BAB IV

HASIL PENELITIAN DAN PEMBAHASAN

A. Gambaran Umum Obyek/Subyek Penelitian

Obyek penelitian dalam penelitian ini adalah perusahaan manufaktur yang terdaftar di bursa efek indonesia (BEI). Sektor manufaktur dipilih karena sektor ini memiliki jumlah perusahaan yang listing terbanyak dibandingkan dengan sektor lainnya. Jenis data yang digunakan dalam penelitian ini adalah data kuantitatif yaitu data sekunder melalui Laporan keuangan tahuan perusahaan (LKT) dan *indonesian capital market directory* (ICMD) yang bersumber dari bursa efek indonesia, situs bursa efek indonesia (www.idx.co.id) dan situs saham ok (www.sahamok.com) dengan periode pengamatan selama 6 tahun yaitu 2010-2015, berikut daftar perusahaan katagori manufaktur yang masuk sebagai populasi dalam penelitian ini:

TABEL 4.1.Daftar Perusahaan Manufaktur Yang Digunakan Sebagai Sampel

	Perusahaan Manufaktur yang terdaftar di BEI selama periode 2010-2015												
1	INTP	21	NIKL	41	SIAP	61	BRAM	81	RICY	101	MYOR	121	MBTO
2	SMCB	22	PICO	42	SIMA	62	GDYR	82	STAR	102	PSDN	122	MRAT
3	SMGR	23	TBMS	43	TRST	63	GJTL	83	TFCO	103	ROTI	123	TCID
4	AMFG	24	BRPT	44	YPAS	64	IMAS	84	SSTM	104	SKBM	124	UNVR
5	ARNA	25	BUDI	45	CPIN	65	INDS	85	UNIT	105	SKLT	125	KICI
6	IKAI	26	DPNS	46	JPFA	66	LPIN	86	BATA	106	STTP	126	LMPI
7	KIAS	27	EKAD	47	MAIN	67	MASA	87	BIMA	107	ULTJ		
8	MLIA	28	ETWA	48	SIPD	68	NIPS	88	IKBI	108	GGRM		
9	тото	29	INCI	49	SULI	69	PRAS	89	JECC	109	HMSP		
10	ALKA	30	SOBI	50	TIRT	70	SMSM	90	KBLI	110	RMBA		
11	ALMI	31	SRSN	51	ALDO	71	ADMG	91	KBLM	111	DVLA		
12	BTON	32	TPIA	52	FASW	72	ARGO	92	scco	112	INAF		
13	CTBN	33	UNIC	53	INKP	73	CNTX	93	VOKS	113	KAEF		
14	GDST	34	AKKU	54	INRU	74	ERTX	94	PTSN	114	KLBF		
15	INAI	35	AKPI	55	KBRI	75	ESTI	95	AISA	115	MERK		
16	JKSW	36	APLI	56	KDSI	76	HDTX	96	CEKA	116	PYFA		
17	JPRS	37	BRNA	57	SPMA	77	INDR	97	DLTA	117	SCPI		
18	KRAS	38	FPNI	58	TKIM	78	MYTX	98	ICBP	118	SQBB		
19	LION	39	IGAR	59	ASII	79	PBRX	99	INDF	119	TSPC		
20	LMSH	40	IPOL	60	AUTO	80	POLY	100	MLBI	120	ADES		

Sumber: Lampiran 2 Data

Teknik pengambilan sampel dalam penelitian ini berupa nonprobabilitas dengan metode *purposive sampling* yang menggunakan kriteria yang telah ditentukan dalam proses seleksi sampel yaitu sebagai berikut:

TABEL 4.2. Proses Pemilihan Sampel

Uraian	Jumlah
Perusahaan manufaktur yang terdaftar di BEI selama tahun 2010 sampai 2015	
	126
Perusahaan yang tidak memplubikasikan laporan keuangan menggunakan tahun	
buku yang berakhir pada 31 desember	(1)
Perusahaan yang memiliki saldo ekuitas negatif	(2)
Perusahaan yang memiliki nilai pemegang saham negatif	(30)
Perusahaan yang memenuhi kriteria sampel	93

Sumber: Lampiran 2 Data

Analisis Faktor

Analisis faktor merupakan salah satu untuk meringkas informasi yang ada dalam variabel asli menjadi satu dimensi baru atau variate (factor). Untuk mengekstraksi 3 proksi individual menjadi satu proksi gabungan set kesempatan investasi adalah dengan menggunakan analisis faktor. Analisis faktor dalam penelitian ini dilakukan untuk melihat nilai communalities sebagai indikator individual set kesempatan investasi (Subekti dan Kusuma, 2001).

Analisis faktor dalam penelitian ini dilakukan dengan menggunakan software SPSS 16 yang digunakan untuk membentuk proksi gabungan dari ketiga proksi yaitu Market to Book Value (MBVA), Market to Value of Equity (MBVE), dan Property, Plant, and Equipment to Firm Value (PPEMVA) untuk menentukan variabel IOS. Untuk menentukan variabel IOS dapat dilihat dari nilai communalities dari setiap proksi dan jumlah dari semua nilai communalities sebagai penyebut, lalu hitung masing-masing dari setiap proksi. Setelah menghitung setiap proksi dengan menggunakan nilai communalities, kemudian jumlahkan semua proksi dengan menggunakan nilai communalities, selanjutnya jumlahkan semua proksi sehingga menjadi variabel IOS (Hutchinson dan Gul, 2004). Hasil nilai *communalities* dapat dilihat pada tabel 4.2 berikut ini :

TABEL 4.2. Komunalitas

Variabel	Communalities
MBVA	0,883
MBVE	0,882
PPEMVA	0,003
Jumlah	1,77

Sumber: Lampiran 3 Analisis Data

Nilai komunalitas tersebut selanjutnya digunakan untuk menentukan jumlah faktor representasi dari variabel-variabel aslinya.

Berikut uraian contoh perhitungan variabel gabungan set kesempatan investasi (IOS):

TABEL 4.3.Contoh Penghitungan Variabel IOS

						COMUNALITAS			
No.	Perusahaan	Tahun	MBVA	MBVE	PPEMVA	A	В	С	JUMLAH
1.	INTP	2010	3.973923	4.489860	0.000038	0.883	0.882	0.003	1.77
		2011	3.591052	3.989144	0.000029	0.883	0.882	0.003	1.77
		2012	3.778487	4.255871	0.000019	0.883	0.882	0.003	1.77
		2013	2.903502	3.204180	0.000021	0.883	0.882	0.003	1.77
		2014	3.328061	3.713195	0.000021	0.883	0.882	0.003	1.77
		2015	3.110022	3.443546	0.000027	0.883	0.882	0.003	1.77
2.	SMCB	2010	1.997918	2.525860	0.000533	0.883	0.882	0.003	1.77
		2011	1.834624	2.214193	0.000518	0.883	0.882	0.003	1.77
		2012	2.134432	2.639851	0.000409	0.883	0.882	0.003	1.77
		2013	1.581414	1.987143	0.000642	0.883	0.882	0.003	1.77
		2014	1.464361	1.911658	0.000779	0.883	0.882	0.003	1.77

Sumber: Lampiran 2 Data

Uraian diatas kemudian diuraikan lagi untuk mengetahui nilai representasi variabel dari setiap variabel tunggal dengan cara membagi nilai komunalitas dengan jumlah faktor representasi (fact_sum), selanjutnya dikali dengan nilai asli dari variabel tunggal yang digunakan, adapun bentuk rumusnya sebagai berikut:

$$RV = \left\{ \frac{CV}{\sum_{i=0}^{3} C} \right\} \times V$$

Keterangan: RV : Representasi Variabel

CV : Komunalitas Variabel

 $\sum_{i=0}^{3} C$: Jumlah representasi faktor nilai komunalitas

V : Variabel

Hasil dari perhitungan tersebut kemudian digabungkan menjadi satu dengan cara menjumlahkan tiap masing-masing nilai representasi variabel. Hasil penggabungan tersebutlah yang kemudian digunakan sebagai variabel set kesempatan investasi (IOS) pada penelitian ini, berikut uraian penjumlahan nilai rapresentasi tiap masing-masing variabel dengan menggabungkan ketiga variabel tersebut menjadi satu:

TABEL 4.4.Contoh Penghitungan Variabel IOS

N. D l		Tahun	REPRES	ABEL	JUMLAH	
No.	No. Perusahaan		MBVA	MBVE	PPEMVA	IOS
1.	INTP	2010	1.9847138	2.2398508	0.000000	4.2245646
		2011	1.7934951	1.9900595	0.000000	3.7835546
		2012	1.8871063	2.1231214	0.000000	4.0102277
		2013	1.4501089	1.5984651	0.000000	3.0485741
		2014	1.6621483	1.8523969	0.000000	3.5145453
		2015	1.5532519	1.7178776	0.000000	3.2711296
2.	SMCB	2010	0.9978291	1.2600725	0.000001	2.2579025
		2011	0.9162742	1.1045918	0.000001	2.0208669
		2012	1.0660087	1.3169390	0.000001	2.3829484
		2013	0.7898124	0.9913234	0.000001	1.7811369
	T .	2014	0.7313521	0.9536667	0.000001	1.6850201

Sumber: Lampiran 2 Data

B. Uji Kualitas Instrument Dan Data

1. Analis statistik deskriptif

Analisis statistik deskriptif digunakan untuk menggambarkan atau mendeskripsikan kondisi data dalam sebuah penelitian. Analisis statistik deskriptif dalam penelitian ini adalah periode 2010-2015 dengan 366 sampel. Variabel yang digunakan dalam penelitian ini meliputi variabel dependen yaitu nilai pemegang saham (SHV), variabel independen melputi aliran kas bebas (FCF) dan Keputusan pendanaan (LTDR), serta variabel moderasi yaitu set kesempatan investasi (IOS). Hasil analisis statistik deskriptif dari masing-masing variabel dalam model penelitian ini diperoleh sebagai berikut:

TABEL 4.5. Statistik Deskriptif

Variabel	N	Minimum	Maximum	Mean	Std. Deviation
FCF	366	-1,047410E0	1,563155	-1,83890012E-1	0,292000293
LTDR	366	0,000200	5,151298E1	0,72206495	3,147487421
IOS	366	1,000230	1,873357E2	5,41449849E0	1,362304122E1
SHV	366	0,001163	4,622739E1	2,45433914E0	5,457108361

Sumber: Lampiran 3 Analisis Data

Tabel diatas menggambarkan deskripsi variabel-variabel yang digunakan dalam penelitian ini. Minimum adalah nilai terkecil dari suatu rangkaian penga matan, maksimum adalah nialai terbesar dari suatu rangkaian pengamatan, mean adalah hasil penjumlahan nilai seluruh data dibagi dengan banyaknya data, sementara standar deviasi adalah akar dari jumlah kuadrat dari selisih nilai data dengan rata-rata dibagi banyaknya data.

Berdasarkan Tabel 4.5., dapat diketahui bahwa FCF memiliki nilai minimum -1,047410E0, nilai maksimum 1,563155, nilai rata-rata sebesar -1,83890012E-1, dengan standar deviasi sebesar 0,292000293. LTDR memiliki nilai minimum 0,000200, nilai maksimum 5,151298E1, nilai rata-rata sebesar 0,72206495, dengan standar deviasi sebesar 3,147487421. IOS memiliki nilai minimum 1,000230, nilai maksimum 1,873357E2 nilai rata-rata sebesar 5,41449849E0, dengan standar deviasi sebesar 1,362304122E1. SHV memiliki nilai minimum 0,001163, nilai maksimum 4,622739E1, nilai rata-rata sebesar 2,45433914E0, dengan standar deviasi sebesar 5,457108361.

2. Uji asumsi klasik

a. Multikolinieritas

Hasil uji multikolinearitas menggunakan metode variance inflation factor (VIF) disajikan pada tabel berikut:

TABEL 4.6. Uji Multikolinieritas

Variabel	VIF	Keterangan
FCF	1.014640	Tidak terjadi
ГСГ	1.014040	multikolinieritas
LTDER	1.007919	Tidak terjadi
LIDEK	1.00/919	multikolinieritas
IOS	1.010384	Tidak terjadi
103	1.010384	multikolinieritas

Sumber: Lampiran 3 Analisis Data

Hasil perhitungan nilai variance inflation factor(VIF) menunjukkan tidak ada satu variabel bebas memiliki nilai VIF lebih dari 10. Jadi dapat disimpulkan bahwa tidak ada multikolinearitas antar variabel bebas dalam model regresi.

b. Heterokedastisitas

Hasil uji heteroskedastisitas menggunakan uji White disajikan pada tabel berikut:

TABEL 4.7.Uji Heterokedastisitas Sebelum Transformasi

	- J									
Variabel	Obs*R-	Sig	Keterangan							
Terikat	squared	Sig	Keterangan							
RES^2	263,3951	0,0000	Terjadi							
KLS 2	203,3731	0,0000	Heterokedastisitas							

Sumber: Lampiran 3 Analisis Data

Hasil perhitungan pada Tabel menunjukkan bahwa tidak semua variabel bebas berpengaruh tidak signifikan terhadap variabel terikat dengan nilai RES^2 dari SHV, hal ini terlihat dari nilai p-value dari Obs*R-squared < 0,05. Jadi dapat disimpulkan model regresi menunjukkan adanya heteroskedastisitas sehingga perlu dilakukan penyesuaian pada data. Data ditransformasi dengan cara membobot data pada setiap variabel dengan inverse standar deviasi dari variabel IOS yang diakarkan (\sqrt{IOS}).

TABEL 4.8.Uji Heterokedastisitas Sesudah Transformasi

	- J									
Variabel Terikat	Obs*R- squared	Sig	Keterangan							
RES^2	4,659592	0,9127	Tidak Terjadi Heterokedastisitas							

Sumber: Lampiran 3 Analisis Data

Setelah dilakukan transformasi data dengan membobot data pada masing-masing variabel dengan *inverse standar deviasi* dari variabel IOS yang diakarkan (\sqrt{IOS})., hasil perhitungan pada Tabel menunjukkan tidak ada satupun variabel bebas yang signifikan secara statistis mempengaruhi variabel terikat nilai

RES^2 dari SHV, hal ini terlihat dari nilai p-value dari Obs*R-squared > 0,05. Jadi dapat disimpulkan model regresi tidak lagi
menunjukkan adanya heteroskedastisitas.

c. Autokorelasi

Hasil uji autokorelasi dilakukan dengan uji statistik-Q dengan 36 lag disajikan pada tabel berikut:

TABEL 4.9.Uji Autokorelasi Sebelum Transformasi Data

	Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
	. *	. *	1	0.196	0.196	14.210	0.000
			2	0.096	0.060	17.635	0.000
		i i	3	-0.009	-0.040	17.662	0.001
			4	-0.015	-0.013	17.746	
			5				0.002
	i i	.j. j		0.036	0.057	19.065	0.004
		.j. j	7	0.011	0.000	19.109	0.008
	i i		8		-0.006	19.126	0.014
	i i	.j. j	9	0.012	0.012	19.183	0.024
		.j. j	10	0.020	0.015		0.036
	1 1	.j. j	11	0.022	0.020	19.521	0.052
	.j. j	.j. j	12	-0.042	-0.057	20.204	0.063
* . * . 14 -0.103 -0.100 24.228 0.043 . * . * 15 0.089 0.133 27.266 0.027 . * . * 16 0.122 0.103 33.008 0.007 . . . 17 0.068 -0.004 34.779 0.007 . . . 18 0.056 0.034 35.989 0.007 . . . 19 0.041 0.015 36.653 0.009 . . . 20 0.015 0.023 36.736 0.013 . . . 21 0.013 0.007 36.804 0.018 . . . 22 0.009 -0.004 36.835 0.025 . . . 22 0.009 -0.004 36.857 0.045 . . . <		.j. j	13	0.000	0.016	20.204	0.090
1,			14	-0.103	-0.100	24.228	0.043
	.j* j		15	0.089	0.133	27.266	0.027
			16	0.122	0.103	33.008	0.007
		1 1	17	0.068	-0.004	34.779	0.007
		.j. j	18	0.056	0.034	35.989	0.007
21 0.013 0.007 36.804 0.018 22 0.009 -0.004 36.835 0.025 23 0.001 0.001 36.835 0.034 24 -0.007 -0.009 36.857 0.045 25 -0.003 0.003 36.861 0.060 26 0.001 -0.020 36.861 0.077 27 0.006 0.015 36.875 0.097 28 0.006 -0.006 36.889 0.121 29 0.069 0.094 38.791 0.106 30 0.049 0.041 39.745 0.110 31 0.048 0.002 40.655 0.115 32 0.037 0.017 41.201 0.128 33 0.079 0.067	i i	.j. j	19	0.041	0.015	36.653	0.009
	.j. j	.j. j	20	0.015	0.023	36.736	0.013
		.j. j	21	0.013	0.007	36.804	0.018
		.j. j	22	0.009	-0.004	36.835	0.025
		.j. j	23	0.001	0.001	36.835	0.034
		.j. j	24	-0.007	-0.009	36.857	0.045
26 0.001 -0.020 36.861 0.077 27 0.006 0.015 36.875 0.097 28 0.006 -0.006 36.889 0.121 29 0.069 0.094 38.791 0.106 30 0.049 0.041 39.745 0.110 31 0.048 0.002 40.655 0.115 32 0.037 0.017 41.201 0.128 33 0.079 0.067 43.755 0.106 34 0.044 0.017 44.556 0.106 35 0.038 0.007 45.146 0.117		: :	25	-0.003	0.003	36.861	0.060
27 0.006 0.015 36.875 0.097 28 0.006 -0.006 36.889 0.121 29 0.069 0.094 38.791 0.106 30 0.049 0.041 39.745 0.110 31 0.048 0.002 40.655 0.115 32 0.037 0.017 41.201 0.128 33 0.079 0.067 43.755 0.106 34 0.044 0.017 44.556 0.106 35 0.038 0.007 45.146 0.117	i i	.j. j	26	0.001	-0.020	36.861	0.077
28 0.006 -0.006 36.889 0.121 29 0.069 0.094 38.791 0.106 30 0.049 0.041 39.745 0.110 31 0.048 0.002 40.655 0.115 32 0.037 0.017 41.201 0.128 33 0.079 0.067 43.755 0.106 34 0.044 0.017 44.556 0.106 35 0.038 0.007 45.146 0.117		.j. j	27	0.006	0.015	36.875	0.097
29 0.069 0.094 38.791 0.106 30 0.049 0.041 39.745 0.110 31 0.048 0.002 40.655 0.115 32 0.037 0.017 41.201 0.128 33 0.079 0.067 43.755 0.106 34 0.044 0.017 44.556 0.106 35 0.038 0.007 45.146 0.117			28	0.006	-0.006	36.889	0.121
31 0.048 0.002 40.655 0.115 0.115 32 0.037 0.017 41.201 0.128 33 0.079 0.067 43.755 0.100 34 0.044 0.017 44.556 0.106 35 0.038 0.007 45.146 0.117	i i	. *	29	0.069		38.791	0.106
31 0.048 0.002 40.655 0.115 0.115 32 0.037 0.017 41.201 0.128 33 0.079 0.067 43.755 0.100 34 0.044 0.017 44.556 0.106 35 0.038 0.007 45.146 0.117	.j.	.j. j	30	0.049	0.041	39.745	0.110
.i. i. i. 32 0.037 0.017 41.201 0.128 .i* i. i. 33 0.079 0.067 43.755 0.100 .i. i. i. 34 0.044 0.017 44.556 0.106 .i. i. i. 35 0.038 0.007 45.146 0.117	.j.	.j. j	31	0.048		40.655	0.115
1		.j. j	32	0.037	0.017		0.128
. . 34 0.044 0.017 44.556 0.106 . . 35 0.038 0.007 45.146 0.117			33	0.079	0.067	43.755	0.100
.j. j .j. j 35 0.038 0.007 45.146 0.117			34	0.044	0.017	44.556	0.106
		1 1	35				0.117
	.j. j	.j. j		0.041	0.024	45.837	0.126

Sumber: Lampiran 3 Analisis Data

Hasil pengujian pada Tabel *correlogram Q-statistic* menunjukkan bahwa nilai p-value dari seluruh nilai Q-stat tidak semuanya menunjukan nilai diatas 0,05, artinya terjadi autokorelasi pada data sehingga perlu dilakukan penyesuaian pada data. Data ditransformasi dengan cara membobot data pada setiap variabel dengan *inverse standar deviasi* dari variabel IOS yang diakarkan ($\sqrt{\text{IOS}}$).

TABEL 4.10.Uji Autokorelasi Sesudah Transformasi

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
. * .	. * .	1	0.117	0.117	0.4661	0.495
. * .	. * .	2	0.144	0.132	1.1955	0.550
. **.	. **.	3	0.262	0.239	3.6981	0.296
. * .	. * .	4	-0.090	-0.166	4.0057	0.405
. * .	. * .	5	0.127	0.098	4.6369	0.462
. .	. [. [6	0.026	-0.033	4.6653	0.587
. .	. * .	7	0.030	0.081	4.7026	0.696
. .	. * .	8	0.017	-0.077	4.7152	0.788
	. [.]	9	0.002	0.037	4.7154	0.858
	. [.]	10	0.041	0.002	4.7956	0.904
. .	. [. [11	0.014	0.042	4.8057	0.940
. * .	. * .	12	-0.068	-0.122	5.0513	0.956
	. .	13	-0.037	-0.020	5.1309	0.972
. .	. .	14	0.021	0.040	5.1565	0.984
. .	. * .	15	0.048	0.115	5.3010	0.989
. .	. .	16	-0.004	-0.057	5.3022	0.994

Sumber: Lampiran 3 Analisis Data

Setelah dilakukan Transformasi data dengan membobot data pada masing-masing variabel dengan *inverse standar deviasi* dari variabel IOS yang diakarkan ($\sqrt{\text{IOS}}$). menunjukkan bahwa nilai *p-value* dari seluruh nilai *Q-stat* menunjukan nilai diatas 0,05. Sehingga dapat disimpulkan bahwa data sudah tidak terjadi autokorelasi.

C. Hasil Penelitian (Uji Hipotesis)

1. Analisis Regresi

TABEL 4.11. Hasil Perhitungan *Regression Analisys* Model 1

Variabel	В	(p-value)	Keterangan
Konstanta	-0,708477	0,0000	
FCF	0,079869	0,6259	Tidak Signifikan
LTDER	-0,174521	0,0050	Signifikan
IOS	0,806444	0,0000	Signifikan
Adjusted R ²	0,987395		
Prob f-sig	0,000000		

Sumber: Lampiran 3 Analisis Data

TABEL 4.12.Hasil Perhitungan *Moderate Regression Analisys* Model 2

Variabel	В	(p-value)	Keterangan
Konstanta	-0,786435	0,0000	
FCF	0,877571	0,0006	Signifikan
LTDER	-0,184926	0,0003	Signifikan
IOS	0,820679	0,0000	Signifikan
FCF*IOS	-0,457083	0,0002	Signifikan
Adjusted R ²	0,992283		
Prob f-sig	0,000000		

Sumber: Lampiran 3 Analisis Data

TABEL 4.13.Hasil Perhitungan *Moderate Regression Analisys* Model 2

Variabel	В	(p-value)	Keterangan
Konstanta	-0,971018	0,0000	
FCF	-0,693620	0,0030	Signifikan
LTDER	0,837974	0,0011	Signifikan
IOS	0,869666	0,0000	Signifikan
LTDER*IOS	-0,527871	0,0001	Signifikan
Adjusted R ²	0,992644		
Prob f-sig	0,000000		

Sumber: Lampiran 3 Analisis Data

SHV =
$$-0.708 + 0.080$$
.FCF + -0.174 .LTDER + 0.806 .IOS + e
SHV = $-0.786 + 0.877$.FCF + -0.185 .LTDER + 0.821 .IOS + -0.457 .FCF*IOS + e

SHV = -0.971 + -0.694.FCF + 0.838.LTDER + 0.870.IOS + 0.528.LTDER*IOS + e

2. Uji Koefisien Determinasi

- a. Hasil nilai *adjusted R square* pada model 1 sebesar 0,987395 menunjukkan bahwa 98,7% variasi nilai pemegang saham dapat dijelaskan oleh faktor-faktor aliran kas bebas, keputusan pendanaan, set kesempatan investasi, moderasi aliran kas bebas dengan set kesempatan investasi, Sedangkan sisanya sebesar 1,3% dijelaskan oleh variabel bebas lainnya yang tidak diamati dalam penelitian ini.
- b. Hasil nilai *adjusted R square* pada model 2 sebesar 0,992283 menunjukkan bahwa 99,2% variasi nilai pemegang saham dapat dijelaskan oleh faktor-faktor aliran kas bebas, keputusan pendanaan, set kesempatan investasi, moderasi keputusan pendanaan dengan set kesempatan investasi, Sedangkan sisanya sebesar 0,8% dijelaskan oleh variabel bebas lainnya yang tidak diamati dalam penelitian ini.
- c. Hasil nilai *adjusted R square* pada model 3 sebesar 0,992644 menunjukkan bahwa 99,2% variasi nilai pemegang saham dapat dijelaskan oleh faktor-faktor aliran kas bebas, keputusan pendanaan, set kesempatan investasi, moderasi keputusan pendanaan dengan set kesempatan investasi, Sedangkan sisanya

sebesar 0,8% dijelaskan oleh variabel bebas lainnya yang tidak diamati dalam penelitian ini.

3. Uji Signifikasi Nilai-F

- a. Hasil pengujian pada tabel model 1 diperoleh nilai *p-value* f-test sebesar 0,000 < taraf signifikasi yang telah ditetapkan (0,05), yang berarti aliran kas bebas, keputusan pendanaan, set kesempatan investasi, serta aliran kas bebas dimoderasi oleh set kesempatan investasi secara bersama-sama berpengaruh signifikan terhadap nilai pemegang saham.
- b. Hasil pengujian pada tabel model 2 diperoleh nilai p-value f-test sebesar $0,000 < \alpha$ (0,05), yang berarti aliran kas bebas, keputusan pendanaan, set kesempatan investasi, serta keputusan pendanaan dimoderasi oleh set kesempatan investasi secara bersama-sama berpengaruh signifikan terhadap nilai pemegang saham.
- c. Hasil pengujian pada tabel model 3 diperoleh nilai p-value f-test sebesar $0,000 < \alpha$ (0,05), yang berarti aliran kas bebas, keputusan pendanaan, set kesempatan investasi, serta keputusan pendanaan dimoderasi oleh set kesempatan investasi secara bersama-sama berpengaruh signifikan terhadap nilai pemegang saham.

4. Uji Signifikasi Nilai-t

Pengujian t-test membandingkan nilai *p-value* dengan taraf signifikasi dimana jika:

p-value $\leq \alpha$ maka H0 ditolak

p-value $> \alpha$ maka H0 diterima

dimana taraf signifikasi yang ditetapkan adalah sebesar 0,05 dengan hipotesis dugaan yang saya ajukan :

H0: Tidak terdapat pengaruh pada variabel bebas (independen) terhadap variabel terikat (dependen).

a. Pengujian hipotesis satu (H1)

Nilai p-value variabel aliran kas bebas (FCF) pada model 1 menunjukan 0,6259, sehingga dapat diketahui bahwa pada model 1 : 0,6259 > 0,050. Maka dapat disimpulkan bahwa H0 diterima dan H1 ditolak.

H0 = Tidak terdapat pengaruh aliran kas bebas terhadap nilai pemegang saham.

b. Pengujian hipotesis dua (H2)

Nilai *p-value* Variabel keputusan pendanaan (LTDR) pada model 1 menunjukan 0,0050 dengan nilai β = -0,174521, sehingga dapat diketahui bahwa pada model 1 : 0,0050 < 0,050. Maka dapat disimpulkan bahwa H0 ditolak dan H2 diterima.

H2 = Keputusan pendanaan berpengaruh secara signifikan terhadap nilai pemegang saham.

c. Pengujian hipotesis tiga (H3)

Nilai *p-value* variabel aliran kas bebas dimoderasi oleh Set Kesempatan Investasi (FCF*IOS) pada model 2 menunjukan 0,0002 dengan nilai $\beta = -0,457083$, sehingga dapat diketahui bahwa pada model 1:0,0002>0,050. Maka dapat disimpulkan bahwa H0 ditolak dan H3 diterima.

H3 = Set kesempatan investasi dapat memoderasi pengaruh alirankas bebas terhadap nilai pemegang saham.

d. Pengujian hipotesis empat (H4)

Nilai *p-value* variabel keputusan pendanaan dimoderasi oleh set kesempatan investasi (LTDER*IOS) pada model 3 menunjukan 0,0001 dengan nilai β = -0, 527871, Sehingga dapat diketahui bahwa pada model 3 : 0,0001 > 0,050. Maka dapat disimpulkan bahwa H0 ditolak dan H4 diterima.

H4 = Set kesempatan investasi dapat memoderasi pengaruh keputusan pendanaan terhadap nilai pemegang saham.

D. Pembahasan (interpretasi)

Hasil pengujian pengujian hipotesis satu menunjukkan aliran kas bebas berpengaruh tidak signifikan terhadap nilai pemegang saham. Secara teori aliran kas bebas yang tinggi mengindikasikan kinerja perusahaan yang tinggi sehingga nilai perusahaan akan meningkat. Hasil tidak signifikan ini disebabkan karena lambatnya informasi yang diterima atau yang dapat diserap oleh pihak pasar dikarenakan terlalu banyak informasi yang muncul dari aliran kas bebas perusahaan yang sangat kompleks. Hasil ini berbeda dengan hasil penelitian yang dilakukan oleh Wardani dan Siregar (2009), yang menyatakan aliran kas bebas berpengaruh signifikan positif terhadap nilai perusahaan dan penelitian yang dilakukan Arieska dan Gunawan (2011), yang menyatakan aliran kas bebas berpengaruh signifikan negatif terhadap nilai pemegang saham.

Pengujian hipotesis dua menunjukkan keputusan pendanaan berpengaruh signifikan terhadap nilai pemegang saham. Secara teori hutang akan mengendalikan manajer untuk mengurangi tindakan perquisites selain itu juga dengan menggunakan instrument hutang perusahaan akan memperoleh manfaat dari efek tax deductible sehingga kinerja perusahaan akan menjadi lebih efisien sehingga penilaian investor terhadap perusahaan akan meningkat. Pengaruh negatif ini disebabkan karena perusahaan-perusahaan tersebut diasumsikan sudah memiliki hutang pada titik optimal sehingga dimana jika melakukan penambahan hutang akan meningkatkan resiko pada perusahaan dan dinilai oleh pihak pasar perusahaan tersebut akan mengalami kesulitan keuangan (debt default) dan meningkatkan resiko kebangkrutan perusahaan. Hasil ini berbeda dengan hasil penelitian yang dilakukan oleh Arieska dan Gunawan (2011), yang menyatakan keputusan pendanaan tidak berpengaruh signifikan terhadap nilai pemegang saham.

Pengujian hipotesis tiga menunjukkan set kesempatan investasi dapat memoderasi pengaruh aliran kas bebas terhadap nilai pemegang saham. Perusahaan yang mempunyai aliran kas bebas dengan set kesempatan investasi yang tinggi, maka manajernya akan menggunakan aliran kas bebas tersebut untuk membiayai proyek dengan nilai bersih sekarang positif sehingga akan meningkatkan nilai pemegang saham. Pengaruh negatif ini disebabkan karena investor khawatir dan menilai tindakan penggunaan aliran kas bebas yang tinggi pada keputusan berinvestasi diaanggap tindakan yang *opportunistic* dari manajer yang

hanya mementingkan perusahaan dan tidak sesuai dengan keinginan investor, yang kemungkinan investor menginginkan aliran kas bebas tersebut didistribusikan kedalam pembagian deviden kepada para pemegang saham. Hasil penelitian ini berbeda dengan penelitian yang dilakukan Arieska dan Gunawan (2011) dan Wardani dan Siregar (2009) yang menyatakan bahwa aliran kas bebas berpengaruh positif terhadap nilai perusahaan dengan dimoderasi oleh set kesempatan investasi.

Pengujian hipotesis empat menunjukkan set kesempatan investasi dapat memoderasi pengaruh keputusan pendanaan terhadap nilai pemegang saham. Perusahaan yang mempunyai set kesempatan investasi yang tinggi, maka manajernya akan berusaha mengambil peluang tersebut dengan menggunakan segala sumber daya yang dapat diperoleh perusahaan salah satunya yaitu menggunakan instrumen hutang jangka panjang. Manajer akan menggunakan dana tersebut untuk membiayai proyek dengan nilai bersih sekarang positif sehingga keputusan tersebut dapat dijadiakan sinyal positif terhadap pasar sehingga nilai pemegang saham akan meningkat. Pengaruh negatif ini disebabkan karena keputusan investasi membutuhkan dana yang besar dan investor tidak setuju jika peluang investasi didanai dengan hutang karena akan meningkatkan resiko pada perusahaan dan menyebabkan kekhawatiran pada pihak investor jika terjadi kesalahan dalam mengadakan peramalan yang mengakibatkan terjadinya over atau under-investment, yang akhirnya akan merugikan perusahaan (sutrisno, 2007). Hasil penelitian ini berbeda dengan penelitian yang dilakukan Arieska dan Gunawan (2011) dan Wijaya dkk. (2010) yang menemukan bahwa investasi yang dihasilkan dari leverage memiliki informasi yang positif tentang perusahaan di masa yang akan datang, selanjutnya berdampak positif terhadap nilai perusahaan.