BAB IV
HASIL DAN PEMBAHASAN

4.1. Uji Fungsi Alat

Uji fungsi pada suatu alat perlu dilakukan untuk mengetahui apakah alat yang dibuat dapat berfungsi sesuai yang telah direncanakan.

4.1.1. Persiapan Uji Fungsi Alat

Sebelum melakukan pengujian, terlebih dahulu dipersiapkan alat dan bahan yang akan digunakan dalam melakukan uji fungsi, alat dan bahan tersebut antara lain adalah:

a. Alat
 - *Power supply 12 Volt*

b. Bahan
 - Timbangan yang telah dimodifikasi
 - Rangkaian minimum sistem ATMega 328
 - Rangkaian *Display LCD*
 - Beban 10-100 Kg

4.1.2. Proses Uji Fungsi Alat

Dalam proses pengukuran waktu menggunakan tahap-tahap sebagai berikut :

1. Menekan tombol *on* untuk mengaktifkan alat.

2. Menetapkan angka timbangan sampai tampil angka 0 pada *display LCD* seperti pada gambar 4.1.
3. Meletakkan beban di atas timbangan satu per satu mulai dari beban 10 Kg dan melihat tampilan pada display timbangan.

4. Sebelum dipindahkan ke test point berikutnya mencatat terlebih dahulu hasil tampilan pada display LCD.

5. Melakukan proses pengambilan data sebanyak tiga kali.
4.1.3. Hasil Uji Fungsi Alat

Dari proses uji fungsi alat, untuk mengetahui besar simpangan, kesalahan relatif (%Error), dan standar deviasi maka dilakukan pengambilan data dari 3 kali percobaan. Tabel 4.1. adalah hasil dari uji fungsi alat yang telah dilakukan.

Tabel 4.1. Hasil Uji Fungsi Alat

<table>
<thead>
<tr>
<th>Berat (Kg)</th>
<th>Uji Fungsi I (Kg)</th>
<th>Uji Fungsi II (Kg)</th>
<th>Uji Fungsi III (Kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0,04</td>
<td>0,79</td>
<td>0,79</td>
</tr>
<tr>
<td>10</td>
<td>9,95</td>
<td>9,8</td>
<td>9,26</td>
</tr>
<tr>
<td>20</td>
<td>19,52</td>
<td>19,52</td>
<td>19,52</td>
</tr>
<tr>
<td>30</td>
<td>28,56</td>
<td>29,26</td>
<td>29,42</td>
</tr>
<tr>
<td>40</td>
<td>39,35</td>
<td>39,17</td>
<td>39,17</td>
</tr>
<tr>
<td>50</td>
<td>50,65</td>
<td>49,44</td>
<td>49,22</td>
</tr>
<tr>
<td>60</td>
<td>59,87</td>
<td>59,52</td>
<td>59,50</td>
</tr>
<tr>
<td>70</td>
<td>69,45</td>
<td>70,26</td>
<td>69,45</td>
</tr>
<tr>
<td>80</td>
<td>79,78</td>
<td>78,98</td>
<td>79,68</td>
</tr>
<tr>
<td>90</td>
<td>90,44</td>
<td>89,86</td>
<td>90,44</td>
</tr>
<tr>
<td>100</td>
<td>100,49</td>
<td>98,86</td>
<td>101,02</td>
</tr>
</tbody>
</table>

[Bar Chart]

Grafik 4.1. Hasil Uji Fungsi Alat
Tabel 4.1. dan Grafik 4.1. adalah hasil uji fungsi yang dilakukan di pusat kalibrasi Universitas Ahmad Dahlan (UAD), yaitu dengan menggunakan anak timbangan dengan berat 0-100 Kg.

4.2. Analisa Alat

Dari tabel uji fungsi yang telah dilakukan dapat dihitung rata-rata, simpangan, kesalahan relatif (% Error), dan standar deviasi.

- Menghitung rata-rata

\[
\text{Rata - Rata (} \bar{X} \text{)} = \frac{\sum X_i}{n}
\]

Keterangan:

\(\bar{X} \) : Rata-rata

\(\sum X_i \) : Jumlah hasil pengukuran

\(n \) : Banyaknya pengukuran yang dilakukan

✓ Rata - Rata uji fungsi (\(\bar{X} \)) 0 Kg = \(\frac{\sum X_i}{n} \)

\[
\frac{0,4 + 0,79 + 0,79}{3} = \frac{2,96}{3} = 0,99 \text{ Kg}
\]

✓ Rata - Rata uji fungsi (\(\bar{X} \)) 10 Kg = \(\frac{\sum X_i}{n} \)

\[
\frac{9,95 + 9,8 + 9,26}{3} = \frac{28,01}{3} = 9,67 \text{ Kg}
\]

✓ Rata - Rata uji fungsi (\(\bar{X} \)) 20 Kg = \(\frac{\sum X_i}{n} \)

\[
\frac{19,52 + 19,52 + 19,52}{3} = \frac{58,56}{3} = 19,52 \text{ Kg}
\]
Rata - Rata uji fungsi \(\bar{X} \) 30 Kg = \(\frac{\sum X_i}{n} \)

\[
\frac{28,56 + 29,26 + 29,42}{3} = \frac{87,24}{3} = 29,08 \text{ Kg}
\]

Rata - Rata uji fungsi \(\bar{X} \) 40 Kg = \(\frac{\sum X_i}{n} \)

\[
\frac{39,35 + 39,17 + 39,17}{3} = \frac{117,69}{3} = 39,23 \text{ Kg}
\]

Rata - Rata uji fungsi \(\bar{X} \) 50 Kg = \(\frac{\sum X_i}{n} \)

\[
\frac{50,56 + 49,44 + 4922}{3} = \frac{149,31}{3} = 49,77 \text{ Kg}
\]

Rata - Rata uji fungsi \(\bar{X} \) 60 Kg = \(\frac{\sum X_i}{n} \)

\[
\frac{59,87 + 59,52 + 59,5}{3} = \frac{178,89}{3} = 59,63 \text{ Kg}
\]

Rata - Rata uji fungsi \(\bar{X} \) 70 Kg = \(\frac{\sum X_i}{n} \)

\[
\frac{69,45 + 70,26 + 69,45}{3} = \frac{209,16}{3} = 69,72 \text{ Kg}
\]

Rata - Rata uji fungsi \(\bar{X} \) 80 Kg = \(\frac{\sum X_i}{n} \)

\[
\frac{79,78 + 78,98 + 79,68}{3} = \frac{238,44}{3} = 79,48 \text{ Kg}
\]

Rata - Rata uji fungsi \(\bar{X} \) 90 Kg = \(\frac{\sum X_i}{n} \)

\[
\frac{90,44 + 89,86 + 90,44}{3} = \frac{270,74}{3} = 90,25 \text{ Kg}
\]
✓ Rata – Rata uji fungsi (\(\bar{X} \)) 100 Kg = \(\frac{\sum X_i}{n} \)

\[
\frac{100,49 + 98,86 + 99,02}{3} = \frac{198,37}{3} = 99,46 \text{ Kg}
\]

- Menghitung simpangan

Simpangan = \(\bar{X} - X_n \)

\(\bar{X} \) : Rata-rata

\(X_n \) : Nilai yang diukur

✓ Simpangan 0 Kg = 0,54 – 0 = 0,54 Kg
✓ Simpangan 10 Kg = 9,67 – 10 = -0,33 Kg
✓ Simpangan 20 Kg = 19,52 – 20 = -0,48 Kg
✓ Simpangan 30 Kg = 29,08 – 30 = -0,92 Kg
✓ Simpangan 40 Kg = 39,23 – 40 = -0,77 Kg
✓ Simpangan 50 Kg = 49,77 – 50 = -0,23 Kg
✓ Simpangan 60 Kg = 59,63 – 60 = -0,37 Kg
✓ Simpangan 70 Kg = 69,72 – 70 = -0,28 Kg
✓ Simpangan 80 Kg = 79,48 – 80 = -0,52 Kg
✓ Simpangan 90 Kg = 90,29 – 90 = 0,29 Kg
✓ Simpangan 100 Kg = 99,46 – 100 = -0,54 Kg

Rata-rata penyimpangan = \(\frac{\text{Jumlah simpangan}}{11} \) = \(\frac{5,27}{11} = 0,48 \text{ Kg} \)
• Menghitung % Error

\[
\% \text{ Error} = \frac{X_n - \bar{X}}{X_n} \times 100\%
\]

\checkmark \quad \% \text{ Error} 0 \text{ Kg} = \frac{0 - 0.54}{0} \times 100\% = \frac{-0.46}{10} \times 100\% = 0

\checkmark \quad \% \text{ Error} 10 \text{ Kg} = \frac{10 - 9.67}{10} \times 100\% = \frac{0.33}{10} \times 100\% = 3.3\%

\checkmark \quad \% \text{ Error} 20 \text{ Kg} = \frac{20 - 19.52}{20} \times 100\% = \frac{0.48}{20} \times 100\% = 2.4\%

\checkmark \quad \% \text{ Error} 30 \text{ Kg} = \frac{30 - 29.08}{30} \times 100\% = \frac{0.9}{30} \times 100\% = 3.06\%

\checkmark \quad \% \text{ Error} 40 \text{ Kg} = \frac{40 - 39.23}{40} \times 100\% = \frac{0.77}{40} \times 100\% = 1.925\%

\checkmark \quad \% \text{ Error} 50 \text{ Kg} = \frac{50 - 49.77}{50} \times 100\% = \frac{0.23}{50} \times 100\% = 0.46\%

\checkmark \quad \% \text{ Error} 60 \text{ Kg} = \frac{60 - 59.63}{60} \times 100\% = \frac{0.37}{60} \times 100\% = 0.65\%

\checkmark \quad \% \text{ Error} 70 \text{ Kg} = \frac{70 - 69.72}{70} \times 100\% = \frac{0.28}{70} \times 100\% = 0.44\%

\checkmark \quad \% \text{ Error} 80 \text{ Kg} = \frac{80 - 79.48}{80} \times 100\% = \frac{0.52}{80} \times 100\% = 0.65\%

\checkmark \quad \% \text{ Error} 90 \text{ Kg} = \frac{90 - 90.25}{90} \times 100\% = \frac{0.25}{90} \times 100\% = 0.28\%
\[
\% Error = 100 \times \frac{100 - 100.12}{100} \times 100\% = \frac{0.12}{100} \times 100\% = 0.12\%
\]

- **Standar Deviasi**

Untuk menghitung nilai Standar Deviasi dapat dihitung dengan cara manual yaitu dengan rumus

\[
SD = \sqrt{\frac{(X1 - \bar{X})^2 + (X2 - \bar{X})^2 + \ldots + (Xn - \bar{X})^2}{n-1}}
\]

Namun untuk lebih memudahkan penghitungan, dapat dihitung dengan membuat tabel pada Microsoft Excel yaitu dengan menulis rumus =STDEV() untuk menghitung standar deviasi.

Dari perhitungan rata-rata, simpangan, %Error, dan standar deviasi dapat ditunjukkan oleh Tabel 4.2:

Tabel 4.2. Rata-Rata, Simpangan, % Error (Kesalahan Relatif), dan Standar Deviasi

<table>
<thead>
<tr>
<th>xn</th>
<th>Dalam satuan Kg</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 10 20 30 40 50 60 70 80 90 100</td>
</tr>
<tr>
<td>x1</td>
<td>0.04 9.55 19.52 28.56 37.53 50.65 69.87 99.10 99.78 90.44 100.49</td>
</tr>
<tr>
<td>x2</td>
<td>0.70 9.82 19.52 29.26 38.97 50.65 69.87 89.68 89.68</td>
</tr>
<tr>
<td>x3</td>
<td>0.78 9.22 19.52 29.26 38.97 50.65 69.87 79.68 79.68</td>
</tr>
<tr>
<td>rata-rata</td>
<td>0.54 9.67 19.52 29.08 39.23 49.77 59.68 69.72 79.46 90.24</td>
</tr>
<tr>
<td>simpangan</td>
<td>-0.46 0.33 0.48 0.92 0.77 0.23 0.37 0.28 0.52 0.25 0.53</td>
</tr>
<tr>
<td>kesalahan relatif</td>
<td>0 3.3 2.4 3.06 1.92 0.46 0.77 0.44 0.65 0.28 0.12</td>
</tr>
<tr>
<td>standar deviasi</td>
<td>0.43322702 0.36 0.457 0.104 0.77 0.208 0.466 0.436 0.334863156 0.898462</td>
</tr>
</tbody>
</table>

Dari tabel hasil uji fungsi alat diperoleh hasil yang berbeda. Hal ini disebabkan oleh beberapa faktor, yaitu:
1. Sifat dari potensiometer disini sangat sensitif, karena apabila terjadi perubahan tegangan meskipun kecil akan sangat berpengaruh terhadap hasil yang ditampilkan pada LCD.

3. Tempat untuk melaku penimbangan juga berpengaruh terhadap hasil yang diperoleh yaitu dari faktor kerataan, suhu, dan udara.

Adapun kesulitan yang diperoleh dari alat pengukur berat badan yang telah dimodifikasi ini adalah tampilan LCD tidak dapat menampilkan angka 0,00/mendekati (tidak lebih dari 1 Kg) pada kondisi tanpa beban. Hal ini dikarenakan selain adanya noise yang sering terjadi pada potensiometer, pemasangan potensiometer tidak pada posisi resistansi tertinggi sehingga output pada potensiometer tidak 0 Volt melainkan 0,7 Volt. Apabila setelah selesai melakukan penimbangan potensiometer tidak kembali ke posisi semula, untuk mengembalikan potensiometer pada posisi awal dengan cara memutar pengatur timbangan yang terletak di tepi depan timbangan.

4.3. Tampilan Hasil Pengukuran pada Smartphone Android

Untuk dapat menampilkan hasil pengukuran berat badan pada Smartphone Android menggunakan aplikasi Blue Term yang telah diinstal yaitu dengan proses sebagai berikut:

1. Menghubungkan alat dengan catu daya

2. Menekan tombol power On
4. Membuka aplikasi **Blue Term** pada **Smartphone Android** dan pastikan komunikasi **Bluetooth** telah diaktifkan. Seperti yang terlihat pada Gambar 4.3. di bawah ini.

Gambar 4.3. Icon dan Tampilan **Blue Term**

Klik icon aplikasi **Blue Term** yang dilingkari setelah terbuka tekan tombol **options** pada **smartphone** lalu klik **Connect device**, tunggu beberapa menit **Bluetooth smartphone** mencari **Bluetooth** yang terpasang di **LCD**, seperti pada gambar 4.4. dibawah ini:
Gambar 4.4. Proses Koneksi Blue Term Dengan Alat.

Setelah perangkat Bluetooth pada alat ditemukan klik nama perangkat tersebut yaitu HC-05 maka smartphone akan terhubung ke alat pengukur berat badan, sehingga hasil pengukuran berat badan akan ditampilkan pada Blue Term seperti pada Gambar 4.5.

Gambar 4.5. Tampilan Hasil Pemeriksaan pada Smartphone Android