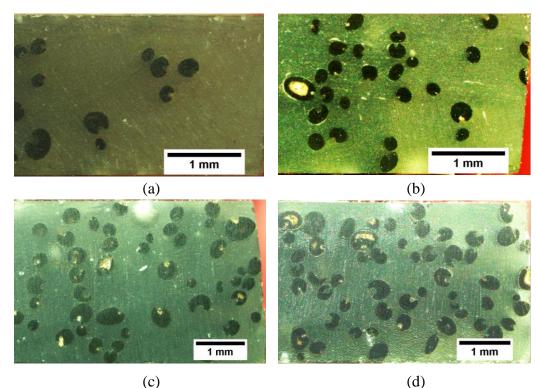

BAB IV HASIL DAN PEMBAHASAN


Penelitian ini bertujuan untuk mengetahui pengaruh variasi fraksi volume serat terhadap kuat tekan dan tarik material komposit *unidirectional* serat ijuk aren/epoksi.

4.1. Fraksi Volume Serat Aktual (V_f)

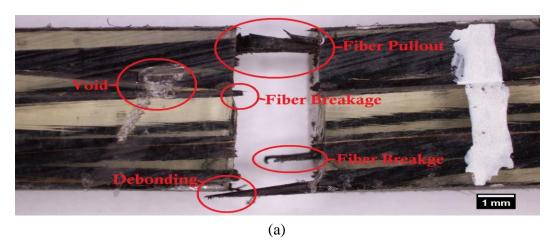
Fraksi volume serat aktual dapat dicari dengan menggunakan foto makro dari penampang permukaan spesimen. Foto makro penampang spesimen (Gambar 4.1 dan Gambar 4.2) dianalisis menggunakan *software imageJ* untuk mengetahui fraksi luasan serat terhadap luasan total spesimen. Setiap variasi diambil dua spesimen untuk dianalisis fraksi volume aktualnya. Hasil analisis ditampilkan dalam bentuk tabel seperti yang diperlihatkan pada Tabel 4.1 untuk spesimen tarik dan Tabel 4.2 untuk spesimen tekan.

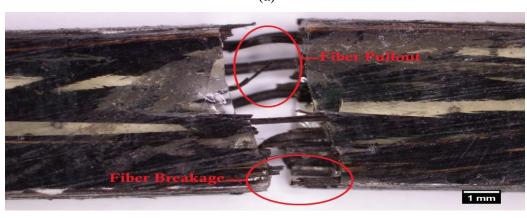
Gambar 4.1. Foto makro spesimen tekan; (a) V_f 10%, (b) V_f 20%, (c) V_f 30%, dan (d) V_f 40%

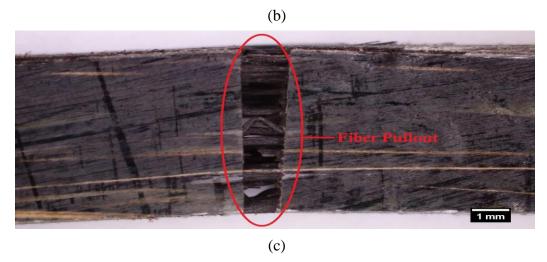
(c) (d) **Gambar 4.2.** Foto makro spesimen tarik; (a) V_f 10%, (b) V_f 20%, (c) V_f 30%, dan (d) V_f 40%

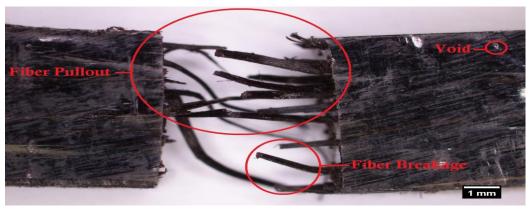
Tabel 4.1. Fraksi volume aktual spesimen tarik

Fraksi Volume (%)	Spesimen	Fraksi Volume Aktual (%)	Rata-rata (%)	
10	1	8,87	9,30	
10	2	9,72	9,30	
20	1	15,59	16.50	
20	2	17,42	16,50	
20	1	25,99	24.70	
30	2	23,42	24,70	
40	1	30,15	20.01	
	2	27,87	29,01	

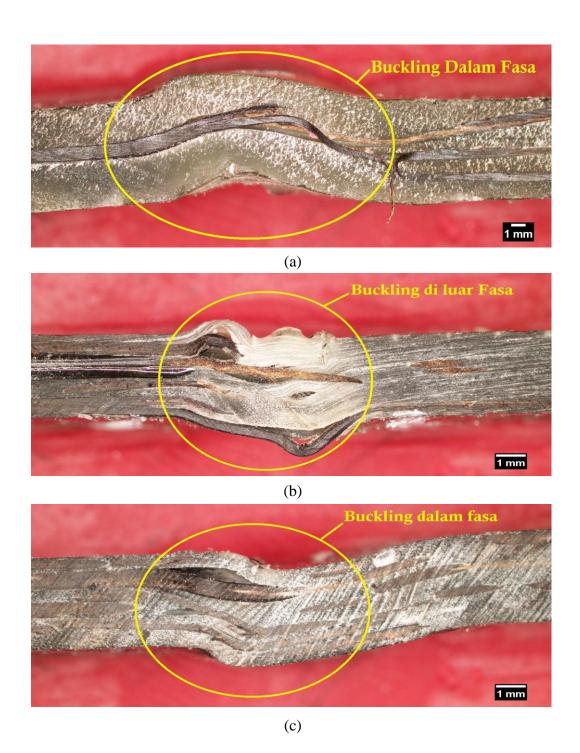

Tabel 4.2. Fraksi volume aktual spesimen tekan

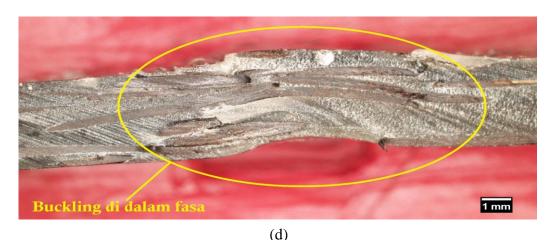

1 abel 4.2. I laksi volume aktual spesimen tekan						
Fraksi Volume (%)	Spesimen	Fraksi Volume Aktual (%)	Rata-rata (%)			
10	1	5,86	7.61			
10	2	9,42	7,64			
20	1	14,71	1675			
20	2	18,79	16,75			
30	1	27,62	25,73			
30	2	23,84	25,75			
40	1	31,87	21.07			
	2	30,26	31,07			


Tabel 4.1 dan 4.2 menunjukkan V_f aktual untuk spesimen tarik dan tekan. V_f aktual tarik yaitu 9,3%; 16,5%; 24,7%; dan 29,01% sedangkan untuk tekan 7,64%; 16,75%; 25,73%; dan 31,07% dari fraksi V_f rencana 10%, 20%, 30 %, dan 40%. V_f aktual mengalami penurunan dari yang direncanakan baik pada spesimen tarik maupun tekan. V_f aktual rata-rata mengalami penurunan kurang lebih sekitar 5% kecuali pada V_f 40%. V_f aktual 40% mengalami penurunan 10% baik pada spesimen tarik maupun tekan dari yang direncanakan. Penurunan V_f aktual ini disebabkan karena pada umumnya serat alam memiliki diameter serat yang berbeda antara bagian ujung, tengah maupun pangkalnya sehingga nilai V_f pada tiap bagiannya berbeda-beda. Penyebab lainnya adalah distribusi penyusunan serat yang tidak merata pada saat pembuatan, karena penyusunannya dilakukan secara manual dimana serat ijuk aren cenderung tidak bisa lurus saat disusun. Sehingga seratnya cenderung tidak bisa homogen jika dipotong pada bagian yang berbeda.


4.2. Analisa Patahan

4.2.1. Patahan spesimen tarik


(d)


Gambar 4.3. Patahan spesimen tarik (a) Vf 9,30%; (b) Vf 16,50%; (c) Vf 24,70%; dan (d) Vf 29,01%

Gambar 4.3 menunjukkan patahan yang berbeda dari tiap jenis variasi spesimen seperti pada spesimen 9,30% yang mengalami patah tunggal dan beberapa seratnya tercabut dari matriksnya, fenomena ini disebut *fiber pullout*. Fenomena *fiber pullout* juga terjadi pada spesimen 16,50%; 24,70%; dan 29,01%. *Fiber pullout* terjadi disebabkan oleh kurangnya rekatan *interface* antara serat dengan matriksnya sehingga distribusi tegangan sebagian besar terfokus pada matrik. Penyebab yang mempengaruhi kurangnya rekatan *interface* antara serat dengan metriknya diantaranya adalah adanya sisa *fat* bawaan dari serat dan kotoran atau *fat* pada serat akibat kontaminasi dengan ruangan berdebu dan sentuhan tangan yang berminyak saat proses pembuatan.

Selain fenommena *fiber pullout*, *fiber breakage* juga terjadi pada spesimen 9,30%; 24,70%; dan 29,01% di mana serat terputus ketika spesimen patah. Hal ini berkebalikan dari *fiber pullout*, *fiber breakage* menunjukkan bahwa rekatan *interface* serat dengan matriknya cukup kuat sehingga mampu menahan serat agar tidak tercabut dari matriknya sampai serat terputus.

4.2.2. Patahan spesimen tekan

Gambar 4.4. Patahan spesimen tekan (a) *Vf* 7,64%; (b) *Vf* 17,65%; (c) *Vf* 25,73%; dan (d) *Vf* 31,07%

Gambar 4.4 menunjukkan *rosen* yang berbeda pada spesimen dari spesimen pengujjian tekan. Spesimen a, c, dan d mengalami tekuk dalam fasa di mana serat pada spesimen tertekuk pada arah yang sama. Hal ini disebabkan tegangan tekan serat berbanding lurus (proporsional) dengan tegangan geser matriknya. Sedangkan spesimen b mengalami tekuk di luar fasa di mana serat pada spesimen tertekuk pada arah yang berbeda-beda. Hal ini disebabkan oleh perbedaan tegangan tekan serat dan tegangan geser matriknya

4.2. Hasil Pengujian Tarik

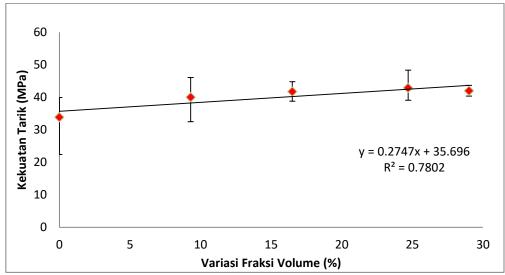
4.2.1. Kekuatan tarik

Tabel 4.3 menunjukkan data hasil pembebanan maksimal dari spesimen uji tarik yang telah diseleksi berdasarkan standar deviasi. Untuk rincian semua data spesimen tarik ada di Lampiran 1. Selanjutnya dengan menggunakan pers. 2.7 maka kekuatan tarik untuk masing-masing variasi V_f dapat diketahui.

Contoh perhitungan kekuatan tarik Vf 0 % untuk spesimen satu yaitu:

$$\sigma = \frac{928.63 \ N}{23.94 \ mm^2} = 38.70 \ MPa$$

Adapun rincian semua perhitungan kekuatan tarik untuk semua variasi V_f dan spesimen ada di Lampiran 1.


Tabel 4.3. Pembebanan maksimal spesimen tarik

No\Variasi	0%	9,30%	16,50%	24,70%	29,01%
1	928,63 N	1063,4 N	986,6 N	1256,6 N	1064,9 N
2	787,49 N	793,99 N	1004,9 N	1302,6 N	1105,3 N
3	830,22 N	844,09 N	886,84 N	1433,4 N	1157,1 N
4	579,84 N				
5	430,58 N				
Rata-rata	711,35 N	900,49 N	959.44 N	1330.86 N	1109,03 N

Tabel 4.4 menunjukkan nilai kekuatan tarik untuk variasi V_f yang berbeda. Dari Tabel 4.4 selanjutnya dibuat grafik hubungan antara fraksi volume serat dengan kekuatan tarik, seperti yang ditunjukkan pada Gambar 4.4.

Tabel 4.4. Hasil perhitungan kekuatan tarik

Sps\Vf	0%	9,30%	16,50%	24,70%	29,01%
1	38,790 MPa	46,085 MPa	44,775 MPa	39,077 MPa	41,904 MPa
2	39,919 MPa	35,704 MPa	41,533 MPa	41,136 MPa	40,335 MPa
3	39,927 MPa	45,618 MPa	38,791 MPa	48,357 MPa	43,637 MPa
4	28,159 MPa	32,460 MPa			
5	22,403 MPa				
Rata-rata	33,839 MPa	39,967 MPa	41,700 MPa	42,856 MPa	41,959 MPa
SD	8,087	6,926	2,995	4,874	1,652
Max	39,927 MPa	46,085 MPa	44,775 MPa	48,357 MPa	43,637 MPa
Min	22,403 MPa	32,460 MPa	38,791 MPa	39,077 MPa	40,335 MPa

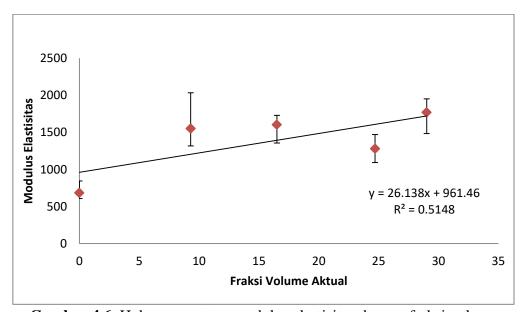
Gambar 4.5. Hubungan antara fraksi volume dengan kekuatan tarik.

Gambar 4.5 di atas menunjukkan peningkatan kekuatan tarik seiring bertambahnya V_f . Hal ini karena perbedaan kekuatan antara material tanpa penguat serat dengan material berpenguat serat. Di mana material berpenguat serat mampu menahan beban tarik lebih besar karena kuat tarik serat lebih besar dibandingkan dengan kekuatan tarik matrik. Karena serat memiliki nilai kuat tarik lebih besar dibanding dengan kuat tarik matrik. Sehingga seiring bertambahnya V_f serat mengalami peningakatan kuat tarik pada kompositnya.

4.2.2. Modulus elastisitas tarik

Untuk mendapatkan nilai modulus elastisitas tarik diperlukan dua variabel yaitu nilai perubahan tegangan ($\Delta \sigma$) dan perubahan regangan ($\Delta \varepsilon$) dari spesimen tarik. Selanjutnya dengan menggunakan pers. 2.9 dapat diketahui nilai modulus elastisitas (E) tarik. Tabel 4.5 menunjukkan nilai modulus elastisitas tarik.

Contoh perhitungan modulus elastisitas tarik Vf 0 % untuk spesimen satu yaitu:


$$E = \frac{8.354219 \ MPa}{0.011905} = 701.7544 \ MPa$$

Adapun rincian perhitungan semua modulus elastisitas tarik untuk semua variasi *Vf* dan spesimen ada di Lampiran 1.

Tabel 4.5 menunjukkan nilai modulus elastisitas tarik untuk variasi V_f yang berbeda. Dari Tabel 4.5 selanjutnya dibuat grafik hubungan antara fraksi volume serat dengan modulus elastisitas tarik, seperti yang ditunjukkan pada Gambar 4.6.

Tabel 4.5 Modulus elastisitas tarik

Sps\Vf	0%	9,30%	16,50%	24,70%	29,01%
1	701,75 MPa	1509,43 MPa	1728,96 MPa	1092,78 MPa	1951,76 MPa
2	844,84 MPa	1317,89 MPa	1722,01 MPa	1273,69 MPa	1870,47 MPa
3	605,96 MPa	2033,64 MPa	1355,96 MPa	1469,91 MPa	1483,91 MPa
4	611,89 MPa	1345,69 MPa			
5	655,57 MPa				
Rata-rata	684,00 MPa	1551,66 MPa	1602,31 MPa	1278,79 MPa	1768,71 MPa
SD	97,831	332,245	213,370	188,6165	249,97
Max	844,84 MPa	2033,64 MPa	1728,96 MPa	1469,91 MPa	1951,76 MPa
Min	605,96 MPa	1317,89 MPa	1355,96 MPa	1092,78 MPa	1483,91 MPa

Gambar 4.6. Hubungan antara modulus elastisitas dengan fraksi volume

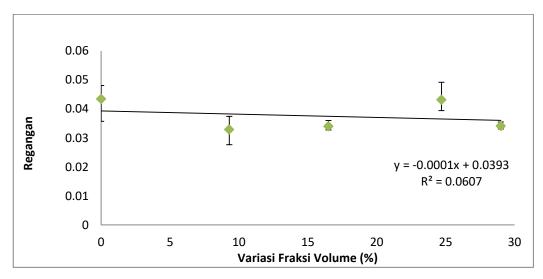
Gambar 4.6 di atas menunjukkan peningkatan modulus elastisitas seiring bertambahnya *Vf*. Hal ini disebabkan modulus elastisitas tarik serat lebih besar dibandingkan dengan modulus elastisitas tarik matrik sehingga seiring dengan bertambahnya variasi *Vf* akan meningkatkan modulus elastisitas tariknya. Nilai

modulus elastisitas mengalami penurunan pada *Vf* 24,7%. Hal ini disebabkan oleh kurangnya kuat ikatan serat dengan matriks. Hal ini bisa dilihat dari patahan spesimennya seperti pada Gambar 4.3 (c) di mana hampir semua serat tercabut ketika dilakukan pengujian tarik. Penyebab kurangnya rekatan *interface* serat dengan matriks diantaranya adalah adanya kotoran atau minyak pada serat akibat kontaminasi dengan ruangan berdebu dan sentuhan tangan yang berminyak saat proses pembuatan.

4.2.3. Regangan tarik

Nilai regangan tarik (ϵ) dapat diperoleh dari dua variabel yaitu panjang awal (L_0) dan perubahan panjang (ΔL). Kedua variabel tersebut dimasukan dalam pers.

2.8 kemudian diperoleh hasil seperti pada Tabel 4.6


Contoh perhitungan regangan tarik Vf 0 % untuk spesimen satu yaitu:

$$\varepsilon = \frac{5 \text{ mm}}{126 \text{ mm}} = 0.03968$$

Tabel 4.6. Regangan Tarik

Sps\Vf	0%	9,30%	16,50%	24,70%	29,01%
1	0,0481	0,0374	0,0360	0,0394	0,0331
2	0,0418	0,0307	0,0333	0,0408	0,0338
3	0,0440	0,0358	0,0327	0,0492	0,0355
4	0,0475	0,0276			
5	0,0357				
Rata-rata	0,0434	0,0329	0,0340	0,0431	0,0341
SD	0,0050	0,0045	0,0017	0,0052	0,0012
Max	0,0481	0,0374	0,0360	0,0492	0,0355
Min	0,0357	0,0276	0,0327	0,0394	0,0331

Dari Tabel 4.6 selanjutnya dibuat grafik hubungan antara fraksi volume serat dengan regangan tarik, seperti yang ditunjukkan pada Gambar 4.7.

Gambar 4.7 Hubungan antara regangan tarik dengan variasi fraksi volume.

Gambar 4.7 di atas menunjukkan secara umum regangan tarik mengalami penurunan seiringnya bertambahnya *Vf*. Hal ini disebabkan kuat rekatan *interface* serat dengan matriknya meningkat seiring bertambahnya *Vf*. Dengan meningkatnya *Vf*, *deformasi* yang terjadi semakin kecil di mana *deformasi* (ΔL) berbanding lurus dengan regangan (ε). Selain itu, keberadaan *void* juga mempengaruhi kuat rekatan *interface* serat dengan matriknya. Semakin banyak *void* akan melemahkan rekatan *interface* serat dengan matriknya sehingga *deformasi* semakin besar begitu juga dengan regangannya.

4.3. Hasil Pengujian Tekan

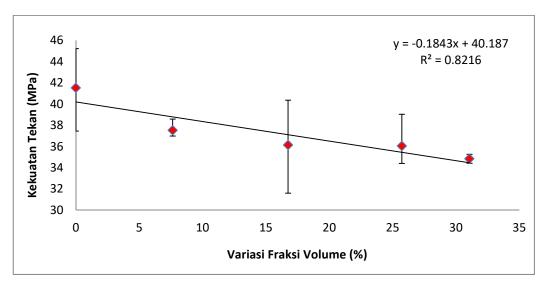
4.3.1. Kekuatan tekan

Tabel 4.7 menunjukkan hasil pembebanan maksimal dari spesimen uji tekan dengan luasan penampang yang bervariasi. Selanjutnya dengan menggunakan pers. 2.7 maka tegangan tekan untuk masing-masing variasi *Vf* dapat diketahui.

Contoh perhitungan tegangan tekan Vf 0 % untuk spesimen satu yaitu:

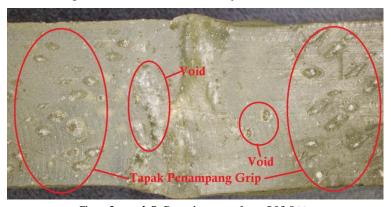
$$\sigma = \frac{2165.945 \ N}{47.912 \ mm^2} = 45.20 \ MPa$$

Adapun rincian semua perhitungan tegangan tekan untuk semua variasi Vf dan spesimen ada di Lampiran 2.


Tabel 4.7. Pembebanan maksimal spesimen tekan

No\Variasi	0%	7,64%	16,75%	25,73%	31,07%
1	2165,9 N	1391,9 N	1219,1 N	1616,7 N	1783,1 N
2	1877,5 N	1829,4 N	1600,8 N	1469,0 N	1415,1 N
3	1433,7 N	1469,7 N	1183,2 N	1447,2 N	1323,3 N
4					1763,8 N
Rata-rata	1825,7 N	1563,7 N	1334,3 N	1511,0 N	1507,2 N

Tabel 4.8. Kekuatan tekan.


Sps\Vf	0%	7,64%	16,75%	25,73%	31,07%
1	45,21 MPa	36,97 MPa	36,40 MPa	34,65 MPa	35,81 MPa
2	41,86 MPa	38,57 MPa	40,35 MPa	39,03 MPa	34,41 MPa
3	37,44 MPa	36,98 MPa	31,59 MPa	34,39 MPa	34,81 MPa
4					35,25 MPa
Rata-rata	41,501 MPa	37,507 MPa	36,116 MPa	36,025 MPa	34,824 MPa
SD	3,897	0,919	4,383	2,606	0,724
Min	37,438 MPa	36,971 MPa	31,595 MPa	34,393 MPa	34,411 MPa
Max	45,207 MPa	38,569 MPa	40,347 MPa	39,031 MPa	35,255 MPa

Tabel 4.8 menunjukkan nilai kekuatan tekan untuk variasi Vf yang berbeda. Dari Tabel 4.8 selanjutnya dibuat grafik hubungan antara fraksi volume serat dengan kekuatan tekan, seperti yang ditunjukkan pada Gambar 4.8.

Gambar 4.8. Hubungan antara fraksi volume dengan kekuatan tekan.

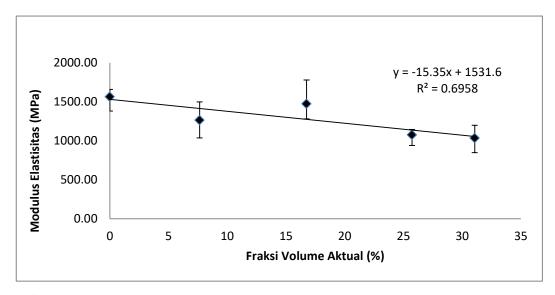
Gambar 4.8 menunjukkan bahwa nilai tegangan tekan pada *Vf* 0% lebih kecil dibandingkan nilai tegangan tekan epoksi pada Tabel 3.1. Hal ini disebabkan adanya *void* pada area patahan seperti yang terlihat pada Gambar 4.9, sehingga menurunkan tegangan tekannya. Selain itu, grafik kuat tekan komposit serat *unidirectional* ijuk/epoksi menurun seiring bertambahnya V_f. Hal ini karena kuat tekan serat lebih kecil dibandingkan dengan kuat tekan matrik. Sehingga seiring dengan bertambahnya variasi Vf akan menurunkan kekuatan tekannya. Karena fraksi serat yang terkandung dalam komposit tidak akan mampu menahan beban lebih besar dari yang diberikan dibanding yang ditahan matriknya. Sehingga dengan semakin banyak fraksi serat yang terkandung pada komposit tidak berperan dalam meningkatkan kekuatan tekannya.

Gambar 4.9 Spesimen tekan Vf 0%

4.3.2. Modulus elastisitas tekan

Untuk mendapatkan nilai modulus elastisitas tekan diperlukan dua variabel yaitu perubahan tegangan ($\Delta \sigma$) dan perubahan regangan ($\Delta \varepsilon$) dari spesimen tekan. Selanjutnya dengan menggunakan pers. 2.9 dapat di ketahui nilai modulus elastisitas (E) tekan. Tabel 4.9 menunjukkan nilai modulus elastisitas tekan.

Contoh perhitungan modulus elastisitas tekan Vf 0 % untuk spesimen satu yaitu:


$$E = \frac{6.261479 \ MPa}{0.003774} = 1659.292 \ MPa$$

Adapun rincian semua modulus elastisitas tekan untuk semua variasi *Vf* dan spesimen ada di Lampiran 2.

0 % 7,64 % 16,75 % 25,73 % Sps\Vf 31,07 % 1 1659,3 MPa 1258,0 MPa 1779,7 MPa 1145,7 MPa 849,3 MPa 2 1649,7 MPa 1499,6 MPa 1356,4 MPa 941,3 MPa 1051,5 MPa 3 1381,8 MPa 1401,5 MPa 1281,7 MPa 1140,7 MPa 1040,1 MPa 4 1199,2 MPa Rata-rata 1563,6 MPa 1386,4 MPa 1472,6 MPa 1075,9 MPa 1097,0 MPa SD 157,50 231,56 268,58 116,58 MPa 143,48 Min 1381,84 MPa 1281,71 MPa 849,29 MPa 1036,62 MPa 941,31 1499,60 MPa 1779,74 MPa 1145,68 MPa Max 1659,29 MPa 1199,23 MPa

Tabel 4.9 Modulus elastisitas tekan

Dari Tabel 4.9 selanjutnya dibuat grafik hubungan antara fraksi volume serat dengan modulus elastisitas tekan, seperti yang ditunjukkan pada Gambar 4.9.

Gambar 4.9. Hubungan antara modulus elastisitas tekan dengan fraksi volume

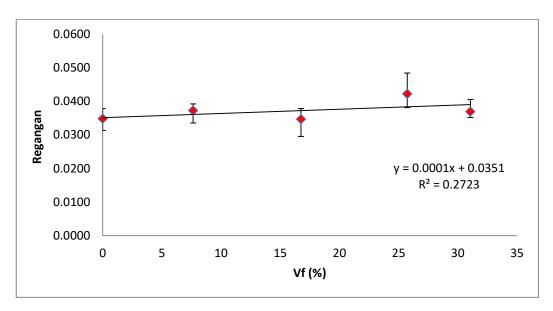
Gambar 4.9 menunjukkan bahwa nilai modulus elastisitas tekan pada umumnya menurun seiring bertambahnya V_f . Hal ini karena modulus elastisitas tekan serat lebih kecil dibandingkan dengan modulus elastisitas tekan matrik. Sehingga seiring dengan bertambahnya variasi V_f akan menurunkan modulus elastisitas tekannya. Karena fraksi serat yang terkandung dalam komposit tidak akan mampu menahan beban lebih besar dari yang diberikan dibanding yang

ditahan matriknya dan membuatnya semakin elastis. Sehingga dengan semakin banyak fraksi serat yang terkandung pada komposit tidak berperan dalam membuatnya semakin kaku akan tetapi yang terjadi sebaliknya yaitu menurunkan modulus elastisitas tekannya.

4.3.3. Regangan tekan

Nilai regangan tekan dapat diperoleh dari dua variabel yaitu panjang awal (L0) dan perubahan panjang (Δ L). Kedua variabel tersebut dimasukan dalam pers 2.8 kemudian diperoleh hasil seperti pada Tabel 4.10

Contoh perhitungan regangan tarik V_f 0 % untuk spesimen satu yaitu:


$$\varepsilon = \frac{5.6 \text{ mm}}{159 \text{ mm}} = 0.03522$$

Adapun rincian semua regangan tekan untuk semua variasi V_f dan spesimen ada di Lampiran 2.

 $Sps \backslash Vf$ 0 % 25,73 % 7,64 % 16,75 % 31,07 % 1 0,0352 0,0392 0,0295 0,0381 0,0405 2 0,0378 0,0389 0,0378 0,0484 0,0351 3 0,0313 0,0336 0,0367 0,0400 0,0353 0,0367 0,0348 0,0372 0,0422 0,0369 Rata-rata 0,0347 0,0033 0,0045 0,0055 SD 0,0032 0,0025 Min 0,0313 0,0336 0,0295 0,0381 0,0351 Max 0,0378 0,0392 0,0378 0,0484 0,0405

Tabel 4.10. Regangan Tekan

Dari Tabel 4.10 selanjutnya dibuat grafik hubungan antara fraksi volume serat dengan regangan tekan, seperti yang ditunjukkan pada Gambar 4.10.

Gambar 4.10. Hubungan antara regangan dengan variasi fraksi volume.

Gambar 4.10 di atas menunjukkan secara umum regangan tekan mengalami kenaikan meskipun tidak terlalu signifikan. Hal ini disebabkan oleh kuat rekatan *interface* serat dengan matriksnya berbeda-beda pada setiap spesimen. Kuat rekatan *interface* menurun seiring bertambahnya V_f sehingga *deformasi* yang terjadi semakin besar. Di mana *deformasi* (Δ L) berbanding lurus dengan regangan (ϵ). Selain itu, keberadaan *void* juga mempengaruhi besar kecilnya regangan, karena dengan adanya *void*, kuat rekatan *interface* antar serat dengan matriksnya menjadi kurang sehingga memperbesar nilai regangannya.