BAB IV

ANALISA DAN PEMBAHASAN

Sesudah dilakukan pengujian *Uji Tarik dan Struktur Mikro* pada Baja SS-400, maka diperoleh data-data pengujian yang kemudian dijabarkan melalui beberapa sub-sub pembahasan dari masing-masing jenis pengujian. Berikut adalah spesimen setelah proses sesudah dilakukan pengujian, seperti yang ditunjukkan pada Gambar 4.1.

Gambar 4. 1 . Spesimen Baja SS-400 setelah proses *pembentukan sudut* dan sesudah dilakukan pengelasan, (a) *pengelasan* dengan variasi waktu 5 detik, (b) *pengelasan* dengan variasi waktu 7 detik, (c) *pengelasan* dengan variasi waktu 10 detik.

4.1 Hasil Pengujian Uji Tarik pada sambungan Las

Pengujian uji tarik bertujuan untuk membandingkan nilai kekuatan pada setiap sambungan las yang memiliki kecepatan las yang berbeda. Pengujian ini

dilakukan menggunakan metode *Uji Tarik* dengan pembebanan 10 ton. Pada pengujian ini dilakukan pengujian sebanyak 1 kali uji pada setiap spesimen dengan dengan hasil specimen patah A = 53,9 %, B = 53,1 %, C = 42,4%, untuk selanjutnya diambil data yang lebih valid . Distribusi specimen patah pada pengujian uji tarik dapat ditunjukan pada Gambar 4.2.

Gambar 4. 2 Spesimen Yang Patah Setelah di Uji

Hasil dari pengujian tersebut kemudian dihitung untuk mengetahui tingkat kekuatan pada hasil Las yang memiliki variasi waktu yang berbeda

4.2 Hasil Pengujian Tarik

Dalam pelaksanaan uji tarik besarnya tegangan (σ) dan regangan (ϵ) yang terjadi dapat dihitung dengan menggunakan rumus sebagai berikut:

$$\sigma u = \frac{Pu}{A0}$$

$$\varepsilon = \frac{L - L0}{L0}$$

$$\varepsilon = \frac{L}{L0} \times 100\%$$

Dengan : σu : Tegangan Tarik (N/mm²).

ε : Regangan (%)

Pu : Beban Tarik (KK).

Ao : Luas Penampang Tarik Mula-mula (mm²).

- Lo : Panjang Awal Spesimen (mm).
- L : Panjang Akhir Spesimen (mm).

4.3 Data Hasil Pengujian Tarik

Dalam pengujian dan melihat grafik hasil kekuatan tarik yang dapat diproleh dari ketiga specimen uji tersebut maka hasil pengujian tarik ini dapat ditunjukkan dalam tabel berikut :

VARIASI 5 DETIK

Gambar 4. 3 Hasil uji Tarik dengan variasi waktu pengelasan 5 detik, untuk specimen *Baja SS-400* (A1).

No	Kode	Leba	Tebal	Tegangan	Panjang	Panjang	Beban	Pertambahan	Regang
	spesim	r	(mm)	Tarik	Awal	Akhir	Maksim	Panjang (AL)	an (ɛ)
	en	(mm		(σ□)	(L O)	(Lf) (mm)	al (KN)		(%)
)		(N/mm ²)	(mm)				
1	Baja	10	10	415,52	150	160	10	10	6,666
	SS-								
	400								

Gambar 4. 4 Hasil uji Tarik dengan variasi waktu pengelasan 5 detik, untuk specimen *Baja SS-400* (B1).

No	Kode	Leba	Tebal	Tegangan	Panjang	Panjang	Beban	Pertambahan	Regang
	spesim	r	(mm)	Tarik	Awal	Akhir	Maksim	Panjang (AL)	an (ɛ)
	en	(mm		(σ□)	(L O)	(Lf) (mm)	al (KN)		(%)
)		(N/mm ²)	(mm)				
1	Baja	10	10	412,58	150	162	10	11	8
	SS-								
	~~								
	400								

No	Kode	Leba	Tebal	Tegangan	Panjang	Panjang	Beban	Pertambahan	Regang
	spesim	r	(mm)	Tarik	Awal	Akhir	Maksim	Panjang (AL)	an (ɛ)
	en	(mm		(σ□)	(L o)	(Lf) (mm)	al (KN)		(%)
)		(N/mm ²)	(mm)				
1	Baja	10	10	405,72	150	160	10	12	6,666
	SS-								
	400								

Gambar 4. 5 Hasil uji Tarik dengan variasi waktu pengelasan 5 detik, untuk specimen *Baja SS-400* (C1).

VARIASI 7 DETIK

Gambar 4. 6 Hasil uji Tarik dengan variasi waktu pengelasan 7 detik, untuk spesimen Baja SS-400 (A2).

No	Kode	Lebar	Tebal	Tegangan	Panjang	Panjang	Beban	Pertambahan	Regangan
	specimen	(mm)	(mm)	Tarik	Awal	Akhir	Maksimal	Panjang (ΔL)	(8)
				(σ□)	(L o)	(Lf)	(KN)		(%)
				(N/mm ²)	(mm)	(mm)			
2	Baja SS-	10	10	520,38	150	162	10	15	8
	400								

Gambar 4. 7 Hasil uji Tarik dengan variasi waktu pengelasan 7 detik, untuk spesimen Baja SS-400 (B2).

No	Kode	Lebar	Tebal	Tegangan	Panjang	Panjang	Beban	Pertambahan	Regangan
	specimen	(mm)	(mm)	Tarik	Awal	Akhir	Maksimal	Panjang (ΔL)	(8)
				(σ□)	(L O)	(Lf)	(KN)		(%)
				(N/mm ²)	(mm)	(mm)			
2	Baja SS-	10	10	510,58	150	161	10	13	7,333
	400								

Gambar 4. 8 Hasil uji Tarik dengan variasi waktu pengelasan 7 detik, untuk spesimen Baja SS-400 (C2).

No	Kode	Lebar	Tebal	Tegangan	Panjang	Panjang	Beban	Pertambahan	Regangan
	specimen	(mm)	(mm)	Tarik	Awal	Akhir	Maksimal	Panjang (AL)	(3)
				(σ□)	(L o)	(Lf)	(KN)		(%)
				(N/mm ²)	(mm)	(mm)			
2	Baja SS-	10	10	516,42	150	161	10	10	7,333
	400								

VARIASI 10 DETIK

Gambar 4. 9 Hasil uji Tarik dengan variasi waktu pengelasan 10 detik, untuk Spesimen Baja SS-400 (A3).

No	Kode	Lebar	Tebal	Tegangan	Panjang	Panjang	Beban	Pertambahan	Regangan
	spesimen	(mm)	(mm)	Tarik	Awal	Akhir	Maksimal	Panjang (∆L)	(8)
				(σ□)	(L o)	(Lf)	(KN)		(%)
				(N/mm ²)	(mm)	(mm)			
3	Baja SS-	10	10	528,22	150	161	10	11	7,333
	400								

Gambar 4. 10 Hasil uji Tarik dengan variasi waktu pengelasan 10 detik, untuk Spesimen Baja SS-400 (B3).

No	Kode	Lebar	Tebal	Tegangan	Panjang	Panjang	Beban	Pertambahan	Regangan
	spesimen	(mm)	(mm)	Tarik	Awal	Akhir	Maksimal	Panjang (ΔL)	(3)
				(σ□)	(L O)	(Lf)	(KN)		(%)
				(N/mm ²)	(mm)	(mm)			
3	Baja SS- 400	10	10	523,32	150	159	10	14	6

No	Kode	Lebar	Tebal	Tegangan	Panjang	Panjang	Beban	Pertambahan	Regangan
	spesimen	(mm)	(mm)	Tarik	Awal	Akhir	Maksimal	Panjang (∆L)	(3)
				(σ□)	(L o)	(Lf)	(KN)		(%)
				(N/mm²)	(mm)	(mm)			
3	Baja SS-	10	10	518,42	150	158	10	14	5,333
	400								

Gambar 4. 11 Hasil uji Tarik dengan variasi waktu pengelasan 10 detik, untuk Spesimen Baja SS-400 (C3).

Grafik 4. 1 Grafik nilai rata-rata untuk Baja SS-400 yang terbaik variasi waktu 10 detik.

4.4 Pembahasan Pengujian Tarik

variasi waktu kecepatan 10 detik specimen A lebih bagus dan efisien karena menghasilkan kekuatan tarik yang lebih tinggi,serta panas dari hasil pengelasan lebih maksimal sehingga hasil pengelasan dengan variasi waktu 10 detik lebih rapat dan lebih matang sehingga dapat di aplikasikan untuk kepentingan umum dikarenakan kekuatan yang di hasilkan lebih aman dibandingkan dengan variasi kecepatan pengelasan 5 detik dan 7 detik.

4.5 Hasil Pengujian Struktur Mikro

Pengamatan perubahan struktur mikro akibat pengelasan diamati dengan pengujian metalografi yang dilakukan pada daerah logam induk, batas antara logam induk dan HAZ, HAZ, daerah batas antara HAZ dan daerah las serta daerah las.Pengujian dilakukan dengan cara memotong sampel sesuai ukuran kemudian dilakukan pemolesan.Penggerindaan dilakukan dengan kertas amplas yang bertingkat kekasarannya sedangkan pemolesan dilakukan dengan pasta alumina. Sampel yang telah mengkilap dietsa dengan larutan etsa asam nital 3% untuk selanjutnya diamati struktur mikronya dengan mikroskop optic 100. Untuk lebih memperdalam gambaran perubahan struktur.Berikut hasil pengujian yang di peroleh :

5_BM_100x	7_BM_100x	10_BM_100x
Batas butir sangat jelas	Batas butir menjadsi sulit	Terlihat bercak hitam yang
terlihat,fasa didominasi	terlihat,fasa didominasi	menandakan keberadaan
oleh, austenit dan	oleh pearlite dan sedikit	ferrit pada struktur mikro
sedikit bainit.Pada hasil	cementite. Struktur perlit	tersebut. Pada gambar
mikroskop optic terlihat	terlihat semakin banyak dan	makin terlihat perlit yang
bahwa ferit adalah yang	jelas.Karena kadar karbonnya	bewarna hitam .Terdapat
berwarna putih dan	tinggi,(diasumsikan laju	juga fasa α 1 yang sempat
pearlite yang bewarna	pendinginan berlangsung	menginti dan tumbuh.
gelap Paduan baja	lambat).	
tersebut relatif lunak		
tetapi memiliki keuletan		
dan ketangguhan yang		
tinggi		

Tabel 4. 1 Data Struktur Mikro Daerah Base Metal.

5_HAZ_100x	7_HAZ_100x	10_HAZ_100x
Pada variasi waktu 5 detk	Pada variasi waktu 7	Pada variasi waktu 10
menunjukkan struktur	detik menunjukan bahwa	detik menghasilkan
mikro yang terbentuk	jumlah struktur accicular	struktur mikro yang
didominasi oleh Ferit	pearlite terlihat lebih	didominasi oleh
batas butir dan accicular	banyak.Hal ini	Widmanstanten Ferit
Ferrite, Terbentuknya	disebabkan oleh	dan memiliki kolumnar
struktur seperti ini di	meningkatnya masukan	yang lebih besar.
sebabkan oleh	panas yang sesuai untuk	
pendinginan yang	terbentuknya acicular	
relative cepat	pearlite.	

Tabel 4. 2 Data struktur mikro daerah HAZ

a. Daerah Base Meta

Spesimen Uji Literatur Pada baja dengan variasi waktu yang berbeda hasil mikroskop hampir sama walaupun terlihat ada perbedaan dengan setting kontras antara mikroskop dengan literatur. Struktur perlit terlihat semakin banyak dan jelas. Karena kadar karbonnya tinggi,(diasumsikan laju pendinginan berlangsung lambat).

b. Kesimpulan daerah HAZ

Secara umum masukan panas mempengaruhi nilai ketangguhan dan struktur mikro daerah las dan HAZ bahan baja *SS 400*.Pada masukan panas variasi waktu 10 detik memiliki Nilai ketangguhan optimal dibandingkan dengan variasi waktu 5 dan 7 detik.Untuk daerah HAZ kenaikan masukan panas menyebabkan meningkatnya prosentase Widmanstanten Ferit.