BAB II

TINJAUAN PUSTAKA

2.1 Tinjauan Pustaka

Gambar 2.1 Desain Keseluruhan Sistem Traffic Light Dengan PLC
mewarnai dan huruf diubah menjadi warna merah Challenger San Francisco,

Sebanding sistem lampu lalu lights perarna mengubahkan lampu

Oho pada tahun 1949, masih menggunakan kabel-kabel STOP dan MOVE.

dengan kabel yang manual mengubahkan lampu hustik dipasang di Cleveland.

Hope memutari hak paket nomor 12951.66 untuk sistem lampu lalu lights
dan dengan memanfaatkan paket, kabel memanfaatkan lampu mengubah
mengubahkan lampu lalu lights listrik dengan manual mengubahkan lampu menerm
Pada tahun 1942, sederhana yang di sali lake GY, then

STOP (bebed) dan MOVE (mencakupkam)

lahi lihns jalan orang, mengubahkan kala-kala yang lidih dihantui

When mengubahkan paket untuk sesuatu yang dihantui perama sistem

pendengkahan lalu lihns pada tahun 1910, Korea Surte Chicago.

lihns sekta muncul jesa. Sefunshion orang dalam danan peadaic wunuk

Anmara Sefunshion peada after 1890-an dan kebuhuan wunuk Kontrol lalu

Penegat lihns wunuk kemudian bermotor dipendarikan di

Commons untuk mencakuplah alahm kereta kuda dan pegasus lampu

perempuan Ginny dan Jermuha lain di depan British House of

lahi perama, keberdaah pengaruh yang dapat diubah dipeada disi

Pada tahun 1865, di Inggris, insinyur JP Knight menggunakan lampu lihns

L-lamu lihns lihns diubahkan secolah abaya kemudian bermotor.

Seberapa Lampu Lalu Lights
California pada 1917 dengan Rancangan yang dapat dioperasikan secara manual atau otomatis.

Cahaya yang kuning ditambahkan pada tahun 1920 oleh William Potts, seorang polisi Detroit. Dia benar-benar menemukan beberapa sistem lampu lalu lintas, termasuk cara menggantung empat sistem, akan tetapi tidak dipatenkan.

waktu untuk mulai berjalan atau mulai berhenti. Lampu kuning juga memberi kesempatan untuk berhenti dan berjalan secara perlahan.

2.3 Alat Pemberi Isyarat Lalu Lintas (APILL)

2.3.1 Umum

APILL adalah perangkat elektronik yang menggunakan isyarat lampu yang dapat dilengkapi dengan isyarat bunyi untuk mengatur Lalu Lintas orang dan/atau Kendaraan di persimpangan atau pada ruas Jalan.

2.3.2 Spesifikasi Teknis APILL

- Menggunakan sistem modul sehingga mempermudah dalam perawatan, perbaikan dan pengembangan dengan menggunakan konektor yang memenuhi kualitas standar yang ada.
- Mempunyai kemampuan untuk mengatur lalu lintas minimal dengan dasar 8 kelompok sinyal untuk kendaraan dan 8 kelompok sinyal untuk pejalan kaki yang dapat dikembangkan sampai 32 kelompok sinyal atau lebih

2.4 Jenis-Jenis APILL

2.4.1 Berdasarkan Cakupan

- Lampu lalu lintas terpisah — pengoperasian lampu lalu lintas yang pemasangannya didasarkan pada suatu tempat persimpangan saja tanpa mempertimbangkan persimpangan lain.
- Lampu lalu lintas terkoordinasi — pengoperasian lampu lalu lintas yang pemasangannya mempertimbangkan beberapa persimpangan yang terdapat pada arah tertentu.
- Lampu lalu lintas jaringan — pengoperasian lampu lalu lintas yang pemasangannya mempertimbangkan beberapa persimpangan yang terdapat dalam suatu jaringan yang masih dalam satu kawasan.

2.4.2 Berdasarkan cara pengoperasian

- *Fixed time traffic signal* — lampu lalu lintas yang pengoperasiannya menggunakan waktu yang tepat dan tidak mengalami perubahan.
- *Actuated traffic signal* — lampu lalu lintas yang pengoperasiannya dengan pengaturan waktu tertentu dan mengalami perubahan dari waktu ke waktu sesuai dengan kedatangan kendaraan dari berbagai persimpangan.

2.5 Berdasarkan Pedoman Teknis Pengaturan Lalu Lintas

2.5.1 Prinsip Dasar

1. tujuan pemasangan APILL pada suatu persimpangan adalah untuk mengatur arus lalu lintas;
2. persimpangan dengan APILL merupakan peningkatan dari persimpangan biasa (tanpa APILL) dimana berlaku suatu aturan prioritas tertentu yaitu mendahulukan lalu lintas dari arah lain.
2.5.2 Kriteria Pemasangan APILL

Kriteria bagi persimpangan yang sudah harus menggunakan APILL adalah:

1. arus minimal lalu lintas yang menggunakan rata-rata diatas 750 kendaraan/jam selama 8 jam dalam sehari;
2. atau bila waktu menunggu/tundaan rata-rata kendaraan di persimpangan telah melampaui 30 detik;
3. atau persimpangan digunakan oleh rata-rata lebih dari 175 pejalan kaki/jam selama 8 jam dalam sehari;
4. atau sering terjadi kecelakaan pada persimpangan yang bersangkutan;
5. atau merupakan kombinasi dari sebab-sebab yang disebutkan di atas.

2.5.3 Jenis APILL

1. lampu tiga warna untuk mengatur kendaraan. Susunan lampu tiga warna adalah cahaya berwarna merah, kuning dan hijau;
2. lampu dua warna, untuk mengatur kendaraan dan / atau pejalan kaki. Susunan lampu dua warna adalah cahaya berwarna merah dan hijau;
3. lampu satu warna, untuk memberikan peringatan bahaya kepada pemakai jalan.

Lampu itu berwarna kuning atau merah.

2.5.4 Fungsi APILL

1. mengatur pemakaian ruang persimpangan;
2. meningkatkan keteraturan arus lalu lintas;
3. meningkatkan kapasitas dari persimpangan;
4. mengurangi kecelakaan dalam arah tegak lurus.

2.5.5 Lalu Lintas Belok Kiri

1. persimpangan, baik yang diatur dengan APILL atau tidak, pada prinsipnya mengijinkan lalu lintas belok kiri secara langsung;

2. bila lalu lintas belok kiri menimbulkan gangguan pada lalu lintas menerus, dapat dipasang lampu filter atau rambu perintah Belok Kiri Ikuti Isyarat Lampu.

2.6 Time Delay Relay (Timer)

Time delay relay sering disebut juga dengan timer atau relay penunda batas waktu, banyak digunakan dalam instalasi motor terutama instalasi yang membutuhkan penundaan waktu secara otomatis.

Fungsi dari Timer ini untuk memindahkan kerja dari rangkaian pengontrol dalam waktu tertentu yang bekerja secara otomatis, misalnya untuk rangkaian kontrol hubungan Y - Δ secara otomatis, hubungan kontrol secara berurutan dan lain - lain. Bagian input timer biasanya dinyatakan sebagai kumparan (coil) dan bagian outputnya sebagai NO (Normally Open) atau NC (Normally Close).

2.7 Cara Kerja Timer

Berikut ini merupakan contoh penggunaan atau *wiring diagram* timer OMRON, yang berfungsi untuk menyalakan lampu TL agar bisa terang hanya selama 1 menit 15 detik.
Gambar wiringnya sederhana saja, seperti yang terlihat di bawah ini

Gambar 2. 2 Rangkaian Sederhana Timer Untuk Menghidupkan Lampu

Alat dan bahan yang digunakan:

- T1 = Timer 8 pin
- S1 = Saklar AC
- L1 = Indikator lampu

- Saklar S1 dalam keadaan OFF (terbuka), maka tidak ada arus yang mengalir baik ke timer T1 maupun lampu L1
- Pada saat saklar S1 di ON kan, maka arus akan mengalir ke timer, ke kontak NC (Normally Close) timer lalu mengalirkannya ke lampu, disini lampu akan menyala
- Ketika waktu tunda timer tercapai (misalkan diset 1 menit 15 detik), maka relay timer akan aktif, kontak NC akan berubah terbuka dan memutuskan aliran arus ke lampu, sehingga lampu akan padam.
Gambar 2. 3 Pin Timer dengan 8 kaki

Pada umumnya timer memiliki 8 buah kaki yang 2 diantaranya merupakan kaki koil sebagai contoh pada gambar diatas adalah Timer dengan 8 kaki yaitu:

Pin 1 dan 8 adalah input, pin 4 dan 5 adalah NC (Normally Close), pin 3 dan 6 adalah NO (Normally Open).

Kontak NO dan NC pada Timer akan bekerja ketika timer diberi ketetapan waktunya, ketetapan waktu ini dapat kita tentukan pada potensiometer yang terdapat pada timer itu sendiri. Misalnya ketika kita telah menetapkan 10 detik, maka kontak NO dan NC akan bekerja 10 detik setelah kita menghubungkan timer dengan sumber arus listrik. Perhatikan gambar Timer di bawah ini.
Gambar 2.4 Timer kontak NO, NC, Koil, dan Input

2.8 Relay

Logam ferromagnetis adalah logam yang mudah terinduksi medan elektromagnetis. Ketika ada induksi magnet dari lilitan yang membelit logam, logam tersebut menjadi "magnet buatan" yang sifatnya sementara. Cara ini kerap digunakan untuk membuat magnet non permanen. Sifat kemagnetan pada logam ferromagnetis akan tetap ada selama pada kumparan yang melilitinya teraliri arus listrik. Sebaliknya, sifat kemagnetannya akan hilang jika suplai arus listrik ke lilitan diputuskan.
Gambar 2.5 Rangkaian Dasar Relay

Berikut ini penjelasan dari gambar di atas:

- Armature, merupakan tuas logam yang bisa naik turun. Tuas akan turun jika tertarik oleh magnet ferromagnetik (elektromagnetik) dan akan kembali naik jika sifat kemagnetan ferromagnetik sudah hilang.
- Spring, pegas (atau per) berfungsi sebagai penarik tuas. Ketika sifat kemagnetan ferromagnetik hilang, maka spring berfungsi untuk menarik tuas ke atas.
- Shading Coil, ini untuk pengaman arus AC dari listrik PLN yang tersambung dari C (Contact).
- akan terhubung dengan kontak sumber (kontak inti, C) ketika posisi ON.
- Electromagnet, kabel lilitan yang membelit logam ferromagnetik. Berfungsi sebagai magnet buatan yang sifatya sementara. Menjadi
logam magnet ketika lilitan dialiri arus listrik, dan menjadi logam biasa ketika arus listrik diputus.

- Kontak Poin (Contact Point)
 - *Normally Close* (NC) yaitu kondisi dimana awal sebelum diaktifkan akan selalu berada pada kondisi atau posisi *CLOSE* (tertutup)
 - *Normally Open* (NO) yaitu kondisi dimana sesudah diaktifkan akan selalu berada pada kondisi atau posisi *OPEN* (terbuka)

2.9 Keunggulan dan Kelemahan Sistem Timer dan Relay

Keunggulan sistem timer dan relay.

- Jika salah satu timer atau relay mengalami kerusakan pada sistem timer dan relay maka komponen alat tidak perlu diganti semuanya.
- Mudah mengatur waktu timer.
- Tidak perlu membuat program seperti pada rangkaian PLC atau mikrokontroler.

Kelemahan sistem timer dan relay.

- Jika listrik mati sistem timer dan relay akan kembali ke pengesetan awal.
- Memerlukan box panel dengan ukuran yang besar dibandingkan dengan menggunakan PLC.
- Tingkat waktu tidak sepresisi dengan waktu yang di set pada timer.
2.10 Miniature Circuit Breaker (MCB)

Beberapa manfaat (fungsi MCB) adalah sebagai berikut ini:

1. Pengaman hubung singkat
2. Mengamankan beban lebih
3. Sebagai sakelar utama

2.11 Kabel NYA

Biasanya digunakan untuk instalasi rumah dan sistem tenaga. Dalam instalasi rumah digunakan ukuran 1,5 mm2 dan 2,5 mm2. Berinti tunggal, berlapis bahan isolasi PVC, dan seringnya untuk instalasi kabel udara. Kode warna isolasi ada warna merah, kuning, biru dan hitam. Kabel
tipe ini umum dipergunakan di perumahan karena harganya yang relatif murah.

Gambar 2.6 Kabel NYA

Lapisan isolasinya hanya 1 lapis sehingga mudah cacat, tidak tahan air dan mudah digigit tikus. Agar aman memakai kabel tipe ini, kabel harus dipasang dalam pipa/conduit jenis PVC atau saluran tertutup. Sehingga tidak mudah menjadi sasaran gigitan tikus, dan apabila ada isolasi yang terkelupas tidak tersentuh langsung oleh orang.