Perancangan Database Pada Sistem Asesmen Dan Pemetaan Hasil Asesmen Berbasis Tag Sebagai Pembantu Penyususnan Strategi Pembelajaran

(Designing of Database on Assessment System And Mapping of Assessment Outcome of Based Tag As Creation Helper of Learning Strategy)

APRILIYA KURNIANTI, ANGGUNINGTYAS, REZA GIGA ISNANDA

ABSTRACT

Sistem Asesmen dan Pemetaan Hasil Asesmen Berbasis *Tag* merupakan sistem berbasis *online* yang bertujuan untuk membantu para guru dan siswa dalam merekap dan memetakan hasil asesmen untuk persiapan masuk perguruan tinggi. Informasi dari perekapan dan pemetaan ini sangat berguna dalam membantu penyusunan strategi pembelajaran maupun strategi menghadapi ujian berikutnya. Untuk mendukung sistem asesmen ini dibutuhkan sebuah perancangan *database*. Dalam perancangan *database*, perancangan terbagi menjadi 4 tahapan yaitu Pengumpulan dan Analisa Data, Perancangan *database* Konseptual, Perancangan *database* Logikal, dan Perancangan *Database* Fisikal. Perancangan *database* konseptual meliputi siapa saja yang terlibat dalam sistem, apa saja input yang diperlukan, dan informasi (*output*) apa yang diinginkan dari *database*. Sedangkan pada perancangan *database* logical, meliputi penentuan *Entitas* dan *attributes*, penentuan *primary key, Entity Relationship Diagram* (ERD). Pada perancangan fisikal, meliputi konversi ERD ke bentuk tabel, normalisasi dan implementasi ke dalam bentuk tabel yang dibuat pada *MS SQL Server*. Dari perancangan *database* menghasilkan tabel-tabel tanpa *anomaly*, yaitu tabel MataPelajaran, Siswa, Guru, Ujian, Soal, StandarNilai, Tag, Grup, GrupMember, Member, EventUjian, Nilai, NomorSoal, PesertaUjian, Clipbooard, dan OnGoingExam.

Keywords: Tag, *database*, asesmen

PENDAHULUAN

Setiap tahun, banyak siswa Sekolah Menengah Atas (SMA) yang melanjutkan pendidikan ke jenjang universitas. Untuk dapat diterima menjadi mahasiswa baru sebuah universitas, para siswa SMA diharuskan mengikuti proses seleksi terlebih dahulu. Banyak usaha yang dilakukan siswa dalam mempersiapkan diri menghadapi tes seleksi penerimaan mahasiswa baru.

Selain belajar secara mandiri dan di sekolah, sebagian siswa juga mengikuti bimbingan belajar di luar sekolah. Selain itu, para siswa juga banyak melakukan asesmen dengan mengikuti berbagai *try out*. Hasil dari *try out* seharusnya mampu menjadi bahan evaluasi bagi para siswa untuk meningkatkan proses pembelajaran selanjutnya.

Agar evaluasi yang dilakukan lebih bermakna, baik siswa maupun guru perlu mengetahui materi mana yang menjadi kekuatan maupun kelemahan. Selain itu, siswa dan guru seharusnya juga memetakan hasil yang didapat terhadap materi-materi yang ada dalam kurikulum. Dengan melakukan pemetaan hasil asesmen terhadap materi, dapat diketahui materi-materi mana yang menjadi kekuatan dan kelemahan seorang siswa. Informasi inilah yang kemudian dapat digunakan untuk membantu siswa maupun guru dalam melakukan evaluasi terhadap cara belajarnya atau evaluasi terhadap strateginya menghadapi ujian.

Untuk mewujudkan hal tersebut, maka perlu dibangun sebuah sistem asesmen dan pemetaan hasil asesmen berbasis tag sebagai pembantu penyususnan strategi pembelajaran dengan mengutamakan sebuah perancangan database yang baik.

Sebagai solusi dari permasalahan yang ada, peneliti akan fokus terhadap perancangan database pada sistem asesmen dan pemetaan hasil asesmen berbasis tag sebagai pembantu penyususnan strategi pembelajaran. Tahapan yang digunakan dalam perancangan database adalah pengumpulan dan analisa data dengan data sekunder (melalui website yang merujuk pada e-learning dan ujian online), perancangan database konseptual (perancangan Entitas relationship diagram), perancangan database logikal (perancangan relational database), perancangan database fisikal (struktur penyimpanan pada file-file database). Selain

perancangan *database*, penelitian ini juga berfokus pada pengujian *database*, apakah *database* masih mempunyai anomali data atau tidak. Diharapkan dengan dilakukannya pengujian tersebut bisa diperoleh sebuah *database* dengan data yang efisien.

LANDASAN TEORI

1. Penelitian Terdahulu

Penelitian dengan judul Analisis dan Perancangan Sistem Basis Data Untuk Kegiatan Operasional Akademik pada SMP Darma Satria Persada, merupakan penelitian yang bertujuan untuk melakukan analisis terhadap sistem operasional akademik yang diterapkan pada SMP Darma Satria Persada dan melakukan perancangan sistem basis data berupa aplikasi desktop sebagai sarana pengaturan operasional akademik sekolah. Metode penelitian yang digunakan adalah metode pengumpulan data dengan studi pustaka, observasi dan wawancara dan metode perancangan database dengan menggunakan metode DBLC (Database Life terdiri Cycle) yang dari perancangan konseptual, perancangan logikal, dan perancangan fisikal (Wibowo, 2013).

Penelitian dengan judul Analisis dan Perancangan Sistem Basis Data Pendidikan pada Lembaga Musik Cantata, merupakan penelitian yang bertujuan merancang database pada Lembaga Musik Cantata yang bergerak di bidang pendidikan music. Metodologi yang digunakan berdasarkan pada Database Application Lifecyle (DBLC) Penelitian dimulai dengan mengadakan analisis kebutuhan informasi perusahaan, perancangan basis data konseptual, logikal, dan fisikal, memilih DBMS yang akan digunakan, dan implementasi. menghasilkan Penelitian telah rancangan database yang terdiri dari rancangan konseptual, logikal, dan fisikal (Viriya Adithana L.P., 2006).

penelitian dengan judul Analisis dan Perancangan Sistem Basis Data E-learning Berbasis Web pada Sekolah Menengah Atas (SMA) Katolik Ricci, merupakan penelitian yang bertujuan untuk melakukan analisis terhadap system pendidikan yang diterapkan oleh SMA Katolik Ricci II dan melakukan perancangan system basis data berupa aplikasi e-learning yang berbasis web sebagai sarana pembelajaran siswa dan guru yang bersifat tidak terikat oleh waktu dan tempat. Metode penelitian yang digunakan adalah metode pengumpulan data dengan cara metode kuesioner dan studi pustaka, metode perancangan database dengan menggunakan metode DBLC (database life cycle) yaitu terdiri dari perancangan konseptual, perancangan logikal dan perancangan fisikal (Tania Liana, 2012).

2. Perancangan Basis Data

"Entity Relationship Diagram (ERD) merupakan suatu model data yang dikembangkan berdasarkan objek." ERD digunakan untuk menjelaskan hubungan antar data dalam basis data kepada pengguna secara logis. ERD didasarkan pada suatu persepsi bahwa real world terdiri atas obyek-obyek dasar tersebut (Sutanta, 2011:91).

Keys memiliki peran yang sangat penting untuk menghubungkan satu obyek dengan obyek yang lainnya. Keys diletakkan pada suatu atribut yang telah ditentukan kedudukannya, agar dapat dihubungkan dengan atribut pada entitas yang lain (Connolly dan Begg, 2005:352).

multiplicity adalah jumlah dari kejadian yang mungkin dari sebuah tipe entitas yang berhubungan kepada sebuah kejadian tunggal dari tipe entitas yang terasosiasi melalui relationship (hubungan) tertentu. Derajat yang bisa digunakan untuk relationship (hubungan) adalah binary (Connolly dan Begg, 2005: 356).

perancangan basis data dibagi menjadi tiga tahap utama, vaitu:

- a. Perancangan Basis Data Konseptual
- b. Perancangan Basis Data Logikal
- c. Perancangan Basis Data Fisikal

Normalisasi adalah suatu teknik untuk menghasilkan himpunan relasi dengan atributatribut yang diinginkan berdasarkan kebutuhan-kebutuhan data suatu organisasi (Connolly dan Begg, 2005:388).

METODE PENELITIAN

1. Pengumpulan dan analisa data

Dalam penelitian ini penulis melakukan pengumpulan informasi dan analisis data yang dibutuhkan melalui website yang merujuk pada e-learning dan ujian online. Setelah melakukan pencarian dan pengumpulan data, kemudian dilakukan analisis pada data dari informasi yang didapatkan, informasi tersebut bertujuan untuk mendapatkan data dan informasi yang tepat dalam merancang database.

2. Perancangan database konseptual

proses yang dilakukan pada tahap ini adalah menentukan siapa saja yang terlibat dalam sistem, apa saja input yang diperlukan, informasi (*output*) apa yang diinginkan dari *database*.

- a. Pihak yang terlibat dalam sistem :
 Objek-objek yang terlibat dalam sistem
 database yang akan dibangun, yaitu
 siswa, guru, dan admin.
- b. Input yang diperlukan adalah: Dalam pembuatan *database* pada Sistem Asesmen dan Pemetaan Hasil Asesmen dibutuhkan beberapa data inputan yang diperlukan, seperti data siswa, guru, mata pelajaran, ujian, soal, dan tag atau label.
- Informasi (output) yang diinginkan dari database adalah : Dalam pembuatan database pada Sistem Asesmen dan Pemetaan Hasil Asesmen, informasi dihasilkan adalah: (output) vang Informasi Hasil Ujian Siswa per Tag, Informasi Review Soal, Informasi Grafik Perkembangan Hasil Ujian, Informasi Nilai Rata-rata siswa per Periode, Informasi Nilai Rata-rata siswa per Ujian, Informasi Top 5 Tag per Kelas, Informasi Top 5 Tag satu sekolah, Informasi Top 5 Siswa per Kelas, Informasi Top 5 Siswa satu sekolah, Informasi Worst 5 Tag per Kelas, Informasi Worst 5 Tag satu sekolah, Informasi Worst 5 Siswa per Kelas, Informasi Worst 5 Siswa satu sekolah.

3. Perancangan database logical

Perancangan database logical merupakan tahapan perancangan ERD dengan terlebih dahulu menentukan entitas dan atribut yang terlibat. Dari hasil olah analisis data ditemukan beberapa entitas dan atributnya yaitu:

a. Entitas guru

Entitas guru mempunyai lima atribut yaitu : NIP, Nama, Jenis_Kelamin, Sekolah dan Alamat

b. Entitas siswa

Entitas Siswa yang terdiri dari 6 atribut yaitu: NISN, Nama, Jenis_Kelamin, Sekolah, Kelas, dan Alamat.

c. Entitas Ujian

Entitas Ujian terdiri dari 5 attribut yaitu : EnrolmentKey, Tanggal, Mulai_Ujian, Durasi_Pengerjaan, dan Batas_Ujian.

d. Entitas Tag

Entitas Tag adalah entitas yang menunjukan tag atau label. Tag diambil berdasarkan nama bab mata pelajaran yang diberikan di setiap soal. Berdasarkan analisis yang telah dilakukan, maka diperoleh data untuk menentukan entitas dan attribut yaitu: 1 attributes Tag

e. Entitas Soal

Entitas Soal terdiri dari 8 attributes diantaranya Pertanyaan, A, B, C, D, E, Jawaban dan Tanggal.

f. Entitas MataPelajaran

Entitas MataPelajaran terdiri dari 1 attributes, yaitu Mata_Pelajaran

g. Entitas Standar Nilai

Entitas StandarNilai terdiri dari 3 attributes, yaitu Nilai_Kuat dan Nilai Lemah

h. Entitas DetailGrupMember

Entitas DetailGrupMember terdiri dari 1 attributes yaitu Nama_Grup karena pada pada database hanya memerlukan nama grup

i. Entitas Clipboard

Entitas Clipboard yang memiliki 2 attributes diantaranya Nomor dan Choice. Penentuan atribut tersebut karena pada *Entitas* Clipboard memerlukan informasi nomor soal yang sedang dikerjakan oleh siswa dan pilihan jawaban siswa yang akan disimpan sementara

j. Entitas PesertaUjian

Entitas PesertaUjian terdiri dari 1 attribut yaitu Status_Ujian. Penentuan atribut tersebut karena untuk membedakan siswa mana yang telah menyelesaikan ujian dan siswa mana yang belum melakukan ujian.

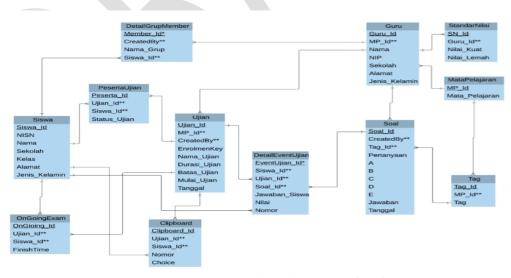
k. Entitas OnGoingExam

Entitas OnGoingExam yang terdiri dari 1 attribut yaitu FinishTime. Penentuan atribut tersebut karena dalam sistem ingin mendapatkan informasi tentang kapan siswa menyelesaikan ujian.

4. Penentuan primary key

Penentuan primary key

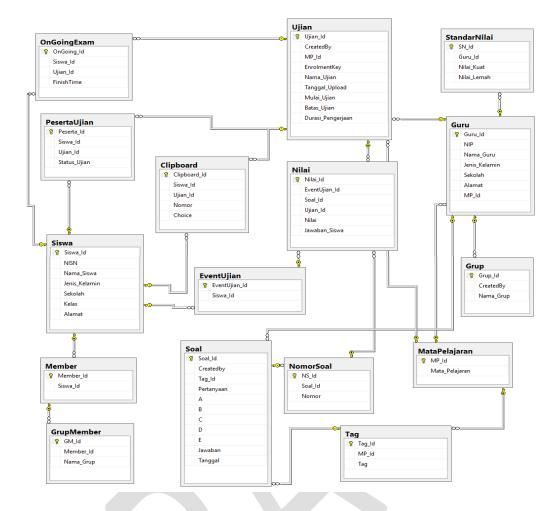
pada setiap entitas diperoleh hasil seperti pada berikut:


- a. Guru = {Guru_Id, NIP, Nama, Jenis_Kelamin, Sekolah, Alamat}
- b. Siswa = {Siswa_Id, NISN, Nama, Jenis_Kelamin, Sekolah, Kelas, Alamat }
- Ujian = {<u>Ujian Id</u>, Nama_Ujian, EnrolmenKey, Mulai_Ujian, Batas_Ujian, Durasi_Pengerjaan, Tanggal }

- d. Soal = {Soal_Id, Pertanyaan, A, B, C, D, E, Jawaban, Tanggal}
- e. MataPelajaran = {MP_Id, Mata_Pelajaran}
- f. $Tag = \{Tag_Id, Tag \}$
- g. StandarNilai = {<u>SN_Id</u>, Nilai_Kuat, Nilai_Lemah}
- h. DetailGrupMember = {Member_Id, Nama_Grup }
- i. Clipboard = {Clipboard Id, Nomor, Choice}
- j. PesertaUjian = {Peserta_Id, Status_Ujian} 11. OnGoingExam = {OnGoing_Id, Finishtime}

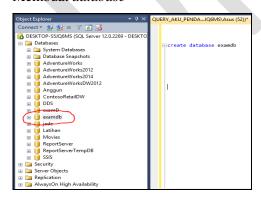
5. Perancangan database fisik

Perancangan database fisik merupakan transformasi dari perancangan logis terhadap jenis DBMS yang digunakan sehingga dapat disimpan secara fisik pada media penyimpanan.


Hasil konversi ERD beserta relasi antar tabelnya dapat dilihat pada Gambar 1 berikut :

GAMBAR 1. Konversi Entitas Relationship Diagram (ERD)

6. Normalisasi


Setelah melakukan normalisasi pada table yang mengalami anomaly, maka berikut RAT (Relasi Antar Tabel) yang dihasilkan:

GAMBAR 2. RAT (Relasi Antar Tabel)

ANALISIS DAN PEMBAHASAN

1. Membuat database

GAMBAR 3. Membuat database baru

Sisi kiri merupakan hasil *execute query* database untuk membuat sebuah database

dengan nama "examdb". Selanjutnya pada *database* tersebut tabel-tabel akan dibuat

2. Pengujian database

Metode pengujian yang dipakai dalam pengembangan *database* adalah :

a. aniomaly testing.

Pengujian anomaly testing dilakukan melalui page admin. Anomaly testing berfungsi untuk mengetahui apakah proses basis data yang memberikan efek samping yang tidak diharapkan (misalnya menyebabkan ketidakonsistenan data atau membuat suatu data menjadi hilang ketika data dihapus).

Anomaly insert

```
| SCAC Change |
```

GAMBAR 4. Pengujian anomaly insert

ketika dilakukan *insert* data pada tabel EventUjian, maka tabel lain tidak ada perubahan, hanya pada tabel EventUjian yang mengalami penambahan data, sehingga sudah tidak terdapat *anomaly*.

- Anomaly delete

```
| SOLIC | SOLI
```

GAMBAR 5. Tabel Sebelum Pengujian

```
BEGIN STATE OF MARKE MEETS SEASON TO SEASON THE SEASON
```

GAMBAR 6. Pengujian anomali delete

ketika dilakukan *delete* data pada tabel Nilai, maka tabel lain tidak ikut terhapus, hanya pada tabel Nilai yang terhapus, sehingga sudah tidak terdapat *anomaly*

- Anomaly update

GAMBAR 7. Tabel sebelum pengujian

```
we has a "from Eventidation
we have "from Eventidation
we have "from State and State
state and State
state and State
state and State
```

GAMBAR 8. Pengujian update anomaly

ketika dilakukan *update* data pada tabel Nilai, tabel lain tidak ada perubahan pada tabel lain, hanya pada tabel Nilai yang mengalami perubahan, sehingga sudah tidak terdapat *anomaly*.

b. Pengujian constraint

Constraint basis data merupakan struktur yang dibuat oleh pengguna atau perancang basis data yang mencerminkkan perilaku dari suatu tabel dan kolom. Constraint dirancang pertama pada saat mendefinisikan basis data dengan tujuan utama memproteksi validasi data.

```
Create table PesertaUjian (
Peserta_Id int identity(I,1) primary key,
Siswa_Id nvarchar (128) not null,
foreign key (Siswa_Id) references[Siswa](Siswa_Id),
Ujian_Id int foreign key references Ujian(Ujian_Id),
Status_Ujian int CONSTRAINT CHK_Status_Ujian CHECK (Status_Ujian in( 0, 1))
);
```

GAMBAR 9. Constraint Kolom Status Ujian

Pada Gambar 9, *check constraint* diimplementasikan pada tabel pesertaUjian kolom Status_Ujian, pada kolom ini hanya diisi angka 0 atau 1.

```
create table Nijai (
Nilai_Id int identity(1,1) primary key,
EventUjian_Id int foreign key references EventUjian(EventUjian_Id),
Soal_Id int foreign key references NomorSoal(NS_Id),
Ujian_Id int foreign key references Ujian(Ujian_Id),
Nilai int CONSTRAINT CHK_Nilai CHECK (Nilai in(0, 1)),
Jawaban_Siswa char(1)
);
```

GAMBAR 10. Constraint Kolom nilai Pada Gambar 10, check constraint diimplementasikan pada tabel Nilai kolom Nilai, pada kolom ini hanya diisi angka 0 atau 1.

```
create table Gyry (
Guru_Id nvarchar (128) not null,
primary key clustered (Guru_Id),
primary key clustered (Guru_Id),
NIP char(18),
NIP char(18),
Nama Guru varchar (28),
Jenis_kelamin char(1) constraint checkJenis_kelamin check(Jenis_kelamin in('L','P')),
Sekolah varchar(38),
Alamat varchar (25),
MP_Id int foreign key references MataPelajaran(MP_Id),
);
```

GAMBAR 11. Constraint pada kolom Jenis_Kelamin

check constraint diimplementasikan pada tabel Guru kolom Jenis_Kelamin, pada kolom ini hanya diisi huruf "P" atau "L"

KESIMPULAN

Berikut beberapa kesimpulan yang didapatkan dari hasil perancangan dan pengembangan *database* pada Sistem Asesmen dan Pemetaan Hasil Asesmen:

- 1. Berdasarkan hasil analisis data sekunder diperoleh rancangan *database* untuk Sistem Asesmen dan Pemetaan Hasil Asesmen yang dapat membantu guru dan siswa dalam proses perekapan dan pemetaan hasil asesmen.
- 2. Dari hasil analisis dan perancangan didapatkan *database* yang terdiri dari tabel Guru, tabel Siswa, tabel Ujian, tabel Soal, tabel PesertaUjian, tabel Grup, tabel GrupMember, tabel Member tabel OnGoingExam,tabel Nilai, tabel EventUjian, tabel NomorSola, tabel Tag, tabel StandarNilai, tabel Clipboard dan tabel MataPelajaran.
- 3. Tabel yang mengalami normalisasi bentuk 3NF yaitu tabel DetailEventUjian dan tabel DetailGrupMember.

DAFTAR PUSTAKA

- Adi, N. (2009). Rekayasa Perangkat Lunak Menggunakan UML dan Java. Yogyakarta.
- Almazari, A. (2015). http://www.dokumenary.net/2015/03/2 2/tampilan-sementara-project-newelearning/. Diambil kembali dari www.dokumenary.net.
- Black, W. (2001). Assessment in Science: Practical Experience and Education Research.

- http://jogdas.com/page/ujian_online. (2016).

 Diambil kembali dari www.jogdas.com.
- http://sman10-kotaternate.sch.id/guru-5-197105221993032003.html. (2017). Diambil kembali dari www.sman10kotaternate.sch.id.
- http://www.bunafitkomputer.com/tag/aplikasie-learning-dengan-php. (2015). Diambil kembali dari www.bunafitkomputer.com.
- http://www.kantin-php.com/2016/02/aplikasie-learning-responsive-ujian.html. (2016). Diambil kembali dari www.kanti-php.com.
- https://business.tutsplus.com/id/tutorials/whatis-buddypress-how-to-set-up-and-useit-right--cms-27443. (2017). Diambil kembali dari www.business.tutsplus.com.
- L.P., V. A., Wijaya, A., & Irawan, d. A. (2006). Analisis dan Perancangan Sistem Basis Data Pendidikan pada Lembaga Musik Cantata.
- Liana, T., & Ngalimin, J. (2012). Analisis dan Perancangan Sistem Basis Data Elearning Berbasis Web pada Sekolah Menengah Atas (SMA) Katolik Ricci.
- Linda, M. (2004). Sistem Basis Data. Yogyakarta: Andi Offset.
- Saputra, A. (2013). *Membangun Aplikasi Online dengan PHP dan SQL Server*. PT.Elex Media Komputindo.
- Sukani. (2013). http://guraru.org/guru-berbagi/membuat-tes-online-sangat-mudah-dengan-edu20/. Diambil kembali dari www.guraru.org.
- Sutanta. (2011). Dalam *Basis Data Dalam Tinjauan Konseptual* (hal. 91).
- Thomas M. Connolly, C. E. (2005). Output System: A Practical Approach to Design, Implementation, and Management. Pearson Education.
- Wibowo, C., Angelia, A., & Oenzil, A. N. (2013). Analisis dan Perancangan Sistem Basis Data Untuk Kegiatan Operasional Akademik pada SMP Darma Satria Persada.

PENULIS:

Apriliya Kurnianti

Teknologi Informasi, Teknik, Universitas Muhammadiyah Yogyakarta, Yogyakarta.

Email: aprilia@ft.umy.ac.id

Angguningtyas

Teknologi Informasi, Teknik, Universitas Muhammadiyah Yogyakarta, Yogyakarta.

Email:angguningtyas.2013@ft.umy.ac.id

Reza Giga Isnanda

Teknologi Informasi, Teknik, Universitas Muhammadiyah Yogyakarta, Yogyakarta.

Email: gigaisnanda@yahoo.com

Diskusi untuk makalah ini dibuka hingga tanggal dan akan diterbitkan dalam jurnal edisi (diisi oleh editor).