ANALISIS KOORDINASI PROTEKSI RELE ARUS LEBIH PADA UNIT INT IPP PT PETROKIMIA GRESIK

SKRIPSI
Diajukan guna memenuhi persyaratan untuk memperoleh gelar Sarjana Teknik pada Program Studi S-1 Teknik Elektro Fakultas Teknik Universitas Muhammadiyah Yogyakarta

Disusun oleh:
SUBIAKTO AJI PRABOWO
20140120183

PROGRAM STUDI S-1 TEKNIK ELEKTRO
FAKULTAS TEKNIK
UNIVERSITAS MUHAMMADIYAH YOGYAKARTA
YOGYAKARTA
2018
HALAMAN PERNYATAAN

Yang bertanda tangan dihawah ini:

Nama : Subiajto Aji Prabowo
NIM : 20140120183
Program Studi : Teknik Elektro
Fakultas : Teknik
Universitas : Universitas Muhammadiyah Yogyakarta

Menyatakan dengan sesungguhnya bahwa naskah skripsi "Analisis Koordinasi Rele Arus Lebih pada Unit INT IPP PT Petrokimia Gresik" ini merupakan hasil karya tulis saya sendiri dan tidak terdapat karya yang pernah diajukan untuk memperoleh gelar sarjana di Perguruan Tinggi dan sepanjang pengetahuan penulis juga tidak terdapat karya atau pendapat yang pernah ditulis atau dipublikasikan orang lain, kecuali yang secara tertulis disebutkan sumbernya dalam naskah dan daftar pustaka dengan mengikuti tata cara dan etika penulisan karya tulis.

Yogyakarta, 1 Maret 2018

Penulis

Subiajto Aji Prabowo
KATA PENGANTAR

Terwujudnya skripsi ini tidak terlepas dari bantuan dan berbagai pihak. Penulis mengucapkan terimakasih kepada:
1. Allah SWT yang telah memberi karunia, kemudahan dan terkabulnya banyak doa.
2. Kedua orang tua saya yang selalu mendoakan dan mendukung segala aktivitas saya.
3. Bapak Dr. Ramadoni Syahputra, S.T., M.T. selaku Ketua Program Studi Teknik Elektro sekaligus dosen pembimbing I yang telah sabar membimbing dan membagi ilmunya selama penelitian skripsi ini.
7. Teman-teman seperjuangan SMA Tyas, Vina, Anna, Lia, Rizkika, Rully
8. Teman-teman sekontrakan Ali, Ilham, Faza, Bagas
11. Semua pihak yang mendukung secara langsung maupun tidak langsung.

Penulis menyadari bahwa dalam penulisan skripsi ini masih jauh dari sempurna, hal ini mengingat kemampuan dan pengalaman dalam penyusunan skripsi yang terbatas. Maka dari itu, kritik dan saran diperlukan untuk perbaikan kedepan. Semoga skripsi ini bermanfaat bagi pembaca.

Yogyakarta, Maret 2018
Penulis
DAFTAR ISI

LEMBAR PENGESEHAN I ..ii
LEMBAR PENGESEHAN II ..iii
HALAMAN PERNYATAAN ...iv
HALAMAN PERsembahan ...v
MOTTO ...vi
KATA PENGANTAR ..vii
DAFTAR ISI ...ix
DAFTAR GAMBAR ...xi
DAFTAR TABEL ..xiii
INTI SARI ..xiv
ABSTRACT ...xv

BAB I PENDAHULUAN .. 1
1.1 Latar Belakang Masalah .. 1
1.2 Rumusan Masalah .. 2
1.3 Batasan Masalah .. 2
1.4 Tujuan .. 3
1.5 Manfaat Penelitian .. 3
1.6 Sistematika Penulisan ... 3

BAB II TINJAUAN PUSTAKA DAN LANDASAN TEORI 5
2.1 Tinjauan Pustaka .. 5
2.2 Landasan Teori .. 6
2.2.1 Pengertian Proteksi Sistem Tenaga Listrik 6
2.2.2 Tujuan Sistem Proteksi Tenaga Listrik 7
2.2.3 Persyaratan Sistem Proteksi .. 7
2.2.4 Gangguan .. 9
2.2.5 Peralatan Proteksi ... 11
2.2.6 Proteksi Rele Arus Lebih .. 15
2.2.7 Pengaturan rele arus lebih .. 16

BAB III METODOLOGI PENELITIAN 26
3.1 Alat yang Dibutuhkan dalam Penelitian 26
3.2 Lokasi Penelitian Tugas Akhir .. 26
3.3 Data yang Dibutuhkan ... 26
3.4 Tahapan Penelitian .. 27
3.4.1 Diagram alir penelitian ... 27
3.4.2 Penjelasan Diagram Alir ... 28

BAB IV DATA DAN PEMBAHASAN .. 30
4.1 Data Yang Diperoleh ... 30
4.1.1 Data Kabel .. 30
4.1.2 Data Beban .. 31
4.1.3 Data Transformatör ... 31
4.1.4 Data Generator .. 31
4.1.5 Data Setting Rele ... 32
4.1.6 Single Line Diagram Unit INT IPP PT Petrokimia Gresik 33
4.2 Unjuk Kerja Koordinasi Rele Arus Lebih Sebelum Resetting 34
4.2.1 Gangguan Pada Beban LV1 Unit INT IPP PT Petrokimia Gresik 34
4.2.2 Gangguan pada Beban LV2 Unit INT IPP PT Petrokima Gresik 36
4.2.3 Gangguan pada Beban BFP HRSG Unit INT IPP PT Petrokima Gresik 38
4.2.4 Gangguan pada Beban BFP PB Unit INT IPP PT Petrokima Gresik 40
4.2.5 Gangguan pada Beban FD Fan Unit INT IPP PT Petrokima Gresik 42
4.2.6 Gangguan pada Beban GT CRANKING Unit INT IPP PT Petrokima 44
4.3 Perhitungan Manual Setting Rele Arus Lebih... 46
 4.3.1 Perhitungan Impedansi Peralatan .. 46
 4.3.2 Perhitungan Kuat Arus Nominal ... 52
 4.3.3 Perhitungan arus hubung singkat melewati rele 53
 4.3.4 Perhitungan Resetting Koordinasi Rele Arus Lebih................................. 60
4.4 Unjuk Kerja Koordinasi Rele Arus Lebih Setelah Resetting.......................... 71
 4.4.1 Gangguan pada Emmergency SWGR Unit INT IPP PT Petrokimia Gresik .. 71
 4.4.2 Gangguan pada LV1 SWGR Unit INT IPP Petrokimia Gresik 72
 4.4.3 Gangguan pada transformator LV1 Unit INT IPP Petrokimia Gresik 74
 4.4.4 Gangguan pada LV2 SWGR Unit INT IPP Petrokimia Gresik 75
 4.4.5 Gangguan pada transformator LV2 Unit INT IPP Petrokimia Gresik 77
 4.4.6 Gangguan pada Beban BFP HRSG Unit INT IPP Petrokimia Gresik 78
 4.4.7 Gangguan pada Beban BFP PB Unit INT IPP Petrokimia Gresik 80
 4.4.8 Gangguan pada Beban FD FAN Unit INT IPP Petrokimia Gresik 81
 4.4.9 Gangguan pada Beban GT CRANKING Unit INT IPP Petrokimia Gresik 83
 4.4.10 Gangguan pada busbar 6KV MVSWGR Unit INT IPP Petrokimia Gresik .. 84
 4.4.11 Gangguan pada Transformer AUT Unit INT IPP Petrokimia Gresik 86
4.5 Perbandingan Setting Lapangan dan Setelah Resetting Manual pada Unit INT IPP Petrokimia Gresik ... 87
 4.5.1 Rangkuman perbandingan nilai setting lapangan dengan resetting manual .. 87
 4.5.2 Kurva Perbandingan Tiap Parameter Rele Arus Lebih 89
BAB V KESIMPULAN DAN SARAN .. 93
 5.1 Kesimpulan .. 93
 5.2 Saran .. 94
DAFTAR PUSTAKA ... 95
LAMPIRAN ... 97
DAFTAR GAMBAR

Gambar 2.1 Konstruksi trafo arus ... 11
Gambar 2.2 Konstruksi trafo tegangan .. 12
Gambar 2.3 Kurva Definite Time ... 15
Gambar 2.4 Kurva Inverse Time ... 16
Gambar 2.5 Kurva Instantaneous Time ... 16
Gambar 2.6 Diagram Hubungan Impedansi .. 17
Gambar 2.7 Rangkaian Ekivalen 1 fasa ... 22
Gambar 3.1 Denah PT Petrokimia Gresik .. 26
Gambar 3.2 Diagram Alir Penelitian ... 27
Gambar 4.1 Single Line Diagram Sistem Unit INT IPP PT Petrokimia Gresik 33
Gambar 4.2 Kondisi ketidaknormalan pada beban LV1 Unit INT PT Petrokimia Gresik ... 34
Gambar 4.3 Kurva Koordinasi Rele pada Gangguan Beban LV1 Unit INT PT Petrokimia Gresik ... 35
Gambar 4.4 Kondisi ketidaknormalan pada beban LV2 Unit INT PT Petrokimia Gresik ... 36
Gambar 4.5 Kurva Koordinasi Rele pada Gangguan Beban LV2 Unit INT PT Petrokimia Gresik ... 37
Gambar 4.6 Kondisi ketidaknormalan pada beban motor BFP HRSG pada Unit INT PT Petrokimia Gresik ... 38
Gambar 4.7 Kurva Koordinasi Rele pada Gangguan Beban BFP HRSG Unit INT IPP PT Petrokimia Gresik ... 39
Gambar 4.8 Kondisi ketidaknormalan pada beban BFP PB Unit INT IPP PT Petrokimia Gresik ... 40
Gambar 4.9 Kurva Koordinasi Rele pada Gangguan Beban BFP PB Unit INT IPP PT Petrokimia Gresik ... 41
Gambar 4.10 Kondisi ketidaknormalan pada beban FD FAN Unit INT IPP PT Petrokimia Gresik ... 42
Gambar 4.11 Kurva Koordinasi Rele pada Gangguan Beban FD FAN Unit INT IPP PT Petrokimia Gresik ... 43
Gambar 4.12 Kondisi ketidaknormalan pada beban GT CRANKING Unit INT IPP PT Petrokimia Gresik ... 44
Gambar 4.13 Kurva Koordinasi Rele pada Gangguan Beban GT CRANKING Unit INT IPP PT Petrokimia Gresik ... 45
Gambar 4.14 Rangkaian Ekivalen 1 fasa tegangan rendah LV1 54
Gambar 4.15 Rangkaian Ekivalen 1 fasa tegangan rendah LV2 55
Gambar 4.17 Rangkaian Ekivalen 1 fasa MV2 .. 56
Gambar 4.18 Rangkaian Ekivalen 1 fasa MV3 .. 57
Gambar 4.19 Rangkaian Ekivalen 1 fasa MV4 .. 57
Gambar 4.20 Rangkaian Ekivalen 1 fasa primer transormator LV1 58
Gambar 4.22 Simulasi Koordinasi Proteksi Emmergency SWGR Unit INT IPP 71
Gambar 4.23 Kurva Koordinasi Proteksi LV1 SWGR Unit INT IPP PT Petrokimia Gresik Setelah Resetting ... 71
Gambar 4.24 Simulasi Koordinasi Proteksi LV1 SWGR Unit INT IPP PT Petrokimia Gresik Setelah Resetting ... 72
Gambar 4.25 Kurva Koordinasi Proteksi LV1 SWGR Unit INT IPP PT Petrokimia Gresik Setelah Resetting ... 73
Gambar 4.26 Simulasi Koordinasi Proteksi Transformator LV1 Unit INT IPP PT Petrokimia Gresik Setelah Resetting .. 74
Gambar 4.27 Kurva Koordinasi Proteksi Transformator LV1 Unit INT IPP PT Petrokimia Gresik Setelah Resetting .. 74
Gambar 4.28 Simulasi Koordinasi Proteksi LV2 SWGR Unit INT IPP PT Petrokimia Gresik Setelah Resetting .. 75
Gambar 4.29 Kurva Koordinasi Proteksi LV2 SWGR Unit INT IPP PT Petrokimia Gresik Setelah Resetting .. 76
Gambar 4.30 Simulasi Koordinasi Proteksi Transformator LV2 Unit INT IPP PT Petrokimia Gresik Setelah Resetting ... 77
Gambar 4.31 Kurva Koordinasi Proteksi Transformator LV2 Unit INT IPP PT Petrokimia Gresik Setelah Resetting ... 77
Gambar 4.32 Simulasi Koordinasi Proteksi Beban BFP HRSG Unit INT IPP PT Petrokimia Gresik Setelah Resetting .. 78
Gambar 4.33 Kurva Koordinasi Proteksi Beban BFP HRSG Unit INT IPP PT Petrokimia Gresik Setelah Resetting .. 79
Gambar 4.34 Simulasi Koordinasi Proteksi Beban BFP PB Unit INT IPP PT Petrokimia Gresik Setelah Resetting .. 80
Gambar 4.35 Kurva Koordinasi Proteksi Beban BFP PB Unit INT IPP PT Petrokimia Gresik Setelah Resetting .. 80
Gambar 4.36 Simulasi Koordinasi Proteksi Beban FD FAN Unit INT IPP PT Petrokimia Gresik Setelah Resetting .. 81
Gambar 4.37 Kurva Koordinasi Proteksi Beban FD FAN Unit INT IPP PT Petrokimia Gresik Setelah Resetting .. 82
Gambar 4.38 Simulasi Koordinasi Proteksi Beban GT CRANKING Unit INT IPP PT Petrokimia Gresik Setelah Resetting .. 83
Gambar 4.39 Kurva Koordinasi Proteksi Beban GT CRANKING Unit INT IPP PT Petrokimia Gresik Setelah Resetting .. 83
Gambar 4.40 Simulasi Koordinasi Proteksi Busbar 6KV MVSWGR Unit INT IPP PT Petrokimia Gresik Setelah Resetting ... 84
Gambar 4.41 Kurva Koordinasi Proteksi Busbar 6KV MVSWGR Unit INT IPP PT Petrokimia Gresik Setelah Resetting ... 85
Gambar 4.42 Simulasi Koordinasi Proteksi Transformator AUT Unit INT IPP PT Petrokimia Gresik Setelah Resetting ... 86
Gambar 4.43 Kurva Koordinasi Proteksi Transformator AUT Unit INT IPP PT Petrokimia Gresik Setelah Resetting ... 86
Gambar 4.44 Kurva Perbandingan Nilai Arus Pick UP ... 89
Gambar 4.45 Kurva Perbandingan Nilai Time Multiple Setting (TMS) 90
Gambar 4.46 Kurva Perbandingan Nilai Instantaneous ... 91
Gambar 4.47 Kurva Perbandingan Nilai Delay .. 92
DAFTAR TABEL

Tabel 2.1 Konstanta Karakteristik Rele Arus Lebih Standar ANSI/IEEE dan IEC 23
Tabel 4.1 Data Kabel .. 30
Tabel 4.2 Data Beban... 31
Tabel 4.3 Data Transformator .. 31
Tabel 4.4 Data Setting Rele ... 32
Tabel 4.5 Perbandingan Setting Lapangan dan Resetting Manual Rele Arus Lebih 87