PROCEEDING
INTERNATIONAL
CONFERENCE
AGRIBUSINESS
DEVELOPMENT FOR
HUMAN WELFARE
“Small and Medium-sized
Enterprises Competitiveness”

EDITOR TEAM
Siti Yusi Rusimah
Achmad Fachruddin
Rohandi Aziz
Dara Rosalia

ADDRESS
Agribusiness Department
Agriculture Faculty
Universitas Muhammadiyah Yogyakarta
Jl. Lingkar Selatan, Tamantirto, Kasihan, Bantul, Yogyakarta, 55183
Phone. 0274-387656 (ext. 201) Fax. 0274-387646
e-mail: adhw2016@umy.ac.id
EDITOR FOREWORD

The economic integrations by ASEAN certainly have given a major influence on Small and Medium-sized Enterprises (SMEs). Beside economic integration in the form of free trade area (FTA) that has been going on since the early 2000s, economic integration in the form of ASEAN Economic Community (AEC) has been ongoing since the beginning of 2016. Through this integration, SMEs have opportunity to expand access to markets, technology, and capital. But at the same time SMEs are required to improve their competitiveness in order to survive in the market.

In order to explore ideas, concept, and innovations related to the competitiveness of SMEs, International Conference on Agribusiness Development for Human Welfare (ADHW 2016) was held in Yogyakarta on May 14, 2016. The conference organized by Department of Agribusiness Universitas Muhammadiyah Yogyakarta, in collaboration with Department of Agribusiness and Information System Universiti Putra Malaysia, Department of Agro-Industrial Technology Kasetsart University, Department of Agriculture Socio-Economics Universitas Gadjah Mada, Department of Agriculture Socio-Economics of Universitas Brawijaya, Indonesian Society of Agriculture Economics, Agribusiness Association of Indonesia. Hopefully proceedings of ADHW 2016 provide stimulus for increasing competitiveness of SMEs in ASEAN, especially in Indonesia.

Furthermore, we are grateful to Allah, the Sustainer of all word, who always makes it easy for our affairs. We would like to acknowledge with thanks to all the institution and individual who joined with resources and efforts in organizing the conference that resulted in the papers which are published in this proceeding. Special thanks to all authors and discussants who contributed with their intellectual capital and responded to our call papers. Thanks and acknowledgment are also due to all reviewers of the conference who helped in evaluating submitted papers; and to the members of the Organization Committee, who ensured smooth execution of the event.

May 30, 2016

Editor
LIST OF REVIEWERS

1. Prof. Dr. Mad Nasir Shamsudin (Universiti Putra Malaysia)
2. Prof. Dr. Zaenal Abidin Mohamed (Universiti Putra Malaysia)
3. Dr. Ismail Abd. Latif (Universiti Putra Malaysia)
4. Dr. Juwaidah Sharifuddin (Universiti Putra Malaysia)
5. Assist. Prof. Dr. Amin Mahir Abdullah (Universiti Putra Malaysia)
6. Assist. Prof. Dr. Nitty Hirawaty K. (Universiti Putra Malaysia)
7. Assist. Prof. Dr. Parthana Parthanadee (Kasetsart University)
8. Assist. Prof. Dr. Pornthipa Ongkunarak (Kasetsart University)
9. Dr. Jumpol Vorasayan (Kasetsart University)
10. Prof. Dr. Ir. Masyhuri (Universitas Gadjah Mada)
11. Prof. Dr.Ir. Irham, M.Sc. (Universitas Gadjah Mada)
12. Dr. Jamhari, SP. MP. (Universitas Gadjah Mada)
13. Dr. Jangkung HM, SP.M.Ec. (Universitas Gadjah Mada)
15. Dr. Ir. Rini Dwastuti, M.S. (Universitas Brawijaya)
17. Wisynu Ari Gutama, S.P., M.MA. (Universitas Brawijaya)
19. Yuniar Khasanah, M.Sc. (Lembaga Ilmu Pengetahuan Indonesia)
20. Lusty Istiqamah, M.Biotech (Lembaga Ilmu Pengetahuan Indonesia)
21. Ir. M. Kismuntono (Lembaga Ilmu Pengetahuan Indonesia)
22. Dr. Ir. Sriyadi, MP. (Universitas Muhammadiyah Yogyakarta)
23. Dr. Ir. Widodo, MP. (Universitas Muhammadiyah Yogyakarta)
24. Dr. Ir. Indardi, M.Sc. (Universitas Muhammadiyah Yogyakarta)
25. Dr. Ir. Triwara BS, MP. (Universitas Muhammadiyah Yogyakarta)
26. Dr. Aris Slamet Widodo, SP. MSc. (Universitas Muhammadiyah Yogyakarta)
ATTENDED REVIEWER

<table>
<thead>
<tr>
<th>NO</th>
<th>NAME</th>
<th>INSTITUTION</th>
<th>SIGNATURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Prof. Dr. Zaenal Abidin Mohamed</td>
<td>UPM</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Assistant, Prof. Dr. Pornthipa Ongkunarak</td>
<td>Kasetsart University</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Prof. Dr. Ir. Irham, M.Sc</td>
<td>UGM</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Dr. Jangkung HM, SP. M.Ec</td>
<td>UGM</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Dr. Ir. Lestari Rahayu Waluyati, MP</td>
<td>UGM</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Ir. Edy Dwi Cahyono, M.Sc., PhD</td>
<td>UNIBRAW</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Wisnynu Ari Guttama, S.P, M.MA</td>
<td>UNIBRAW</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Hery Toiba, S.P., M.P., Ph.D</td>
<td>UNIBRAW</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Yuniar Khusanah, M.Sc</td>
<td>LIPI</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Lusty Istiqamah, M.Biotech</td>
<td>LIPI</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Ir. M. Kismuntono</td>
<td>LIPI</td>
<td></td>
</tr>
</tbody>
</table>
PREFACE

Assalaamualaikum, Warahmatullaahi., Wabarakaatuh.
Dear Honorable Governor of Yogyakarta Special Province
Dear respectable Prof. Dr. Zainal Abidin Mohamed
Dear respectable Asist. Prof. Pornthipa Ongkunaruk
Dear respectable Rector of UMY Prof. Dr. Bambang Cipto, MA.
Dear all invited Guests, Speakers, and Participants of International seminar of ADHW 2016.

Alhamdulillah, all praise be to the Almighty God, so that we can be gathering here today at Muhammadiyah University of Yogyakarta in order to attend the Conference on Agribusiness Development for Human Welfare (ADHW) 2016.

Ladies and Gentlemen,

On behalf of the committee, I would like to say welcome to this International Conference on ADHW 2016 and thank you for attending our invitation.

Especially, we are grateful to invited speakers, Prof. Zainal Abidin Mohamed and Asist. Prof. Pornthipa Ongkunaruk, for their willingness to share information and thoughts in this conference. As a bit report, that this conference has been attended by 85 speakers coming from five countries.

This conference entitled “Small and Medium-sized Enterprise Competitiveness”. ASEAN Economic Community is the largest economic integration that is going to be implemented at the beginning of 2016 (December 31, 2015). Through this integration, SMEs will have opportunity to expand access to markets, technology, and capital. But at the same time SMEs are required to improve their competitiveness in order to survive in the market. We expect that this seminar is capable of producing thoughts building SMEs within ASEAN, especially Indonesia, to face the free trade.

This event can be done by support and efforts from all sides. Therefore, I would like to say thank you to all committee members having worked hard to conduct this event. We, as the organizer committee, do apologize when there is a shortage in conducting this event.

Wassalamualaikum, Warahmatullaahi., Wabarakaatuh.

Chairman
International Conference on ADHW 2016

Dr. Aris Slamet Widodo, SP., MSc.
Words of Welcome

Assalamu'alaikum warahmatullahi wabarakatuh

Alhamdulillah, all praise be to Allah SWT, who has given us His blessings so that this International Seminar of Agribusiness Development for Human Welfare (ADHW) 2016 entitled “Small and Medium-sized Enterprises Competitiveness” can be conducted. This International Conference is held in cooperation among Agribusiness Study Program of Muhammadiyah University of Yogyakarta with Putra University of Malaysia (UPM), Kasetsart University (KU), Association of Indonesian Agricultural Economy (PERHEPI), and Agribusiness Association of Indonesia (AAI), Universitas Gadjah Mada (UGM) and Universitas Brawijaya (UB).

Countries of ASEAN members like Indonesia, Malaysia, and Thailand have more than 90% Small and Medium-sized Enterprises (SMEs). In general, SMEs play important role in economic developments such as in terms of employment, added value, improve foreign exchange, and economic growth. For Indonesia, the role of SMEs is limited to employment and added value, while the foreign exchange from SMEs is still low. According to the General Director of SMEs of Industrial Ministry, in 2013 the total SMEs being able to pass through export market is just under 5 percent. For that required many breakthrough and innovation so that the role of SMEs becomes real economic development, especially in Indonesia, and generally in ASEAN countries.

On behalf of Agribusiness Department of Universitas Muhammadiyah Yogyakarta, we would like to express our gratitude Putra University of Malaysia (UPM), Kasetsart University (KU), Association of Indonesian Agricultural Economy (PERHEPI), Agribusiness Association of Indonesia (AAI), Universitas Gadjah Mada (UGM) and Universitas Brawijaya (UB) for all supports, sponsors, and all committee members having worked so hard that this International Conference can be conducted.

Hopefully, these sinergies coming from various parties can provide contribution for developing SMEs in Indonesia and other ASEAN countries as well.

Wassalamu'alaikum warhmatullahi wabarakatuh

Head of Agribusiness Department
Universitas Muhammadiyah Yogyakarta

Ir. Eni Istiyanti, MP.
Assalamu'alaikum Wr. Wb.
Salam sejahtera untuk kita semua.
Yang Saya hormati :
- Rektor Universitas Muhammadiyah Yogyakarta;
- Para Narasumber;
- Hadirin dan Para Peserta yang berbahagia,

Puji dan syukur marilah kita panjatkan kehadirat Allah SWT karena hanya atas limpahan rahmat serta karunia-Nya, kita dapat hadir pada kesempatan acara Konferensi Internasional “Agribusiness Development For Human Welfare” ini dalam keadaan sehat wal'afiat.

Pada kesempatan kali ini, secara ringkas Saya akan menyampaikan mengenai industri kecil menengah nasional yang menjadi tema pada pembukaan Seminar Internasional “Agribusiness Development For Human Welfare” ini.

Hadirin dan Saudara-saudara sekalian yang Saya hormati,

Berdasarkan data BPS, pertumbuhan industri pengolahan nonmigas pada tahun 2015 secara kumulatif sebesar 5,04%; lebih tinggi dari pertumbuhan ekonomi (PDB) pada periode yang sama sebesar 4,79%. Pada periode Januari-Desember 2015, nilai ekspor produk industri pengolahan nonmigas mencapai USD 106,63 Milyar, dan nilai impor mencapai USD 108,95 milyar, sehingga neraca perdagangan industri pengolahan nonmigas pada periode yang sama sebesar USD 2,32 milyar (neraca defisit).

Usaha pemerintah untuk memperkecil defisit di atas, salah satunya dengan cara memberdayakan Industri Kecil dan Menengah (IKM) yang merupakan bagian penting dalam perkembangan industri nasional. Sampai saat ini, Insutri Kecil dan Menengah
terhadap 34,82% telah berkontribusi sebesar pengolahan industri nonmigas secara keseluruhan. Angka ini dapat tercapai karena dukungan lebih kurang 3,6 juta unit usaha, yang merupakan 90 persen dari total unit usaha insutri nasional. Jumlah unit usaha tersebut telah mampu menyerap tenaga kerja sebesar 8,7 juta orang, yang tentunya berdampak pada meningkatnya ekonomi nasional serta mengurangi kemiskinan.

Industri Kecil dan Menengah (IKM) memiliki peran yang strategis dalam perekonomian nasional. Hal ini sejalan dengan Visi Pemerintah dalam Rencana Pembangunan Nasional Jangka Menengah (RPJMN) 2015-2019 yaitu “Terwujudnya Indonesia yang berdaulat, mandiri, dan berkepribadian berlandaskan gotong royong”.

Untuk lebih meningkatkan peran tersebut, Penumbuhan dan Pengembangan Industri Kecil dan Menengah diarahkan untuk memiliki tujuan jangka menengah guna mewujudkan industri kecil dan industri menengah yang berdaya saing, berperan signifikan dalam penguatan struktur industri nasional, pengentasan kemiskinan dan perluasan kesempatan kerja, serta menghasilkan barang dan/atau jasa Industri untuk keperluan ekspor.

Hadirin dan Saudara-saudara sekalian,

Awal tahun ini, kita telah memasuki era Masyarakat Ekonomi ASEAN (MEA). Dengan demikian, perekonomian nasional akan langsung bersaing dengan para pelaku pasar di kawasan ASEAN. Produk dan jasa termasuk investasi negara-negara anggota telas bebas memasuki pasar di kawasan ASEAN.

Dalam rangka menghadapi hal tersebut, Pemerintah mengambil langkah-langkah strategis berupa peningkatan daya saing industri dan mendorong investasi di sektor industri; di mana peningkatan daya saing industri itu sendiri dilakukan melalui penguatan struktur industri dengan melengkapi struktur industri yang masih kosong serta menyiapkan strategi ofensif dan defensif dalam akses pasar.

Pemerintah telah melakukan Penguatan Sektor IKM dengan strategi ofensif dan defensifnya melalui beberapa program pelaksanaan, diantaranya antara lain: Penumbuhan Wirausaha Baru; Pengembangan IKM melalui Pengembangan Produk IKM serta Peningkatan Kemampuan Sentra dan UPT; Pemberian Bantuan Mesin dan Peralatan Produksi; Perluasan Akses Pasar melalui Promosi dan Pameran; Fasilitasi Pendaftaran Hak Kekayaan Intelektual; Fasilitasi Sertifikasi Mutu Produk dan Kemasan; serta Fasilitasi Pembiayaan melalui Skema Kredit Usaha Rakyat (KUR).

Saya berharap agar berbagai program-program pemerintah tersebut dapat didukung secara sinergis oleh seluruh komponen masyarakat. Untuk itu, Saya berpesan kepada Saudara-saudara sekalian agar semua program pemerintah dalam bidang
Industri, khususnya dalam program pemberdayaan Industri Kecil dan Menengah, didukung dengan sepenuh hati, agar dapat lebih bermanfaat bagi masyarakat dalam rangka pengembangan industri kecil menengah.

Hadirin dan Saudara-saudara sekalian yang Saya hormati,

Sekian dan terima kasih.
Wassalamu’alaikum Wr. Wb.

Yogyakarta, 14 Mei 2016

GUBERNUR
DAERAH ISTIMEWA YOGYAKARTA

HAMENGKU BUWONO X
TABLE OF CONTENTS

EDITOR FOREWORD ... i

LIST OF REVIEWERS .. ii

PREFACE .. iv

WORDS OF WELCOME .. v

WELCOME FROM GOVERNOR OF YOGYAKARTA ... vi

TABLE OF CONTENTS ... ix

RICE SELF-SUFFICIENCY IN INDONESIA: AN ANALYSIS ON BUDGET ALLOCATION AND THE ACHIEVEMENT ... 1
 Sri Nuryanti

MODELING OF COOPERATION TO IMPROVE RURAL ECONOMIC IN LANGKAT* 8
 Muhammad Buchari Sibuea

GRANARY GROUP PERFORMANCE IMPACT TO THE PRICE AND FOOD SELF-SUFFICIENCY ON THE FARM HOUSEHOLDS .. 20
 Sri Mardiyati, Jamhari, Jangkung Handoyo Mulyo Dwidjono Hadi Darwanto

ANALYSIS OF AGRIBUSINESS SYSTEM AND COMPETITIVENESS OF GROUPER FISH IN INDONESIA ... 28
 Grace Maharani Putri, Venty F. Nurunisa

ANALYSIS OF COMPETITIVENESS ASEAN RICE TRADE IN THE ERA OF ASEAN ECONOMIC COMMUNITY .. 36
 Mohammad Natsir, Sri Mardiyati

PARTICIPATORY EXTENSION AND FARMERS ATTITUDE CHANGE (CASE PASSION FRUIT FARMERS IN THE VILLAGE BATU BELERANG SINJAI DISTRICT) .. 42
 Muh. Arifin Fattah and Amruddin

THE RELATIONSHIP BETWEEN EMPOWERMENT OF FARMER GROUP ASSOCIATION (GAPOKTAN) AND MANGO FARM INCOME ... 47
 Achmad Faqih, Nurul Atikah Fauzi Siti Aisyah

EFFECTIVENESS OF TRAINING MODEL ON CRAFTSMEN CALLIGRAPHY GOAT LEATHER IN AN ATTEMPT TO STRENGTHEN THE COMPETITIVENESS IN SUKOHARJO, INDONESIA ... 57
 Shanti Emawati, Endang Siti Rahayu, Sutrisno Hadi Purnomo, Ayu Intan Sari

EFFORTS TO IMPROVE COMPETITIVENESS OF WOMEN FARMERS GROUP "MELATI" IN SENDANGSARI VILLAGE, PENGASIH DISTRICT, KULON PROGO REGENCY .. 62
 Siti Hamidah, Indah Widowati

INSTITUTIONAL CHANGE AND ITS EFFECT TO PERFORMANCE OF WATER USAGE ASSOCIATION IN IRRIGATION WATER MANAGMENTS ... 68
 Mohammad Rondhi, Yasuhiro Mori, Takumi Kondo

FOOD PROCESSING INDUSTRY EMPOWERMENT EFFECTIVENESS IN BANGUNTAPAN SUB-DISTRICT, BANTUL, YOGYAKARTA SPECIAL REGION 76
 Sapto Husodo, Amie Sulastiyah, Galuh H.E. Akoso

URBAN DWELLER PERCEPTION TOWARDS URBAN AGRICULTURE 85
 Ida Naziera Ngahdiman, Rika Terano, Zainal Abidin Mohamed
EFFECTIVENESS OF WELFARE DEVELOPMENT SCHEME ON QUALITY OF LIFE TO RURAL POOR COMMUNITY IN MALAYSIA.................................93
Mohd Nizam Abdul Aziz, Fazlin Ali, Zainal Abidin Mohamed and Hanina Halimatusaadiah Hamsan

ASSOCIATION BETWEEN SOCIO-DEMOGRAPHIC CHARACTERISTICS WITH PINEAPPLE FARMER’S KNOWLEDGE, SKILLS AND PRACTICES IN MALAYSIA.106
Melissa Alina Yusoff, norsida Man, Nolila Mohd Nawi, Khadijat Jaji

MARKET STRUCTURE AND ANALYSIS OF SEA FISH MARKETING AT DISTRICT OF JEMBER..112
Syamsul Hadi, Edy Sutiarso, dan Henik Prayuginingsih

MARKET STRUCTURE, EFFECTIVENESS, AND EFFICIENCY OF THE RUBBER RAW MATERIALS MARKETING IN MUSI RAWAS DISTRICT ..121
May Shiska Puspitasari

ANALYSIS OF BEEF SUPPLY CHAIN MANAGEMENT AT AGribusiness BASED SLAUGHTERHOUSE IN UPTD OF ANIMAL SLAUGHTERHOUSE OF PALU129
Muh Zulfadhli Prasetyo, Yulianti Kalaba, Lien Damayanti, dan Erny

ANALYSIS OF INFLUENCE OF MARKETING MIX AGAINST PURCHASE DECISION OF GROWING UP MILK ON THREE SOCIO-ECONOMIC CLASS IN MALANG139
Sunardi, Jabal Tarik Ibrahim, Anas Tain

TRANSACTION COST ANALYSIS ON CARDAMOM MARKETING IN PADASARI VILLAGE, CIMALAKA DISTRICT, SUMEDANG REGENCY ..152
Ermalinda Zebua, Juarini, and Nanik Dara Senjawati

RICE SEEDS MARKET STRUCTURE IN EAST JAVA ...161
Rini Dwiastuti, Riyanti Isaskar, Nur Baladina, Tri Wahyu Nugroho

NUTMEG’S (MYRISTICA FRAGGAN HAITT) ANALYZE MARKETING MARGIN AND EFFICIENCY OF TANJUNG SANI VILLAGE TANJUNG RAYA SUBDISTRICT AGAM DISTRICT ..177
Devi Analia, Faidil Tanjung, Syofyan Fairuzi dan Ramita Sari Pimura

THE EFFICIENCY OF SUPPLY CHAIN EMPING MELINJO IN BANTUL REGENCY YOGYAKARTA ..183
Eni Istiyanti, Diah Rina Kamardiani

VALUE CHAIN OF PINEAPPLE IN MALAYSIA..191
Norsida Man, Nolila Mohd Nawi, Khadijat Jaji, Melissa Alina Yusoff

DYNAMIC SYSTEM OF INDONESIAN HALAL MEAT INDUSTRY: SUSTAINABLE SUPPLY CHAIN MANAGEMENT PERSPECTIVE ..206
Akhmad Mahbubi, Pita Merdeka

ANALYSIS OF THE PROFITABILITY OF DAIRY FARMERS BASED ON THE SCALE OF LIVESTOCK OWNERSHIP IN DISTRICT SEMARANG216
Mukson, S.I.Santoso, H.I.Nisa, H. Setiyawan and M. Handayani

DEVELOPMENT STRATEGY OF LEADING COMMODITY THROUGH COMMUNITY-BASED ENTERPRISE IN INDONESIA-MALAYSIA BORDER AREA ..223
Jangkung Handoyo Mulyo, Irham, Hani Perwitasari, Fatkhiyah Rohmah

BUSINESS DEVELOPMENT STRATEGY SOYBEAN SAUCE PRODUCTION IN CAP BAWANG SOY SAUCE COMPANY AT NGAWI REGENCY ..230
Feti Munika Sakti, Mohamad Harisudin, Raden Rara Aulia Qonita

FOREIGN LABOR RECRUITMENT IN OIL PALM PLANTATION IN MALAYSIA241
Marlia Musa, Amin Mahir Abdullah, Mohd Mansor Ismail
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>MICRO ENTREPRENEURS’ INTENTION TO BECOME MEMBER OF MICROCREDIT SCHEME WITH EDUCATIONAL TRAINING AND MOTIVATIONAL PROGRAM</td>
<td>250</td>
</tr>
<tr>
<td>Rika Terano, Zainalabidin Mohamed and Fatin Najihah Mohd Tammili</td>
<td></td>
</tr>
<tr>
<td>FARMING INCOME ANALYSIS OF DRY LAND IN THE GUNUNGKIDUL DISTRICT</td>
<td>257</td>
</tr>
<tr>
<td>Aris Slamet Widodo, Retno Wulandari</td>
<td></td>
</tr>
<tr>
<td>ANALYSIS OF FACTOR THAT INFLUENCE THE DEMAND FOR ORGANIC VEGETABLES IN MEDAN</td>
<td>264</td>
</tr>
<tr>
<td>Sasmita Siregar, Hadriman Khair, Yudha Andriansyah Putra</td>
<td></td>
</tr>
<tr>
<td>RICE CONSUMER BEHAVIOR IN THE MUSI RAWAS DISTRICT</td>
<td>272</td>
</tr>
<tr>
<td>Zaini Amin</td>
<td></td>
</tr>
<tr>
<td>ANALYSIS OF CONSUMER PERCEPTIONS AGAINST LOCAL AND IMPORT FRUITS IN MEDAN</td>
<td>280</td>
</tr>
<tr>
<td>Hadriman Khair</td>
<td></td>
</tr>
<tr>
<td>CONSUMERS’ INTENTION TO PURCHASE GENETICALLY- MODIFIED SOYBEAN PRODUCTS IN MALAYSIA</td>
<td>288</td>
</tr>
<tr>
<td>Welson Chin Vui Son, Kelly Wong Kai Seng, and Juwaidah Sharifuddin</td>
<td></td>
</tr>
<tr>
<td>CONSUMER PREFERENCE TOWARDS ORGANIC VEGETABLES AT SUPER INDO SULTAN AGUNG YOGYAKARTA</td>
<td>299</td>
</tr>
<tr>
<td>Sasmita Siregar, Hadriman Khair, Yudha Andriansyah Putra</td>
<td></td>
</tr>
<tr>
<td>STRENGTHENING THE ECONOMIC OF FOREST FRINGES COMMUNITY THROUGH MODEL FOR ENHANCING LOCAL CATTLE COMPETITIVENESS</td>
<td>306</td>
</tr>
<tr>
<td>Teguh Hari Santosa, Toni Herlambang, Nurul Qomariah, dan Oktarina</td>
<td></td>
</tr>
<tr>
<td>FACTORS AFFECTING THE PRODUCTION AND BENEFIT ON THE PLANTING SYSTEM OF JAJAR LEGOWO AND TEGEL IN THE DISTRICT MUSI RAWAS</td>
<td>317</td>
</tr>
<tr>
<td>Nila Suryati</td>
<td></td>
</tr>
<tr>
<td>PLANTING DISTANCE AND DOSE OF ORGANIC MANURE ON THE SOIL CHEMICAL PROPERTIES AND YIELD OF LOWLAND RICE</td>
<td>324</td>
</tr>
<tr>
<td>Abdul Azis and Damasus Riyanto</td>
<td></td>
</tr>
<tr>
<td>TECHNOLOGY ADOPTION OF HIGH QUALITY GREENBEANS SEED BY FARMERS’ HOUSEHOLD IN CENTRAL JAVA</td>
<td>334</td>
</tr>
<tr>
<td>Wiludjeng Roessali, Wahyu Dyah Prastiwi, Tutik Dalmiyatun</td>
<td></td>
</tr>
<tr>
<td>PRODUCTION EFFICIENCY OF IRRIGATION LOWLAND ORGANIC PADDY FARMING SYSTEM AT BAROKAH FARMER’S GROUP IN SEMARANG REGION</td>
<td>340</td>
</tr>
<tr>
<td>Titik Ekowati, Edy Prasetyo, and Bambang Trisetyo Eddy</td>
<td></td>
</tr>
<tr>
<td>THE FARMER’S KNOWLEDGE AND ATTITUDES FOR ENVIRONMENT FRIENDLY OF SHALLOT CULTIVATION IN BALI</td>
<td>346</td>
</tr>
<tr>
<td>Nyoman Ngurah Arya, I Ketut Mahaputra, Suharyanto, Jemmy Rinaldi</td>
<td></td>
</tr>
<tr>
<td>THE ANALYSIS OF A VERTICALLY INTEGRATED ORGANIC RICE COMPANY: A CASE STUDY IN THAILAND</td>
<td>354</td>
</tr>
<tr>
<td>Yaniga Prasertwattanakul and Pornthipa Ongkunaruk</td>
<td></td>
</tr>
<tr>
<td>EFFECTIVENESS AND GROUP COMMUNICATION NETWORK</td>
<td>361</td>
</tr>
<tr>
<td>Indardi</td>
<td></td>
</tr>
<tr>
<td>THE INSTITUTIONAL ROLE IN DISSEMINATING SITE-SPECIFIC AGRICULTURAL INNOVATION IN ACEH</td>
<td>368</td>
</tr>
<tr>
<td>Abdul Azis, Basri AB and Sugeng Widodo</td>
<td></td>
</tr>
</tbody>
</table>
INCREASE RICE PRODUCTIVITY THROUGH MODELS OF CROPPING SYSTEMS AND THE USE OF HYBRID VARIETIES .. 379
Suharno, Rika Nalinda

THE FARMER’S PERCEPTION TO THE USING OF TECHNOLOGY AFTER PADDY’S HARVEST IN SOUTH SULAWESI .. 386
Irmanyani, Hariyono, Nur Rahmah Safarina Hamzah

VALUATION IRRIGATION OF RICE FARMING AT UPSTREAM AND DOWNSTREAM AREAS IN SPECIAL REGION OF YOGYAKARTA .. 392
Habibullah, Triyono, Aris Slamet Widodo

RICE FARMER’S PERCEPTION AND ITS EFFECT TOWARD INTENTION TO ADOPT ORGANIC FARMING .. 399
Ashari, Juwaidah Sharifuddin, Zainal Abidin Mohammed, Rika Terano

FACTORS INFLUENCING THE ATTITUDES OF VEGETABLE FARMERS TOWARD THE USE OF INFORMATION AND COMMUNICATION TECHNOLOGY (ICT) IN PENINSULAR MALAYSIA .. 411
Nor Haslina Nor Rizan, Amin Mahir Abdullah, Norsida Man, and Nolila Mohd Nawi
PLANTING DISTANCE AND DOSE OF ORGANIC MANURE ON THE SOIL CHEMICAL PROPERTIES AND YIELD OF LOWLAND RICE

Abdul Azis 1) and Damasus Riyanto 2)

1) Assessment Institute for Agricultural Technology Aceh
 Jl. Panglima Nyak No. 27 Lampineung Banda Aceh Telp. 0651-7551811
2) Assessment Institute for Agricultural Technology Yogyakarta
 Jl. Stadion Maguwoharjo No. 22 Wedomartani, Ngemplak, Sleman, Yogyakarta
 Telp. 0274-884662
*corresponding author: abda_muda@yahoo.co.id; damasriy4n@yahoo.co.id

ABSTRACT

The objectives of the study were to evaluate the effects of planting distance and dose of manure applications on soil chemical properties and yield of lowland rice. Experimental design was used a factorial randomized complete block design with three replications. The treatments consisted of plant spacing (30 x 15, 30 x 30 and 30 x 45 cm) and manure doses (0, 10 and 20 tons manure ha⁻¹). The results showed that a mixture of manure and urea significantly affect the C-organic, N-total and P-available in the soil. The average of increasing C-organic was classified as low categories, N-total was medium and P-available was low. There was significant interaction effect between plant spacing and mixture of dose manure and urea on the grain yield. Increasing the level of planting distance and dose organic manure will be stimulated on plant height and some yield components of rice crops and the optimized level for organic manure application was 20 tons ha⁻¹ due to limited C-organic content in the rice field of Empetring village, Darul Kamal Aceh Besar Subdistrict area. The average of grain yield was reached 6.26 tons ha⁻¹ which gained in doses of 10 tons ha⁻¹ manure and urea mixture.

Keywords: Planting distance, manure, chemical soil properties, rice yield

INTRODUCTION

Rice crops in Indonesia are not just as a food commodity, but also as a strategic commodity which has a high sensitivity of political, economic and social vulnerability (Andoko, 2002). In term of supporting rice plants with high productivity, it is necessary to apply some right technology components in order to provide optimal results. One approach which is being studied in order to improve the productivity of rice fields is through the integrated crop management approach by using improved varieties, young seedlings and plant spacing (Balai Penelitian Padi, 2003).

Plant spacing is one of the factors which affects the crop yields. Basically, grain yields are determined by three main factors, namely soil, plants, and climate. The last factor is a kind of factor that cannot be changed by humans such as solar radiation, precipitation, air temperature and relative humidity. Meanwhile the factors of soil and plants can be modified to suit the growth and the yield of crops.

Plant spacing highly depends upon the level of soil fertility and soil moisture conditions. In the dense spacing, there are more plant populations. But the competition of sunlight, water and nutrients cannot be avoided; consequently it would interfere with the plant growth and the yields (Sumarno, 1986).

According to Setyati (1984), the distant spacing will provide the opportunity for the growth of weeds, but it can avoid the competition of sunlight, water and nutrients. So that plants can grow and develop properly. Based on the research of Tamrin (2010), about plant spacing of 30 cm x 30 cm by ignoring manure distribution in paddy fields may result up to 8.01 tons ha⁻¹ of rice
production. In fact (Sarief, 1989) stated that manure is a highly significant by product, consisting of solid and liquid excrement of livestock mixed with food waste, which can increase the nutrients in the soil.

According to Khalid et al. (2008), which conducted research on Pidie Jaya, North Aceh and West Aceh by using 2.5 tons ha\(^{-1}\) of manure on Ciherang variety, can give effect to the increase of rice production up to 6.07 tons ha\(^{-1}\).

The study in Aneuk Glee Aceh Besar Subdistrict with application of two tons of manure ha\(^{-1}\) on Ciherang varieties gave yields up to 6.5 tons ha\(^{-1}\) (Iskandar et al. 2008). While Kariada and Aribawa (2005), have produced the highest rice production with organic fertilizer on a dose of 8.0 tons ha\(^{-1}\), which is about 7.23 ton ha\(^{-1}\) Dried Yield Harvesting.

Some test results of Instalasi Penelitian dan Pengkajian Teknologi Pertanian (IPPTP) Mataram (2001) showed that the use of manure at the dose of 10-20 tons ha\(^{-1}\) which was done on the cultivation of rice paddy fields at various new locations, gave results varied from 4.28 to 5.83 tons ha\(^{-1}\).

This study aims to determine the best plant spacing, the dose of mixed Urea and manure on the soil chemical properties, and the rice yield.

METHODOLOGY

The research was conducted in Empetring village, Darul Kamal Aceh Besar Subdistrict, on December 2010 up to May 2011 during rainy season 2010/2011 in the irrigated rice fields. The Experimental design was used factorial randomized completed block design (FRCBD) and replicated on three times.

The research consisted of two factors, which were the plant spacing and doses of manure. As the first factor (plant spacing) were covered : a. 30 cm x 15 cm, b. 30 cm x 30 cm, c. 30 cm x 45 cm while the second factor (dose manure) were covered : a. without application manure and urea, b. application 10 ton manure + 100 kg ha\(^{-1}\) Urea, c. application 20 ton manure + 100 kg ha\(^{-1}\) Urea

All of the treatments were applied by 50 kg. ha\(^{-1}\) SP-36 fertilizer and 50 kg. ha\(^{-1}\) KCl, while rice variety that used was Ciherang as derived from Balai Besar Penelitian Padi (Balitpa) Sukamandi with seed class FS (Foundation Seed). The seed was planted on 16th days with 1 - 2 seeds per planting hole.

Some observations that was done during this research covered chemical soil properties (C-organic content, N total, P available and CEC soil), rice yield components (plant high, the amount of tiller, length of tiller, the amount of grain per tiller, the weight of 1000 grains) and the rice yield by weighting the dried rice grain harvest in accordance with the plant spacing conditions (2.25 m x 2.7 m, 2.7 m x 2.7 m, and 2.8 m x 2.7 m). The soil samples were taken on the top soil (0-20 cm) in every plot treatments, which was totaled as 27 plots then it was analized on soil laboratory.

The collected data were analysed descriptively for determining the level differences of the treatment combination and processed with SAS package (SAS Institute Inc.,1999) for analysis of variance (ANOVA) and mean comparison. The ANOVA was used to detect the differences of treatment effect; mean comparison using least significant different (LSD) test at significant level of 5 % was applied to determine the differences of mean values of the treatments.

RESULT AND DISCUSSION

The effect of Planting distance and dose of manure on chemical soil properties

a. C-organic and N-total content

The average of C-organic content in the soil due to the treatment was presented on Table 1 as bellow.

Manure singly gave significant effect on C-organic content but there was no mutual interaction between dose of manure and planting distance. The manure treatment with dose of 20 tons ha\(^{-1}\) gave the highest value of C-organic in the soil namely 1.40%. The lowest value of C-organic was achieved on the
treatment without dose of manure namely 1.13% and it was significantly different with the doses of manure 20 tons ha\(^{-1}\).

However, it was not significantly different with the manure treatment with dose of 10 tons ha\(^{-1}\).

Table 1. The Average Value of C-organic (%) and N Total Due to The Planting Distance and Dose Manure

<table>
<thead>
<tr>
<th>Dose of Manure</th>
<th>Planting Distance</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>30x15cm</td>
<td>30x30cm</td>
</tr>
<tr>
<td>Without manure+ Urea</td>
<td>1.04</td>
<td>1.20</td>
</tr>
<tr>
<td>Manure 10 ton + 100 kg Urea. ha(^{-1})</td>
<td>1.63</td>
<td>1.15</td>
</tr>
<tr>
<td>Manure 20 ton + 100 kg Urea. ha(^{-1})</td>
<td>1.36</td>
<td>1.41</td>
</tr>
<tr>
<td>Average</td>
<td>1.34a</td>
<td>1.25a</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dose of Manure</th>
<th>Ratio of C-organic (%)</th>
<th>Planting Distance</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>30x15cm</td>
<td>30x30cm</td>
<td>30x45cm</td>
</tr>
<tr>
<td>Without manure+ Urea</td>
<td>0.32</td>
<td>0.18</td>
<td>0.20</td>
</tr>
<tr>
<td>Manure 10 ton+100 kg Urea. ha(^{-1})</td>
<td>0.18</td>
<td>0.19</td>
<td>0.21</td>
</tr>
<tr>
<td>Manure 20 ton+100 kg Urea. ha(^{-1})</td>
<td>0.22</td>
<td>0.22</td>
<td>0.23</td>
</tr>
<tr>
<td>Average</td>
<td>0.24a</td>
<td>0.20a</td>
<td>0.21a</td>
</tr>
</tbody>
</table>

Description: The numbers with the same letter in the same column donot differ significantly (LSD 5% test).

The distribution of 20 tons ha\(^{-1}\) of manure showed that were significant increases in C-organic compare without the dose of manure, but there were no significant difference with the treatment of 10 tons ha\(^{-1}\). The 20 tons ha\(^{-1}\) of manure treatment indicates that there was an increase of C-organic in the soil up to 1.40 %, much higher than the dose without manure treatment or 10 tons ha\(^{-1}\) of manure treatment. To maintain the content of soil organic matter in order not to get decrease, the minimum of 8-9 tons per ha of organic material is required annually (Suryani, 2007).

According to Harahap (2008), it is view from the biological properties of soil, then carbon is a source of food for soil microorganisms so that the presence of this element in the soil will encourage and increase the microorganism populations and activities. Therefore, the total of microbes in the soil will also get increase.

Manure application can provide a growing media for soil microbes, in which microorganisms will take up carbon so that it will gradually decrease the number of C-organic in the soil.

The decreasing in C-organic was assumed as the result of soil microorganisms activity which use carbon compounds for the formation of their body cells, and some carbons are released in the form of CO2 during decomposition process, therefore C-organic content is reduced (Jacob, 1992). This opinion goes with Hadisumitro’s opinion (2002) which stated that the sufficient distribution of manure (organic fertilizer) can improve the physical and chemical properties of soil. Besides, it will also be able to increase the activity of mycorhizal fungi so that more P elements can be released and become available to plants.

According to Sulaiman et al. (2005), 1-2 % of C-organic value is included as low criteria, so the values of C-organic at the beginning and the end of the study are including low as well. Soil with low content of C-organic can cause the increasing need of nitrogen fertilization because its efficiency is deteriorated due to the high level of leaching.

Manure singly gave significant effect on N-total but there was no interaction with each other. The average highest value of N-total was 0.23 which was found in the manure treatment with dose of 20 tons ha\(^{-1}\) (Table 1).

However, the addition of manure doses could increase the value of N-total of soil. The N-total value of the soil prior to the study namely 0.21 got increase to 0.23 after the 20 tons ha\(^{-1}\) of manure treatment was given. This result was better than
Khairunnisa study (2010) which showed that the treatment of 10 tons of biochar ha\(^{-1}\) tended to decrease N-total soil compared with no biochar treatment. This suggests that the given dose of manure into the soil can increase the levels of N-total. Hakim et al. (1986) stated that decomposition of organic materials will produce N-containing compound, such as ammonium, nitrite, nitrate and nitrogen gas. The similar results of studies were also presented by Hairunsyah (1991) and Raihan and Nurtirtayani (2001) who said that the content of N-total of soil was increased with manure application.

b. **P-available in the Soil**

The average content of P-available in the soil is presented in Table 2. Manure singly gave significant effect on P-available in the soil, but there was no interaction with each other.

Table 2. The Average Value of P-Available in The Soil (PPM) Due to The Planting Distance and The Manure Doses Treatment

<table>
<thead>
<tr>
<th>Dose manure</th>
<th>Planting distance (cm x cm)</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>30x15</td>
<td>30x30</td>
</tr>
<tr>
<td>Without manure+Urea</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 ton+00 kg Urea. ha(^{-1})</td>
<td>4.10</td>
<td>3.03</td>
</tr>
<tr>
<td>Manura 20 ton+100 kg Urea. ha(^{-1})</td>
<td>6.89</td>
<td>3.57</td>
</tr>
<tr>
<td>Average</td>
<td>4.85a</td>
<td>3.52a</td>
</tr>
</tbody>
</table>

Description: The numbers with the same letter in the same column donot differ significantly (LSD 5% test).

On the table 2 shows that the values of P-available tended to increase with increasing doses of manure. The manure treatment with dose 20 tons ha\(^{-1}\) has produced the highest value of P-available namely 5.09 ppm but it was not significantly different with manure treatment with dose 10 tons ha\(^{-1}\) that produced P-available value 4.13 ppm. Yet, it was significantly different with the treatment without manure namely 3.54 ppm.

Manure treatment with the dose of 20 tons ha\(^{-1}\) increases the retention and availability of soil nutrients, so the P-available in the soil will not be easily lost from the soil, although the availability of P in the soil was still significantly in low criteria.

Furthermore Evenson (1982) said that enhancement mechanism of various P-available from organic matters given into the soil will lead to mineralization process of P, so that the inorganic P in the soil will be released. Moreover, the addition of organic matters into the soil will increase soil microbial activities. Palm, Myers and Nandwan (1997) suggested that the microbes will produce phosphatase enzyme as decomposer for decomposing P-organic compounds into P-inorganic. Beside decomposing P from the added organic matter, phosphate enzyme can also decompose P from soil organic matters. This leads to an increase in the number of microorganism populations, so it will help in binding the soil particles which are very helpful in improving soil fertility.

Organic fertilizers which are returned through manure can be used as a source of soil organic matter and a source of nutrients for plant growth (Ende and Taylor, 1969). Organic matter plays an important role in tropical soils, because almost all of the elements are contained in it (Agboola, 1974). High cation exchange capacity is associated with a high content...
of organic matter. According to Agboola and Corey (1973), there is a relation between the P-available in the soil with the content of organic matter. A significant relation between soil organic matter and P-available can be found if the content of organic matter is more than 3 percent. Organic matter in the soil prevents the deposition of phosphorus by aluminum and iron.

Even though it contains a low nutrient, organic matter is important in: (1) providing macro and micro nutrients such as Zn, Cu, Mo, Co, Ca, Mg and Si, (2) increasing the cation exchange capacity (CEC) of the soil, and (3) being able to react with metal ions to form complex compounds, so that the metal ions which become toxics to plants or inhibit the provision of nutrients such as Al, Fe and Mn can be reduced (Setyorini, 2006).

c. **Cation Exchange Capacity (CEC)**

The cation exchange capacity is the total amount of exchangeable cations (exchangeable cations) on the surface of colloidal with negative charge. The unit of CEC measurement result is milliequivalent cations in 100 grams of soil or me cation per 100 g of soil.

The average of CEC as the result of observation was presented in Table 3 as bellow. On table 3 shows that the average CEC soil due to the influence of interaction treatments ranged from 36, 48-42, 48 me. 100 g⁻¹.

Cation exchange capacity (CEC) is one of chemical soil properties which is closely related with the availability of nutrients for plants and an indicator of soil fertility. Plant spacing, doses of manure, and their interactions give a very significant effect on the value of CEC.

<table>
<thead>
<tr>
<th>Dose of manure+ Urea</th>
<th>Planting distance (cm x cm)</th>
<th>30 x 15</th>
<th>30 x 30</th>
<th>30 x 45</th>
</tr>
</thead>
<tbody>
<tr>
<td>Without manure+Urea</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100 kg Urea. ha⁻¹</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manure 10 ton+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100 kg Urea. ha⁻¹</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manure 20 ton+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Description: The numbers with the same letter in the same column donot differ significantly (LSD 5% test). Lowercase read in vertical line and uppercase read in horizontal line.

CEC values of the soil due to the plant spacing treatments were inconsistently increasing with the increasing doses of manure. The highest average CEC value of the soil was 42.48 me. 100 g⁻¹, was found in the condition of manure treatment with the dose of 20 tons ha⁻¹ and plant spacing of 30 cm x 45 cm, yet it was significantly different with the similar dose of manure with a spacing of 30 cm x 30 cm namely 40.96 me. 100 g⁻¹ soil and with a spacing of 30 cm x 15 cm namely 40.44 me. 100 g⁻¹ soil.

The increases in manure doses significantly increased soil organic matter content (Table 1) which would be as colloidal humus and clay colloids. In line with the opinion of Brady (1990) in Candra (2003), the given cow manure into the soil will be decomposed and ended up as mineralization and the relative resistant humus will be formed. Humus, which is composed of cellulose, lignin and proteins, have C-organic content generally by 58% so that the provision of cow manure will increase the amount of humus in the soil and CEC soil. According to Hanafi (2007), CEC of soil organic matter varies between 200-300 me/100 g of soil. While the clay CEC values only range from < 10 (clay oxides) to > 100 me/100 g soil (clay type 2:1). CEC value of colloidal humus (organic) can reach 2 – 20 times of the clay CEC (colloidal clay).
Despite they are small, organic matters have large effects on CEC soil, so that the higher organic matters are in the soil, the higher the CEC soil will be.

Sanchez (1992) stated that soil organic matters plays an important role in increasing the aggregate stability, water holding capacity, CEC, soil buffering capacity and lower the P absorption by soil. The higher the organic matters are in the soil, the higher its CEC will be, where this provision applies if the other factors are equal. Further, it is said that the amount of CEC soil is influenced by the nature and the characteristics of the soil including soil reaction or pH, in which the increasing of pH will increase the CEC of soil. (Hakim et al., 1986); (Duxbury, Smith and Doran., 1989).

The effect of Planting distance and dose of manure on rice yield components and rice production

a. Performance of plant and yield components

The performance of rice plant and average of yield components on Ciherang rice variety was presented on Table 4 as bellow. The variation in plant height due to nutrient sources was considered to be due to variation in the availability of major nutrients. This research was showed that more higher planting distance and doses of organic manure will be increased on the rice plant heigh (Table 4). Muhammad et al. (2008), observed on similar results with application of organic manure in rice plant. The available nutrients might have helped in enhancing leaf area, which thereby resulted in higher photo-assimilates and more dry matter accumulation. These results are supported by the findings of Yadana et al. (2009).

Tillering is an important trait for grain production and is thereby an important aspect in rice yield. It is also reported by Mirza et al. (2010), which stated that increasing in number of tillers of rice plants due to influence of different organic fertilizer combinations. According to them more number of tillers per square meter might be due to the more availability of nitrogen, which plays a vital role in cell division. Organic sources offer more balanced nutrition to the plants, especially micro nutrients which positively affect number of tiller in plants.

The yield components of rice crop viz. length of panicle, the amount of grain per panicle and the weight of 1000 grains were showed increases due to more higher planting distance and doses of organic manure application and showed significant different. These were due to more completed nutrients available in the soil which applicated by organic manure as amount of 20 tons.ha$^{-1}$ compare to the below its organic fertilizer. On the same case Salem (2006), reported that application of organic compost along with nitrogen fertilizer significantly increased number of panicles per square meter, panicle length, panicle weight, number of filled grains/panicle, 1000-grain weight and grain yield in rice crop.
Table 4. The Average of Plant Height and Yield Components Due to The Doses of Manure Treatments and Planting Distance

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Plant height (cm)</th>
<th>The amount of rice tillers</th>
<th>Length of panicle (cm)</th>
<th>The amount of grain per panicle</th>
<th>Weight of 1000 grains</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planting distance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(cm x cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30 x 15</td>
<td>100.62a</td>
<td>21.93a</td>
<td>21.69a</td>
<td>215.68a</td>
<td>27.45a</td>
</tr>
<tr>
<td>30 x 30</td>
<td>100.91ab</td>
<td>27.67a</td>
<td>23.28b</td>
<td>227.12ab</td>
<td>27.07a</td>
</tr>
<tr>
<td>30 x 45</td>
<td>101.49b</td>
<td>39.73b</td>
<td>24.37c</td>
<td>234.55b</td>
<td>26.86a</td>
</tr>
<tr>
<td>Dose of manure</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(ton ha⁻¹)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>4.99a</td>
<td>27.76a</td>
<td>22.32a</td>
<td>220.34a</td>
<td>26.67a</td>
</tr>
<tr>
<td>10</td>
<td>101.38ab</td>
<td>29.62a</td>
<td>23.26ab</td>
<td>222.93a</td>
<td>26.42a</td>
</tr>
<tr>
<td>20</td>
<td>102.76b</td>
<td>31.96b</td>
<td>23.76b</td>
<td>234.07b</td>
<td>27.27a</td>
</tr>
<tr>
<td>Average of LSD 5%</td>
<td>2.86</td>
<td>5.96</td>
<td>0.99</td>
<td>17.89</td>
<td>1.88</td>
</tr>
</tbody>
</table>

b. Dried Grain Yield (DGY)
Manure singly gave significant effect to the Dried Grain Yield results, but there was no interaction with each other. The average of DGY results due to the influence of manure is presented on Table 5.

Table 5 showed that the highest dose of DGY result can be found in the manure treatment with the dose of 20 tons ha⁻¹, namely 6.59 t ha⁻¹, and it was significantly different with the dose without manure treatment and do not differ significantly with manure treatment with the dose of 10 tons ha⁻¹ (6.26 t ha⁻¹). The GKP lowest results can be seen in the manure treatment without dose namely 4.99 tons ha⁻¹.

Table 5. The Average of Dry Grain Yields Due to Doses of Manure Treatments and Planting Distance

<table>
<thead>
<tr>
<th>Dose of manure (ton.ha⁻¹)</th>
<th>Rice Production DGY (ton.ha⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4.99 a</td>
</tr>
<tr>
<td>10</td>
<td>6.26 b</td>
</tr>
<tr>
<td>20</td>
<td>6.59 b</td>
</tr>
</tbody>
</table>

Description: The numbers with the same letter in the same column do not differ significantly (LSD 5% test).

CONCLUSION

The mixture of manure and urea give a significant effect on C-organic, N-total and P-available in the soil. The increases of C-organic in the soil were low, N-total was moderate, and P-available was low. A significant interaction occurred between planting distance and the mixture of manure and urea on the Cation Exchange Capacity (CEC) of the soil.

Increasing the level of planting distance and dose organic manure will be stimulated on plant heigh and some yield components of rice crops and the optimized level for organic manure application was 20 tons.ha⁻¹ due to limitated C-organic content in the rice field.
of Empetring village, Darul Kamal Aceh
Besar Subdistrict area.

The average of grain yields on
Ciherang rice variety were 6.26 tons ha⁻¹
which occurred at the dose manure
 treatment of 10 tons ha⁻¹.

REFERENCES

Agboola, A. A. 1974. Problem of
improvement soil fertility by use of
 green manuring in the tropical
 farming system, pp. 147-153. In
 Organic Material as Fertilizers.

The relationship between soil pH,
 organic matter, available phosphorus,
 exchangeable potassium, calcium, magnesium and
 nine element in the maize tissue.

Organik. Jakarta: Penebar
Swadaya.

Balai Penelitian Tanaman Padi.
(Balitpa). Sukamandi.

Brady, N. C. 1990. The Nature and
Properties of Soil. 10th ed. New

Candra, N. A. 2003. Pengaruh Takaran
zeolit dan pupuk kandang terhadap
perubahan sifat-sifat tanah,
pertumbuhan, dan hasil jagung di
tanah pasir pantai. Tesis. Program
Studi Agronomi Jurusan Ilmu
Pertanian Program Pasca Sarjana
UGM, Yogyakarta.

Duxbury, J. M., M.S. Smith, and J.W.
Doran. 1989. ‘Soil Organic Matter
as a Source and a Sink of Plant
Nutrient’. In Dynamic of Soil
Organic Matter in Tropical
Ecosystem. Dept. of Agro and Soil
Sci. Univ. of Hawaii.

Response of Peach seedling in
sand culture to factorial combination
of nitrogen, phosphorus and sheep
Husb 9: 234-238.

New York: John Wiley and Sons.

Hadisumitro, L.M. 2002. Membuat
Kompos. Jakarta: Penebar
Swadaya.

Hairunsyah. 1991. Pengaruh empat jenis
bahan organik pada tiga dosis
pemberian N terhadap
pertumbuhan dan hasil gabah pada
padi sawah beririgasi. Kindai,
Balitbang Pert. Balittan Banjarbaru
2(2): 5-9.

Hakim, N., M.Y. Nyakpa, A.M. Lubis, S.G.
Nugroho, M.K. Saul, M.A. Diha,
Dasar-dasar Ilmu Tanah. Unila.

Harahap, S.M 2008. Aplikasi jerami untuk
perbaikan sifat tanah dan produksi
padi sawah. Tesis. Universitas
Sumatera Utara, Medan.

Instalasi Penelitian dan Pengkajian
Teknologi Pertanian Mataram
Kandang Meningkatkan Produksi
Padi. Badan Penelitian dan
Pengembangan Pertanian. Folder

Iskandar, T., Jamal Khalid, M. Nur, H.I.
Tamrin, and Abdul Azis. 2008.
Pengembangan benih sumber di
Provinsi NAD. Laporan Akhir
Kegiatan Balai Pengkajian
Teknologi Pertanian NAD.

Jacob, A. 1992. Pengaruh aktivator
terhadap laju dekomposisi dan
kualitas kompos dari limbah organik
Taman Safari Indonesia. Program
Pasca Sarjana, Institut Pertanian
Bogor.

Pengaruh residu jenis dan dosis
pupuk organik terhadap
pertumbuhan dan hasil padi di
Subak Rejasa Kabupaten Tabanan
Bali. Laporan Akhir Pengkajian
BPTRP Bali.

DISCUSSION FROM PARALLEL SESSION

<table>
<thead>
<tr>
<th>PAPER TITLE</th>
<th>Planting Distance and Dose of Organic Manure on The Soil Chemical Properties and Yield of Lowland Rice</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUTHOR</td>
<td>Abdul Azis and Damasus Riyanto</td>
</tr>
<tr>
<td>QUESTION</td>
<td></td>
</tr>
<tr>
<td>ANSWER</td>
<td></td>
</tr>
</tbody>
</table>
| SUGGESTION | 1. Have no references list.
2. Give the ratio if want to say low or high. |