TUGAS AKHIR
ANALISA RESPON MODEL OPEN FRAME STRUCTURE TERHADAP
BEBAN GEMPA STATIK EKUIVALEN, RESPON SPEKTRUM DAN
TIME HISTORY

(Studi Kasus: Gedung Pascasarjana Fakultas Kedokteran Universitas
Gadjah Mada, Yogyakarta)

Disusun oleh:
DWITYA PRADIPTO DARMAWAN
20130110367

JURUSAN TEKNIK SIPIL
FAKULTAS TEKNIK
UNIVERSITAS MUHAMMADIYAH YOGYAKARTA
2017
HALAMAN PENGESAHAN
ANALISA RESPON MODEL OPEN FRAME STRUCTURE TERHADAP BEBAN GEMPA STATIK EKUIVALEN, RESPON SPEKTRUM DAN TIME HISTORY

Diajukan guna memenuhi sebagian persyaratan untuk memperoleh derajat kesarjanaan strata – 1

Pada Jurusan Teknik Sipil Fakultas Teknik
Universitas Muhammadiyah Yogyakarta

Disusun oleh:
DWITYA PRADIPTO DARMAWAN
20130110367

Telah diperiksa dan disetujui oleh Tim Penguji:

Bagus Soebandono, S.T., M.Eng.
Ketua Tim Penguji
Tanggal:

M. Ibnu Syamsi, S.T., M.T.
Anggota Tim Penguji
Tanggal:

Restu Faizah, S.T., M.T.
Anggota Tim Penguji
Tanggal:
“Kehidupan adalah paduan seni dan ilmu pengetahuan yang indah. Saat kau letih dan merasa hancur, buka kemungkinan pandangan baru karena yang kau rasakan itu hanyalah sebuah ilusi”
HALAMAN PERSEMAHAN

Puji syukur penulis panjatkan kehadirat Allah SWT, yang telah melimpahkan rahmat, taufik dan karunia-Nya, sehingga pada akhirnya penulis dapat menyelesaikan Tugas Akhir ini dengan baik.

Tujuan penulisan Tugas Akhir ini dibuat sebagai salah satu syarat kelulusan untuk dapat menyelesaikan proses pembelajaran dalam jenjang Strata 1. Penulis menyadari bahwa tanpa bimbingan dan dorongan dari semua pihak, maka penulisan Tugas Akhir ini tidak akan lancar. Oleh karena itu pada kesempatan ini, izinkanlah penulis menyampaikan ucapan terima kasih kepada:

1. Allah SWT yang memberi kesempatan dan kemudahan dalam mengerjakan penelitian ini.
5. Kedua orang tua, yang telah memberi dukungan moril maupun materil.
7. Nia yang telah memberi dukungan bantuan moril.

Akhir kata semoga Tugas Akhir ini dapat di gunakan sebagai mana mestinya serta berguna bagi penulis khususnya dan bagi para pembaca yang berminat.

Yogyakarta, Mei 2017

Penyusun

iv
KATA PENGANTAR

Assalamu’alaikum Wr. Wb.

Puji syukur atas kehadirat Allah SWT yang telah melimpahkan Rahmat dan Hidayah – Nya, sehingga Tugas Akhir ini dapat saya selesaikan tepat pada waktunya. Tugas Akhir ini disusun sebagai salah satu persyaratan dalam menempuh pendidikan Strata 1 (S1), di Fakultas Teknik Jurusan Teknik Sipil Universitas Muhammadiyah Yogyakarta. Atas segala bimbingan, petunjuk, dan saran hingga terselesainya Tugas Akhir ini, kami ucapkan terima kasih kepada:

1. Allah SWT yang memberi kesempatan dan kemudahan dalam mengerjakan penelitian ini.
5. Kedua orang tua, yang telah memberi dukungan moril maupun materil.
6. Semua pihak yang telah membantu saya sehingga Tugas Akhir ini dapat terselesaikan.

Saya menyadari betul, bahwa Tugas Akhir ini masih banyak kekurangan dan masih jauh dari sempurna. Oleh karena itu, saya mengharapkan kritik dan saran yang bersifat membangun. Akhir kata, penyuun berharap semoga Tugas Akhir ini berguna bagi pada pembaca dan bagi saya sendiri. Amin,

Wassalamu’alaikum Wr. Wb.

Yogyakarta, Mei 2017

Penyusun
<table>
<thead>
<tr>
<th>DAFTAR ISI</th>
</tr>
</thead>
<tbody>
<tr>
<td>HALAMAN JUDUL ...</td>
</tr>
<tr>
<td>HALAMAN PENGESAHAN</td>
</tr>
<tr>
<td>HALAMAN MOTTO ...</td>
</tr>
<tr>
<td>HALAMAN PERSEMAHAN ...</td>
</tr>
<tr>
<td>KATA PENGANTAR ...</td>
</tr>
<tr>
<td>DAFTAR ISI ...</td>
</tr>
<tr>
<td>DAFTAR TABEL ...</td>
</tr>
<tr>
<td>DAFTAR GAMBAR...</td>
</tr>
<tr>
<td>DAFTAR LAMPIRAN ...</td>
</tr>
<tr>
<td>INTISARI ...</td>
</tr>
<tr>
<td>BAB I PENDAHULUAN ...</td>
</tr>
<tr>
<td>A. Latar Belakang ...</td>
</tr>
<tr>
<td>B. Rumusan Masalah ...</td>
</tr>
<tr>
<td>C. Tujuan Penelitian ...</td>
</tr>
<tr>
<td>D. Manfaat Penelitian ...</td>
</tr>
<tr>
<td>E. Lingkup Penelitian ...</td>
</tr>
<tr>
<td>F. Keaslian Penelitian ...</td>
</tr>
<tr>
<td>BAB II TINJAUAN PUSTAKA ...</td>
</tr>
<tr>
<td>A. Gempa ...</td>
</tr>
<tr>
<td>1. Pengertian dan Jenis Gempa Ditinjau dari Penyebabnya</td>
</tr>
<tr>
<td>2. Macam – Macam fault Model ...</td>
</tr>
<tr>
<td>3. Energi Gelombang Gempa ...</td>
</tr>
<tr>
<td>B. Analisis Beban Seismik ...</td>
</tr>
<tr>
<td>1. Sistem Struktur ...</td>
</tr>
<tr>
<td>2. Metode Analisis Statik Ekuivalen ...</td>
</tr>
<tr>
<td>3. Metode Analisis Time History ...</td>
</tr>
<tr>
<td>4. Metode Analisis Respons Spektrum ...</td>
</tr>
<tr>
<td>C. Bangunan ...</td>
</tr>
<tr>
<td>1. Plan Irregularity ...</td>
</tr>
<tr>
<td>2. Pusat Masa ...</td>
</tr>
<tr>
<td>3. Pusat Kekakuan ...</td>
</tr>
<tr>
<td>4. Shear Wall ...</td>
</tr>
</tbody>
</table>
D. Penelitian Terdahulu .. 18

BAB III LANDASAN TEORI .. 20
A. Pembahasan ... 20
1. *Super Imposed Dead Load (SIDL)* .. 20
2. Beban Hidup ... 20
3. Pembahasan Struktur Atap ... 21
B. Analisis Respon Spektrum ... 22
1. Menentukan faktor keutamaan dan kategori risiko, ̇ I_e 22
2. Koefisien Modifikasi Respon, ̇ R_e ... 23
3. Parameter Percepatan Respon Spektra .. 24
4. Koefisien-Kofisien Pada Situs ... 26
C. Analisis Statik Ekuivalen ... 27
1. Geser Dasar Seismik, ̇ V .. 27
D. Analisis Time History ... 28
1. Koefisien Situs ... 28
2. Percepatan Gempa Rencana ... 30
E. Evaluasi Batas Kinerja Struktur ... 31

BAB IV METODE PENELITIAN .. 33
A. Data Struktur Gedung .. 33
B. Tahapan Analisis ... 34
1. Studi Literatur .. 34
2. Pengumpulan Data .. 34
3. Diagram Alir .. 35
C. Denah Bangunan ... 36
D. Pemodalan menggunakan software ETABS 37
E. Data Elevation Gedung ... 38
F. Spesifikasi Material ... 38
1. Mutu Beton ... 38
2. Mutu Baja Tulangan ... 39
3. Stuktur Atap ... 39
4. Profil Struktur ... 40
G. Pembahasan ... 42
1. Pembahasan Struktur Portal ... 42
2. Pembahasan Struktur Atap ... 47
H. Tahap Analisis ... 48
1. Klasifikasi Situs .. 48
2. Spektrum Respon Desain .. 49
3. Kategori Desain Seismik .. 51
4. Periode Fundamental Pendekatan Struktur ... 52
5. Geser Dasar Seismik .. 53
6. Analisis Beban Seismik Time History ... 57

BAB V HASIL DAN PEMBAHASAN .. 64
A. Kontrol Batas $V_{d}\text{inamik}$ Terhadap V_{statik} .. 65
B. Displacement Pada Joint Bangunan .. 65
C. Interstory Drift Pada Bangunan .. 72
D. Base Reaction ... 79
E. Story Shear .. 79

BAB VI KESIMPULAN DAN SARAN .. 81
A. Kesimpulan .. 81
B. Saran ... 81

DAFTAR PUSTAKA .. XV

LAMPIRAN
DAFTAR TABEL

Tabel 3.1 Jenis pembebanan pada struktur portal .. 20
Tabel 3.2 Jenis Beban Hidup ... 21
Tabel 3.3 Kategori risiko bangunan gedung dan non gedung untuk beban gempa 22
Tabel 3.4 Faktor keutamaan gempa .. 22
Tabel 3.5 Bagian tabel faktor R, C_d, dan Ω_0 untuk sistem penahan gaya gempa. .. 23
Tabel 3.6 Koefisien untuk batas atas pada perioda yang dihitung 24
Tabel 3.7 Nilai parameter perioda pendekatan C_t dan x 25
Tabel 3.8 Koefisien Situs, F_a ... 26
Tabel 3.9 Koefisien Situs, F_Y .. 26
Tabel 3.11 Koefisien Situs F_{PGA} ... 28
Tabel 3.12 Koefisien untuk batas atas pada perioda yang dihitung 30
Tabel 3.13 Nilai parameter perioda pendekatan C_t dan x 30
Tabel 3.14 Kategori desain seismik berdasarkan parameter respons percepatan pada perioda pendek .. 30
Tabel 3.15 Batas simpangan antar lantai tingkat .. 31
Tabel 4.1 Keterangan gedung .. 33
Tabel 4.2 Tinggi Bangunan dan elevasi tiap lantai .. 38
Tabel 4.3 Mutu beton ... 38
Tabel 4.4 Dimensi profil kuda-kuda ... 40
Tabel 4.5 Notasi elemen kolom dan dimensi ... 42
Tabel 4.6 Beban matip setiap lantai ... 43
Tabel 4.7 Beban matip setiap lantai (lanjutan) .. 44
Tabel 4.8 Beban hidup tiap lantai .. 44
Tabel 4.9 Beban hidup tiap lantai (lanjutan) .. 45
Tabel 4.10 Beban Total ... 45
Tabel 4.11 Beban Total (Lanjutan) ... 46
Tabel 4.12 Total Beban pada Struktur ... 47
Tabel 4.13 Periode I ($T < T_0$) ... 50
Tabel 4.14 Periode II ($T_0 \leq T \leq T_s$) ... 50
Tabel 4.15 Periode III ($T_0 \geq T_s$) ... 50
Tabel 4.16 Periode struktur arah Y dan X .. 52
Tabel 4.17 Faktor Skala Spektrum Respon Gempa Rencana 52
Tabel 4.18 Distribusi Gaya Gempa Lateral Arah X ... 55
Tabel 4.19 Distribusi Gaya Gempa Lateral Arah Y ... 56
Tabel 4.20 Skala percepatan pada bangunan ... 59
Tabel 4.21 Gempa masukan sebelum disamakan dengan respon spektrum 60
Tabel 4.22 Gempa masukan setelah konvergensi ... 60
Tabel 5.1 Rasio Gaya Geser Dasar ... 65
Tabel 5.2 Displacement pada join dengan beban response spektrum 67
Tabel 5.3 Displacement pada join dengan beban statik ekuivalen 68
Tabel 5.4 Displacement pada join dengan beban time history – Imperial Valley. 69
Tabel 5.5 Displacement pada join dengan beban time history - Chalfan Valley. 70
Tabel 5.6 *Displacement* pada join dengan beban *time history* – Parkfield. 71
Tabel 5.7 Evaluasi *interstory drift* respons spektrum. ... 72
Tabel 5.8 Evaluasi *interstory drift* respons spektrum (Lanjutan). 73
Tabel 5.9 Persentasi keamanan *interstory drift* bangunan dengan menggunakan
metode respons spektrum. .. 73
Tabel 5.10 Evaluasi *interstory drift* statik ekuivalen. ... 73
Tabel 5.11 Persentasi keamanan *interstory drift* bangunan dengan menggunakan
metode statik ekuivalen. ... 74
Tabel 5.12 Evaluasi *interstory drift time history* - Imperial Valley 75
Tabel 5.13 Persentasi keamanan *interstory drift* bangunan dengan menggunakan
metode *time history* - Imperial Valley ... 76
Tabel 5.14 Evaluasi *interstory drift time history* - Chalfan Valley 76
Tabel 5.15 Persentasi keamanan *interstory drift* bangunan dengan menggunakan
metode *time history* - Chalfan Valley. ... 76
Tabel 5.16 Evaluasi *interstory drift time history* - Parkfield 77
Tabel 5.17 Persentasi keamanan *interstory drift* bangunan dengan menggunakan
metode *time history* - Parkfield. ... 78
Tabel 5.18 Niali *base reaction* pada setiap metode analisis. 79
DAFTAR GAMBAR

Gambar 1.1 Gunung berapi di Indonesia .. 1
Gambar 2.1 Ilustrasi Strike Slip Fault ... 8
Gambar 2.2 Faults : a) reverse fault, b) strike-slip fault dan c) normal fault 8
Gambar 2.3 Ilustrasi fault ... 8
Gambar 2.4 Ilustrasi Dip-Strike Slip Fault .. 9
Gambar 2.5 Sketsa sistem struktur infilled frame ... 10
Gambar 2.6 Ilustrasi sistem struktur open frame .. 11
Gambar 2.7 Ilustrasi konsentrasi gaya pada denah objek penelitian sebelum diberi gap .. 16
Gambar 2.8 Ilustrasi konsentrasi gaya pada denah objek penelitian setelah diberi gap .. 16
Gambar 2.9 Sketsa titik berat dari benda ... 17
Gambar 3.1 Respon spektra desain (Yogyakarta, tanah sedang) 25
Gambar 3.2 Spektrum respons desain ... 29
Gambar 3.3 Penentuan simpangan antar lateral ... 31
Gambar 4.1 Tampak depan gedung Pascasarjana FK UGM 33
Gambar 4.2 Bagan alir penelitian secara umum ... 35
Gambar 4.3 Denah gedung B pada lantai semi basement (j) 36
Gambar 4.4 Denah gedung B pada lantai 2-7 ... 36
Gambar 4.5 Denah gedung B lantai 8 ... 37
Gambar 4.6 Tampilan 3 dimensi modelling menggunakan software ETABS 37
Gambar 4.7 Denah sturktur atap ... 39
Gambar 4.8 Tampak dan Potongan Plat Lantai .. 40
Gambar 4.9 Potongan Melintang Atap .. 47
Gambar 4.10 Peta penentuan S, (a), lokasi penelitian (b) 49
Gambar 4.11 Grafik respons spektrum desain ... 51
Gambar 4.12 Gaya Lateral akibat Gempa arah X dan arah Y 56
Gambar 4.13 Base shear akibat gempa pada bangunan 57
Gambar 4.14 Koefisien Situs, FPGA ... 58
Gambar 4.15 Tampilan accelerogram orisinil dan setelah di cocokkan 60
Gambar 4.16 Accelerogram Stasiun Imperial Valley X 61
Gambar 4.17 Accelerogram Stasiun Imperial Valley Y 61
Gambar 4.18 Accelerogram Stasiun Chalfant Valley X 62
Gambar 4.19 Accelerogram Stasiun Chalfant Valley Y 62
Gambar 4.20 Accelerogram Stasiun Parkfield X .. 63
Gambar 4.21 Accelerogram Stasiun Parkfield Y .. 63
Gambar 5.1 Hubungan periode dan mode .. 64
Gambar 5.2 Hubungan frekuensi dan mode ... 64
Gambar 5.3 Letak join yang diambil perwakilan untuk dilihat prilaku gesernya. 66
Gambar 5.4 Kurva displacement pada join bangunan dengan beban respons spektrum.. 67
Gambar 5.5 Kurva displacement pada join bangunan dengan beban statik ekuivalen .. 68
Gambar 5.6 Kurva displacement pada join bangunan dengan rekaman gempa Imperial Valley .. 69
Gambar 5.7 Kurva displacement pada join bangunan dengan rekaman gempa Chalfan Valley. ... 70
Gambar 5.8 Kurva displacement pada join bangunan dengan rekaman gempa Parkfield .. 71
Gambar 5.9 Intersotry drift respons spektrum 72
Gambar 5.10 Intersotry drift statik ekuivalen 74
Gambar 5.11 Intersotry drift time history Imperial Valley 75
Gambar 5.12 Intersotry drift time history Chalfan Valley 77
Gambar 5.13 Intersotry drift time history Parkfield 78
Gambar 5.14 Story Shear bangunan pada sumbu X 80
Gambar 5.15 Story Shear bangunan pada sumbu Y 80
DAFTAR LAMPIRAN

Lampiran 1. Gambar 3D Model *ETABS*
Lampiran 2. Gambar Denah LT – *Semi Basement ETABS*
Lampiran 3. Gambar Denah LT – 1 *ETABS*
Lampiran 4. Gambar Denah LT – 2 *ETABS*
Lampiran 5. Gambar Denah LT – 3 *ETABS*
Lampiran 6. Gambar Denah LT – 4 *ETABS*
Lampiran 7. Gambar Denah LT – 5 *ETABS*
Lampiran 8. Gambar Denah LT – 6 *ETABS*
Lampiran 9. Gambar Denah LT – 7 *ETABS*
Lampiran 10. Gambar Denah LT – 8 *ETABS*
Lampiran 11. Gambar Denah LT –ATAP
Lampiran 12. Gambar Potongan Melintang
Lampiran 13. *Summary Report* Gedung Pascasarjana FK UGM *ETABS*