable12	12,3	28,9	12,3	28,8	
Cable14	1,4	3,3	1,4	3,3	
Cable27	0,0	0,0	0,0	0,0	
BALAM SAKTI	0,0	0,0	0,0	0,0	
Cable15	2,4	5,6	2,4	5,6	
Cable16	1,3	3,1	1,3	3,1	
MAYAR SAKTI	0,0	0,0	0,0	0,0	
Cable17	1,2	2,9	1,2	2,9	
Cable18	2,1	4,9	2,1	4,9	
MERAK SAKTI	0,0	0,1	0,0	0,1	
Cable19	1,9	4,5	1,9	4,5	
KUTILANG	0,1	0,1	0,1	0,1	
Cable20	3,3	7,6	3,2	7,6	
RAJAWALI	0,5	0,7	0,5	0,7	

Lanjutan tabel 4.16

	Rugi Daya				
ID	Sebelum Penggantian Kabel		Setelah Pen Kab		
	KW	KVAR	KW	KVAR	
Cable21	14,0	21,4	8,7	20,4	
DAHLIA	0,0	0,0	0,0	0,0	
Cable22	4,4	6,8	2,8	6,5	
KAMBOJA	0,0	0,0	0,0	0,0	
T30	4,4	46,8	4,4	46,7	
ANGGREK	0,0	0,0	0,0	0,0	
Cable23	3,0	4,6	1,9	4,4	
Cable24	7,1	10,9	4,4	10,3	
Cable39	0,0	0,0	0,0	0,0	
Cable40	2,6	3,9	1,6	3,7	
Cable43	3,3	5,0	2,0	4,8	
Cable45	0,1	0,1	0,1	0,1	
DAMAI LANGGENG	2,4	9,5	2,4	9,5	
T33	1,8	2,7	1,1	2,6	
Cable47	0,1	0,1	0,1	0,1	
JL KARYAWAN	1,3	2,0	0,8	1,9	
Cable49	0,7	1,1	0,7	1,1	
MUHAJIRIN	0,8	1,3	0,5	1,2	
Cable51	0,1	0,1	0,1	0,1	
RAWA BENING	0,1	0,1	0,0	0,1	
Cable53	0,8	1,2	0,8	1,2	
TEROPONG	0,0	0,1	0,0	0,1	
JL BARU	0,0	0,0	0,0	0,0	
UJUNG JARINGAN	0,0	0,0	0,0	0,0	
T28	1,8	5,6	1,8	5,5	
774-601	1,8	5,5	1,8	5,5	
T5	6,6	20,3	6,6	20,3	
T7	3,4	24,2	3,4	24,2	
Т9	4,5	17,9	4,5	17,9	
T2	1,1	3,5	1,1	3,5	
T18	2,7	8,4	2,7	8,4	
T10	4,6	14,2	4,6	14,2	

Lanjutan tabel 4.16

	Rugi Daya			
ID	Sebelum Penggantian Kabel		Setelah Penggantian Kabel	
	KW	KVAR	KW	KVAR
T12	5,9	23,5	5,9	23,5
T13	2,9	16,6	2,9	16,6
T14	8,2	58,0	8,2	58,0
T15	3,0	11,9	3,0	11,9
T16	0,9	2,8	0,9	2,8
T17	1,1	3,3	1,1	3,3
PN 674	1,0	3,2	1,0	3,2
T22	4,9	28,5	4,9	28,4
T23	6,5	25,8	6,5	25,7
T24	4,6	48,7	4,5	48,5
T25	3,2	23,0	3,2	22,9
T26	4,7	49,7	4,6	49,5
T27	3,4	19,6	3,4	19,5
TOTAL	296,6	1078,7	281,6	1074,1

Pada kondisi *exsisting* penyulang OGF 15 Bangau Sakti, beban penyulang OGF 15 Bangau Sakti menyerap total daya aktif dan daya reaktif sebesar 9.526 KW dan 6.544 KVAR melalui trafo daya di GI. Pada kondisi ini penyulang OGF 15 Bangau Sakti mengalami rugi-rugi daya aktif sebesar 296,6 KW dan rugi daya reaktif sebesar 1.078,7 KVAR.

Setelah dilakukan skenario perbaikan penggantian luas penampang penghantar. Beban penyulang OGF 15 Bangau Sakti menyerap total daya aktif dan daya reaktif sebesar 9.515 KW dan 6.542 KVAR melalui tarfo daya. Dari skenario perbaikan ini berkurang rugi-rugi daya aktif menjadi sebesar 281,6 KW dan daya reaktif menjadi sebesar 1.074,1 KVAR. Berdasarkan tabel 4.16 maka dapat

diketahui besarnya persentase berkurangnya rugi-rugi daya aktif dan daya reaktif pada penyulang OGF 15 Bangau Sakti dengan persamaan berikut:

% Berkurangnya
$$\Delta P = \frac{\Delta P - \Delta P'}{\Delta P} \times 100\%$$

$$= \frac{296,6 - 281,6}{296,6} \times 100\%$$

$$= 5,05\%$$
% Berkurangnya $\Delta Q = \frac{\Delta Q - \Delta Q'}{\Delta Q} \times 100\%$

$$= \frac{1.078,7 - 1.074,1}{1.078,7} \times 100\%$$

$$= 0,42\%$$

Dari skenario perbaikan yang telah dilakukan menghasilakan berkurangnya rugi-rugi daya aktif sebesar 15 KW atau 5,05 % dan daya reaktif sebesar 4,6 KVAR atau 0,42 % dari kondisi *exsisting*.

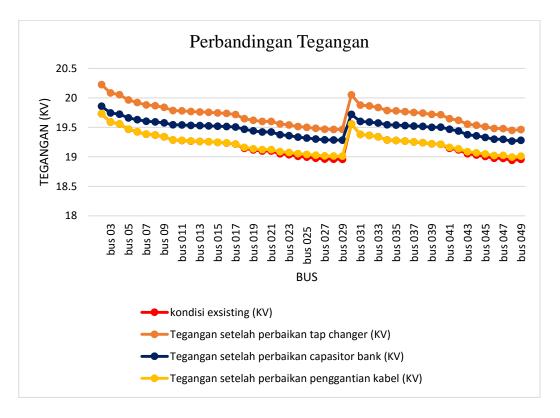
4.4.5 Perbandingan Dari Awal Sebelum Skenario Perbaikan Dan Setelah Skenario Perbaikan

Dari hasil simulasi kondisi *exsisting* penyulang OGF 15 Bangau Sakti mengalami penurunan tegangan hingga ujung jaringan utama (*main feeder*) yaitu pada bus 29 dengan nilai tegangan sebesar 18,958 KV dimana jatuh tegangan yang terjadi sebesar 0,774 KV dan di ujung percabangan bus 48 dengan nilai tegangan sebesar 1,942 KV dimana jatuh tegangan yang terjadi sebesar 0,79 KV. Tegangan

pada bus 29 dan bus 48 memilik tegangan dibawah tegangan 19 KV. Dimana pada penelitian ini batas minimal tegangan yang diperbolehkan tidak kurang dari 19 KV tegangan nominal jaringan tegangan menengah 20 KV. Maka dilakukan skenario perbaikan profil tegangan untuk mengurangi jatuh tegangan yang terjadi. Dengan perbaikan ini sehingga rugi-rugi daya yang terjadi akan ikut berkurang. Berikut merupakan perbandingan tegangan pada kondisi *exsisting* dan semua skenario perbaikan yang digunakan dapat dilihat pada tabel 4.17.

Tabel 4.17 perbandingan tegangan Penyulang OGF 15 Bangau Sakti kondisi awal dan semua skenario perbaikan

ID	kondisi exsisting (KV)	Tegangan setelah perbaikan tap changer (KV)	Tegangan setelah perbaikan capasitor bank (KV)	Tegangan setelah perbaikan penggantian kabel (KV)
bus 02	19,732	20,224	19,86	19,733
bus 03	19,59	20,085	19,744	19,591
bus 04	19,558	20,053	19,722	19,558
bus 05	19,467	19,964	19,66	19,467
bus 06	19,424	19,921	19,631	19,424
bus 07	19,383	19,881	19,604	19,383
bus 08	19,369	19,867	19,594	19,369
bus 09	19,341	19,84	19,577	19,341
bus 010	19,286	19,786	19,543	19,286
bus 011	19,279	19,779	19,54	19,28
bus 012	19,268	19,769	19,533	19,269
bus 013	19,262	19,762	19,529	19,262
bus 014	19,256	19,757	19,526	19,256
bus 015	19,245	19,746	19,52	19,246
bus 016	19,235	19,736	19,515	19,236
bus 017	19,215	19,717	19,505	19,216


Lanjutan tabel 4.17

ID	kondisi exsisting (KV)	Tegangan setelah perbaikan tap changer (KV)	Tegangan setelah perbaikan capasitor bank (KV)	Tegangan setelah perbaikan penggantian kabel (KV)
bus 018	19,145	19,648	19,467	19,16
bus 019	19,117	19,62	19,44	19,138
bus 020	19,098	19,601	19,421	19,123
bus 021	19,098	19,601	19,421	19,123
bus 022	19,053	19,557	19,376	19,087
bus 023	19,036	19,541	19,36	19,074
bus 024	19,01	19,515	19,334	19,054
bus 025	18,995	19,5	19,319	19,042
bus 026	18,977	19,483	19.302	19,028
bus 027	18,963	19,469	19,288	19,017
bus 028	18,96	19,466	19,285	19,014
bus 029	18,958	19,465	19,283	19,013
bus 030	19,557	20,052	19,721	19,558
bus 031	19,38	19,878	19,601	19,38
bus 032	19,365	19,864	19,591	19,366
bus 033	19,339	19,838	19,575	19,339
bus 034	19,286	19,786	19,543	19,286
bus 035	19,278	19,779	19,539	19,279
bus 036	19,267	19,767	19,531	19,267
bus 037	19,253	19,754	19,523	19,253
bus 038	19,241	19,742	19,516	19,241
bus 039	19,22	19,721	19,5	19,221
bus 040	19,214	19,715	19,503	19,214
bus 041	19,145	19,647	19,467	19,16
bus 042	19,117	19,62	19,439	19,138

Lanjutan tabel 4.17

ID	kondisi exsisting (KV)	Tegangan setelah perbaikan tap changer (KV)	Tegangan setelah perbaikan capasitor bank (KV)	Tegangan setelah perbaikan penggantian kabel (KV)
bus 043	19,052	19,556	19,376	19,087
bus 044	19,032	19,537	19,356	19,07
bus 045	19,005	19,511	19,33	19,049
bus 046	18,976	19,481	19,3	19,023
bus 047	18,974	19,48	19,298	19,025
bus 048	18,942	19,449	19,267	18,996
bus 049	18,957	19,463	19,281	19,011

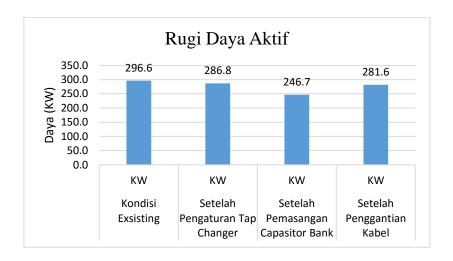
Berdasarkan tabel 4.17 menghasilkan grafik perbandingan perbandingan tegangan pada kondisi *exsisting* dan semua skenario perbaikan yang digunakan yang dapat dilihat pada gambar 4.5.

Gambar 4.5 Grafik perbandingan tegangan Penyulang OGF 15 Bangau Sakti kondisi awal dan semua skenario perbaikan

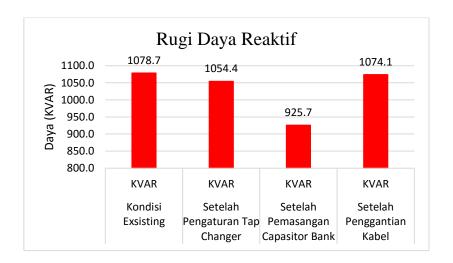
Dari gambar 4.5 grafik diatas terlihat bahwa pada kondisi *exsisting* tegangan pada bus 2 sebesar 19,732 KV dan tegangan diujung jaringan utama bus 29 sebesar 18,958 KV serta diujung percabangan bus 48 sebesar 18,942 KV. Kemudian setelah dilakukannya skenario perbaikan pengaturan *tap changer* terjadi kenaikan pada tiap-tiap bus yaitu pada bus 2 sebesar 20,224 KV dan tegangan diujung jaringan utama bus 29 sebesar 19,465 KV serta diujung percabangan bus 48 sebesar 19,449 KV. Selanjutnya setelah dilakukannya skenario perbaikan pemasangan Kapasitor Bank terjadi kenaikan pada tiap-tiap bus yaitu pada bus 2 sebesar 19,86 KV dan tegangan diujung jaringan utama bus 29 sebesar 19,283 KV serta diujung percabangan bus 48 sebesar 19,267 KV. Kemudian setelah dilakukannya skenario perbaikan penggantian luas penampang penghantar terjadi sedikit kenaikan pada

tiap-tiap bus yaitu pada bus 2 sebesar 19,733 KV dan tegangan diujung jaringan utama bus 29 sebesar 19,013 KV serta diujung percabangan bus 48 sebesar 18,996 KV. Hal ini disebabkan pada skenario perbaikan ini hanya mengganti penghantar jaringan utama yang masih menggunakan ukuran luas penampang 150 mm² menjadi 240 mm².

Selanjutnya perbandingan rugi-rugi daya aktif dan daya reaktif dari kondisi *exsisting* dan semua skenario perbaikan yang digunakan dapat dilihat pada tabel 4.18 rugi daya aktif dan tabel 4.19 rugi daya reaktif.


Tabel 4.18 Perbandingan Rugi Daya Aktif

Rugi Daya Aktif						
Kondisi exsisting	Setelah pengaturan tap changer	Setelah pemasangan kapasitor bank	Setelah penggantian luas penampang			
296,6 KW	286,9 KW	246,7 KW	281,6 KW			


Tabel 4.19 Perbandingan Rugi Daya Reaktif

Rugi Daya Reaktif						
kondisi exsisting	Setelah pengaturan <i>tap</i> <i>changer</i>	Setelah pemasangan kapasitor bank	Setelah penggantian luas penampang			
1.079,7 KVAR	1.055,4 KVAR	926,5 KVAR	1.074,1 KVAR			

Berdasarkan tabel 4.18 perbandingan rugi daya aktif dan tabel 4.19 perbandingan rugi daya reaktif menghasilkan grafik perbandingan rugi daya pada kondisi *exsisting* dan semua skenario perbaikan yang digunakan yang dapat dilihat pada gambar 4.6 dan gambar 4.7.

Gambar 4.6 Grafik perbandingan rugi daya aktif Penyulang OGF 15 Bangau Sakti kondisi *exsisting* dan semua skenario perbaikan

Gambar 4.7 Grafik perbandingan rugi daya reaktif Penyulang OGF 15 Bangau Sakti kondisi *exsisting* dan semua skenario perbaikan

Dari gambar 4.6 dan 4.7 grafik diatas terlihat pada saat kondisi *exsisting* rugi-rugi daya aktif sebesar 296,6 KW dan daya rekatif sebesar 1.078,7 KVAR. Selanjutnya setelah dilakukan skenario perbaikan pengaturan *tap changer* mendapatkan hasil rugi-rugi daya aktif sebesar 286,8 KW dan daya reaktif sebesar 1.054,4 KVAR. Kemudian setelah dilakukan skenario perbaikan pemasangan

Kapasitor Bank mandapatkan hasil rugi-rugi daya aktif sebesar 246,7 KW dan daya reaktif sebesar 925,7 KVAR. Selanjutnya setelah dilakukan skenario perbaikan penggantian luas penampang penghantar mandapatkan hasil rugi-rugi daya aktif sebesar 281,6 KW dan daya reaktif sebesar 1.074,1 KVAR.

Dari hasil data-data tersebut didapatkan diketahui bahwa pada skenario perbaikan pengaturan tap changer, profil tegangan di ujung jaringan utama bus 29 sebesar 19,465 KV dan diujung jaringan percabangan bus 48 sebesar 19,449 KV dengan kenaikan profil tegangan sebesar 0,507 KV dari kondisi exsisting serta rugirugi daya yang terjadi berkurang sebesar 9,8 KW pada daya aktif dan 24,3 KVAR pada daya aktif dari kondisi exsisting. Selanjutnya pada skenario perbaikan pemasangan Kapasitor Bank, profil tegangan di ujung jaringan utama bus 29 sebesar 19,283 KV dan diujung jaringan percabangan bus 48 sebesar 19,267 KV dengan kenaikan profil tegangan sebesar 0,325 KV dari kondisi exsisting serta rugirugi daya yang terjadi berkurang sebesar 49,9 KW pada daya aktif dan 153 KVAR pada daya aktif dari kondisi exsisting. Selanjutnya pada skenario perbaikan penggantian luas penampang penghantar, profil tegangan diujung jaringan utama bus 29 sebesar 19,013 KV dan diujung jaringan percabangan bus 48 sebesar 18,996 KV dengan kenaikan profil tegangan sebesar 0,005 KV dari kondisi exsisting serta rugi-rugi daya yang terjadi berkurang sebesar 15 KW pada daya aktif dan 4,6 KVAR pada daya aktif dari kondisi *exsisting*.

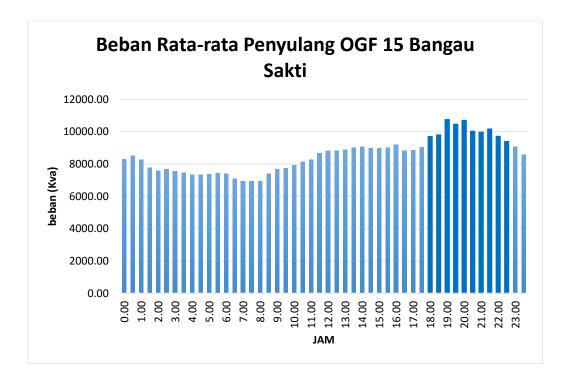
Dari data perbandingan profil tegangan dan rugi daya diatas dapat disimpulkan bahwa skenario perbaikan yang mampu memperbaiki profil tegangan dan mengurangi rugi daya yang besar adalah skenario perbaikan pemasangan

kapasitor bank dimana skenario perbaikan ini memiliki profil tegangan pada bus 26 sampai bus 29 pada jaringan utama dan bus 46 sampai bus 49 pada jaringan percabangan tegangan pada setiap bus sudah diatas tegangan 19 KV. Dimana diujung jaringan yang sudah berada diatas tegangan minimal toleransi yang ditentukan yakni pada bus 29 sebesar 19,283 KV dan bus 48 sebesar 19,267 KV serta rugi-rugi daya yang terjadi berkurang sebesar 49,9 KW pada daya aktif dan 153 KVAR pada daya aktif dari kondisi *exsisting* Berkurangnya rugi-rugi ini merupakan pengurangan rugi-rugi daya yang paling besar dari ketiga skenario perbaikan yang digunakan.

Oleh sebab itu dipilihlah skenario perbaikan pemasangan Kapasitor Bank sebagai metode perbaikan yang digunakan untuk memperbaiki profil tegangan dan rugi daya pada penyulang OGF 15 Bangau Sakti.

4.4.6 Menghitung Energi Yang Tidak Tersalurkan pada Penyulang OGF 15 Bangau Sakti

Pada pembahasan ini akan dibahas mengenai ENS (*energi not supply*) atau energi yang tidak tersalurkan akibat pemadaman pada penyulang OGF 15 Bangau Sakti. Data yang digunakan merupakan data beban daya yang terukur pada bulan November tahun 2016. Beban daya yang digunakan ini merupakan data beban daya yang sudah diakumulasikan dalam bentuk beban daya rata-rata setiap jamnya dalam waktu satu bulan. Berikut merupakan data beban daya rata-rata setiap jam pada bulan November 2016 dapat dilihat pada tabel 4.20.


Tabel 4.20 Beban Daya Rata-rata Bulan November 2016

JAM	Daya Rata-rata Bulan November (KVA)	
00.00	8.304,94	
00.30	8.508,16	
01.00	8.264,06	
01.30	7.782,22	
02.00	7.571,15	
02.30	7.674,61	
03.00	7.544,82	
03.30	7.446,10	
04.00	7.342,99	
04.30	7.326,24	
05.00	7.358,46	
05.30	7.436,52	
06.00	7.406,96	
06.30	7.097,97	
07.00	6.920,61	
07.30	6.933,54	
08.00	6.942,09	
08.30	7.384,79	
09.00	7.680,96	
09.30	7.732,57	
10.00	7.919,74	
10.30	8.127,12	
11.00	8.265,10	
11.30	8.651,92	
12.00	8.815,53	
12.30	8.813,80	
13.00	8.880,19	
13.30	9.003,98	
14.00	9.067,83	
14.30	8.972,22	
15.00	8.964,60	
15.30	9.014,48	
16.00	9.184,91	
16.30	8.810,68	
17.00	8.862,07	

Lanjutan tabel 4.20

JAM	Daya Rata-rata Bulan November (KVA)
17.30	9.046,93
18.00	9.701,05
18.30	9.804,04
19.00	10.751,56
19.30	10.465,90
20.00	10.707,34
20.30	10.030,24
21.00	9.976,20
21.30	10.173,88
22.00	9.715,48
22.30	9.401,64
23.00	9.078,45
23.30	8.581,25

Berdasarkan tabel 4.20 diatas menghasilkan grafik daya rata-rata yang digunakan setiap jamnya dapat dilihat pada gambar 4.8 berikut.

Gambar 4.8 Grafik Daya Rata-rata Setiap Jam

Pada gambar 4.8 grafik diatas dapat terlihat bahwa beban rata-rata pada setiap jamnya memiliki beban yang berbeda-beda. Beban daya yang digunakan pada jam 00.00 memiliki beban daya sebesar 8.304,94 KVA kemudian terjadi kenaikan pada jam 00.30 yaitu sebesar 8.508,16 KVA. Kemudian pada jam-jam selanjutnya mengalami penurunan dimana penurunan terendah terjadi pada jam 07.00 yaitu sebesar 6.920,61 KVA. Hal ini dikarenakan pada jam-jam tersebut penggunaan daya listrik sudah berkurang. Pada jam 09.00 terjadi kenaikan beban daya sebesar 7.680,96 KVA begitupun pada jam-jam selanjutnya mengalami kenaikan sedikit demi sedikit dimana puncak kenaikan ini terjadi pada pukul 16.00 yaitu sebesar 9.184,91 KVA. Pada jam-jam tersebut terjadi kenaikan beban dikarenakan pada waktu tersebut banyak konsumen yang menggukanan daya listrik seperti rumah tangga, industri, Mall dan lain-lain. Kemudian pada jam 16.30 terjadi penurunan beban daya dan pada jam 17.00 sampai 17.30 mengalami kenaikan. Selanjutnya pada jam 18.00 terjadi kenaikan yang cukup tinggi yaitu sebesar 9.710,05 KVA hingga jam 22.30 terjadi kenaikan sebesar 9.401,64 KVA. Pada waktu tersebut pada jam 19.00 merupakan puncak kenaikan beban daya sebesar 10.751,56 KVA. Beban puncak ini terjadi dikarenakan penggunaan daya listrik yang sangat besar. Selanjurnya pada jam 23.00 sampai jam 23.30 terjadi penurunan sebesar 9.078,45 KVA dan 8.581,25 kVA.

Dari grafik diatas dilakukan pengelompokan beban yaitu beban pada luar waktu beban puncak (LWBP) dan waktu beban puncak (WBP). Beban pada LWBP diasumsikan terjadi selama 19,5 jam yakni pada jam 23.00 sampai 17.30 sedangkan beban pada WBP terjadi selama 4,5 jam yakni pada jam 18.00 sampai 22.30.

Berikut merupakan data dari beban daya rata-rata LWBP dan WBP bulan November dapat dilihat pada tabel 4.21.

Tabel 4.21 Daya rata-rata LWBP dan WBP bulan November 2016

Waktu	Daya Rata-rata (KVA)
LWBP	7.766,53
WBP	10.072,73

Berdasarkan tabel 4.21 didapatkan hasil bahwa daya rata-rata saat kodisi LWBP sebesar 7.766,53 KVA perjam sedangkan daya rata-rata saat kondisi WBP sebesar 10.072,73 KVA perjam.

Berdasarkan data pengukuran pembebanan bulan November yang terlampir di lampiran 1-8, terdapat waktu-waktu pemadanam pada bulan November. Berikut data waktu pemadanam pada bulan November pada jam/hari selama satu bulan dapat dilihat pada tabel 4.22.

Tabel 4.22 Waktu pemadanam pada bulan November perhari

Tanggal	Waktu	Padam	Lamanya Waktu Padam		
Tanggal	LWBP	WBP	LWBP	WBP	
1					
2		19.30 - 20.00, 20.30 - 21.30		1,5 jam	
3	01.30 - 02.30, 15.30 - 16.00	18.00 - 19.00	1,5 jam	1 jam	
4					
5					
6					
7					
8					
9					
10	09.30 - 11.30		2 jam		

Lanjutan tabel 4.22

Tanggal Waktu I		Waktu Padam		Waktu Padam
Tanggal	LWBP	WBP	LWBP	WBP
11				
12				
13				
14				
15		20.30 - 00.00		3,5 jam
16	00.00 - 00.30		30 menit	
17	08.00 - 08.30	18.30 - 19.00	30 menit	30 menit
18				
19				
20				
21				
22		18.30 - 19.00		30 menit
23				
24				
25				
26				
27				
28				
29				
30				
	Total		4,5 jam	7 jam

Berdasarkan tabel 4.22 dapat dilihat bahwa pada Penyulang OGF 15 Bangau Sakti terjadi pemadaman pada kondisi LWBP selama 4,5 jam dalam satu (1) bulan dan terjadi pemadaman pada kondisi WBP selama 7 jam dalam satu (1) bulan. Dan untuk mencari waktu yang tersalurkan pada penyulang OGF 15 Bangau Sakti dapat dilakukan dengan perhitungan berikut:

Waktu LWBP total (t)
$$= 30 \times 19,5 \text{ jam}$$
 $= 585 \text{ jam}$

Waktu LWBP tersalurkan (t) = 585 - 4.5 jam

= 58,5 jam

Waktu WBP total (t) $= 30 \times 4.5 \text{ jam}$

= 135 jam

Waktu WBP tersalurkan (t) = 135 - 7 jam

= 128 jam

Dari hasil perhitungan diatas kemudian dimasukkan kedalam tabel 4.23 berikut:

Tabel 4.23 Data waktu tersalurkan dan tidak tersalurkan

Kondisi	Total waktu	Waktu (t)		
Kolluisi	(t)	Tersalurkan	Tidak Tersalurkan	
LWBP	585	580,5	4,5	
WBP	135	128	7	

Berdasarkan tabel 4.23 dapat dilihat bahwa waktu yang tersalurkan pada kondisi LWBP selama 580,5 jam dalam satu bulan dan waktu yang tidak tersalurkan pada kondisi ini terjadi selama 4,5 jam dalam satu bulan. Kemudian pada kondisi WBP waktu yang tersalurkan terjadi selama 128 jam dalam satu bulan dan waktu yang tidak tersalurkan terjadi selama 7 jam dalam satu bulan. Dari data waktu diatas untuk mencari besarnya energi yang tersalurkan dan tidak tersalurkan dapat dilakukan dengan perhitungan berikut:

Untuk mencari energi tersalurkan melalui perhitungan berikut:

Energi tersalurkan LWBP $= P_{rata-rata LWBP} x t$

 $= 7.766,53 \times 580,5$

= 4.508.470,66 kWh/bulan

Energi tersalurkan WBP $= P_{rata-rata WBP} x t$

 $= 10.072,73 \times 128$

= 1.289.309,44 kWh/bulan

Total Energi tersalurkan = Energi tersalurkan LWBP + Energi tersalurkan WBP

=4.508.470,66+1.289.309,44

= 5.707.780,1 kWh/bulan

Untuk mencari energi tidak tersalurkan melalui perhitungan berikut:

Energi tidak tersalurkan LWBP = $P_{rata-rata LWBP} x t$

 $= 7.766,53 \times 4,5$

= 34.949,385 kWh/bulan

Energi tidak tersalurkan WBP $= P_{rata-rata WBP} x t$

 $= 10.072,73 \times 7$

= 70.509,11 kWh/bulan

Total Energi tidak tersalurkan = Energi tidak tersalurkan LWBP + Energi tidak tersalurkan WBP

$$= 34.949,385 + 70.509,11$$

= 105.458,495 kWh/bulan

Dari hasil perhitungan tersebut, maka dapat diketahui bahwa pada energi yang tersalurkan pada bulan November 2016 yaitu sebesar 5.707.780,1 kWh. Dan energi yang tidak tersalurkan pada bulan November sebesar 105.458,495 kWh.

Berdasarkan hasil Total Energi tidak tersalurkan diatas, untuk mencari besarnya energi tidak tersalurkan per kelompok pelanggan digunakan data energi terjual perkelompok pelanggan (GWh) Tahun 2015 (PLN, 2015). Data tersebut dapat dilihat pada tabel 4.24 berikut:

Tabel 4.24 Energi Terjual Perkelompok Pelanggan (GWh) Tahun 2015

Wilayah	Energi						
DATA	Rumah Tangga	Industri	Bisnis	Sosial	Gdg. Kantor Pemerintah	Penerangan Jalan Umum	Jumlah
RIAU	2.585,65	228,06	999,81	163,57	110,73	154,15	4.241,98
	60,95%	5,38%	23,57	3,86%	2,61%	3,63%	100%

Berdasarkan tabel 4.24 dapat dilihat bahwa penggunaan energi terbesar masih dipenggan oleh kelompok pelanggan rumah tangga dengan jumlah persentase lebih dari setengahnya yaitu mencapai 6,95 % dalam satu tahunnya. Sedangkan untuk kelompok pelanggan industri hanya 5,38 % dan yang paling kecil terdapat pada kelompok pelanggan gedung kantor pemerintah yaitu hanya sebesar 2,61 %. Untuk menghitung besarnya energi tidak tersalurkan setiap pelanggan dilakukan dengan perhitungan berikut:

Energi tidak tersalurkan rumah tangga = Total Energi tidak tersalurkan x persen pelanggan rumah tangga

= 105.458,495 x 60,95%

= 64.276,9527 kWh/bulan

Dengan dilakukannya rumus yang sama untuk semua kelompok pelanggan didapatkan hasil pada tabel 4.25.

Tabel 4.25 Energi Tidak Tersalurkan (KWh/Bulan) penyulang OGF 15 Bangau sakti

Wilayah		Energi Tidak Tersalurkan (KWh/Bulan)					
Riau	Rumah Tangga	Industri	Bisnis	Sosial	Gdg. Kantor Pemerintah	Penerangan Jalan Umum	Total
	64.276,95	5.675,66	24.856,56	4.070,69	2.752,46	3.828,14	105.458,49

Berdasarkan tabel 4.25 dapat dilihat bahwa energi tidak tersalurkan pada kelompok pelanggan rumah tangga sebesar 64.276,95 KWh/bulan. Selanjutnya pada kelompok pelanggan industri sebesar 5.675,66 KWh/bulan, pada kelompok pelanggan bisnis sebesar 24.856,56 KWh/bulan, pada kelompok pelanggan sosial sebesar 4.070,69 KWh/bulan, pada kelompok pelanggan gedung perkantoran pemerintah sebesar 2.752,46 KWh/bulan dan pada kelompok pelanggan penerangan jalan sebesar 3.828,14 KWh/bulan.

Untuk mengitung besarnya energi yang tidak tersalurkan dalam bentuk kerugian rupiah yaitu dengan mengalikannya dengan tarif dasar listrik *adjustment* per pelanggan November 2016. Dimana karena rata-rata konsumen PT.PLN (persero) Rayon Panam memiliki golongan tegangan rendah dan tegangan

menengah, maka untuk energi yang tidak tersalurkan menggunakan tarif *adjustment* per November 2016. Tarif dasar listrik pernovember 2016 dapat dilihat pada tabel 4.26 berikut.

Tabel 4.26 Tarif Dasar Listrik per November 2016

No	Gol Tarif	Batas Daya	Biaya Pemakaian (Rp/kWh)
1	R-1/TR	1.300 VA	1.461,80
2	R-1/TR	2.200 VA	1.461,80
3	R-2/TR	3.500 VA - 5.500 VA	1.461,80
4	R-3/TR	6.000 VA Ke atas	1.461,80
5	B-2/TR	6.600 VA - 200 KVA	1.461,80
6	B-3/TM	Di atas 200 KVA	1.034,09
7	I-3/TM	Di atas 200 KVA	1.034,09
8	1-4/TT	30.000 KVA Ke atas	996,21
9	P-1/TR	6.600 VA - 200 KVA	1.461,80
10	P-2/TM	-	1.034,09
11	P-3/TR	-	1.461,80
12	L/TR, TM, TT	-	1.632,80

Berdasarkan tabel 4.26 dapat dilihat untuk kelompok pelanggan rumah tangga, sosial, kantor, penerangan jalan umum menggunakan tariff dasar listrik Rp.1.461,80 per kWh. Sedangkan untuk kelompok pelanggan industri dan bisnis menggunakan tarif dasar listrik Rp.1.034,09 per kWh. Tarif dasar listrik tersebut dikelompokkan karena pada kelompok pelanggan rumah tanggan, sosial, kantor, penerangan jalan umum tarif dasar listrik dari kapasitas daya 1300 VA sampai 200 KVA tarif dasar listriknya sama. Sedangkan untuk kelompok pelanggan industri dan bisnis biasanya menggunakan kapasitas daya diatas 200 KVA.

Maka untuk energi yang tidak tersalurkan dalam rupiah per kelompok pelanggan dapat dihitung dengan perhitungan berikut:

ENS rumah tangga ($_{rupiah)}$ = ENS rumah tangga x tarif dasar listrik

= 64.276,95 x Rp. 1.461,80

= Rp.93.960.045,51 /bulan

Dengan dilakukannya rumus yang sama untuk semua kelompok pelanggan didapatkan hasil pada tabel 4.27.

Tabel 4.27 ENS per kelompok pelanggan Penyulang OGF 15 bangau sakti

Penyulang OGF 15 bangau sakti					
Pelanggan	ENS (Rp/bulan)				
Rumah Tangga	Rp.93.960.045,51				
Industri	Rp.5.869.143,249				
Bisnis	Rp.25.703.920,13				
Sosial	Rp.5.950.534,642				
Gdg. Kantor Pemerintah	Rp.4.023.546,028				
Penerangan Jalan Umum	Rp.5.595.975,052				
Total	Rp.141.103.164,6				

Berdasarkan tabel 4.27 terhitung total energi yang tidak tersalurkan pada bulan November 2016 sebesar 105.458,495 kWh atau total kerugian dalam bentuk rupiah sebesar Rp.141.103.164,6 /bulan.