BAB IV

APLIKASI CAESAR II 2016

4.1 Definisi Caesar

CAESAR merupakan sebuah program komputer ciptaan *Integraph Inc.* yang memiliki fungsi untuk menganalisis tegangan pada pipa atau sistem perpipaan. Cara kerja *software* ini yaitu dengan memodelkan sebuah sistem perpipaan sesuai data yang kita masukan dan caesar akan menampilkan *dosplacement*, tegangan, momen dan gaya, dll pada sistem perpipaan sesuai hasil perhitungan. Program *CAESAR* juga dapat membandingkan hasil perhitungan tegangan tersebut dengan kode ataupun standar yang digunakan dalam sistem perpipaan tersebut. Beberapa standar yang ada di aplikasi ini yaitu *ANSI/ASME*, *JIS*, dan *DIN*.

4.2 Permodelan Sistem Perpipaan

Berikut ini merupakan tahapan-tahapan dalam membuat model sistem perpipaan.

1. Pengaturan Satuan Unit

Untuk membuat model sistem perpipaan satuan unit perlu ditentukan terlebih dahulu untuk mempermudah melakukan perhitungan. Ada beberapa jenis satuan yang tersedia di aplikasi *CAESAR II 2016*, yaitu *BAR*, *DEUTCH*, *ENGLISH*, *FRANCE*, *JAPAN*, *MM*, *SI*, dan *TUV*. Cara menentukan satuan yang akan digunakan yaitu dengan me

Selain jenis satuan yang sudah disebutkan sebelumnya, user bisa menentukan jenis satuan sesuai keinginan dan mempermudah permodelan. Gambar di bawah ini menunjukan pengaturan satuan unit pada *CAESAR II* 2016

CAESAR II - Units File Review										
ITEM Inter	rnal Units		Constant		User Units	ITEM I	nternal Units	Constant		User Units
Length i	inches	×	25.400000	=	mm.	Fluid Den.	lbs./cu.in. *	27680.000000	=	kg/cu.m.
Force	pounds	×	4.448000	=	N.	Transl.	lbs./in. ×	0.175120	=	N./mm.
Mass-dynamics	pounds	×	0.453600	=	kg.	Rotl. Stiff.	in-lb/deg ×	0.112980	=	N.m./deg
Moment-input i	inIb.	×	0.112980	=	N.m.	Unif. Load	lb./in. ×	0.175120	=	N./mm.
Moment-output i	inIb.	×	0.112980	=	N.m.	G Load	g's ×	1.000000	=	g's
Stress	lbs./sq.in.	×	0.006895	=	N./sq.mm.	Wind Load	lbs./sq.in. *	6.894600	=	KN./sq.m.
Temp. Scale	degrees F	×	0.555600	=	С	Elevation	inches ×	25.400000	=	mm.
Pressure	psig	×	0.689460	=	N./sq.cm.	Cmpd Lng	inches *	25.400000	=	mm.
Elastic Modulus I	lbs./sq.in.	×	0.006895	=	N./sq.mm.	Diameter	inches *	25.400000	=	mm.
Pipe Density I	lbs./cu.in.	×	27680.000000	=	kg/cu.m.	Thickness	inches ×	1.000000	=	in.
Insulation Den. 1	lbs./cu.in.	×	27680.000000	=	kg/cu.m.	Nominals			=	OFF
Units File Label:			TUV (no nom.)							

Gambar 4.1 Tampilan sistem unit pada CAESAR II 2016

2. New file

Untuk membuat file baru pada aplikasi *CAESAR II 2016* yaitu dengan menu *new job* atau *new*, lalu memasukan nama file dan letak file tersebut. Terdapat 2 pilihan untuk membuat permodelan yaitu *piping input* dan *structural input* seperti pada Gambar 4.2.

New Job Name Specification						
Enter the name for the NEW job file:						
Tugas Akhir						
Piping Input C Structural Input						
Note, structural files should have different names from piping files, even if they are to be combined for analysis.						
Enter the data directory:						
E:\KULIAH BROO\Semester 7\Piping Stress Ani						
OK Help Cancel						

Gambar 4.2 New file

3. Data Input Pipa

Data input ini berisi tentang segala spesifikasi tentang pipa yaitu diameter, tebal dinding, *mil* tolerance, faktor korosi, material, dan yang berkaitan dengan *insulation*. Pada menu ini juga dapat mengatur densitas, temperatur, dan tekanan fluida yang mengalir dalam sistem perpipaan tersebut yang akan berpengaruh dalam perhitungan. Gambar 4.3 menunjukan data input yang terdapat pada *CAESAR II 2016*.

//		
From: 10	Bend Reducer Equation Reducer	
	e ✔ Rigid	¥
>>>	Expansion Joint SC: 1606	4.418
DX: 48.000 mm	Restraints Displacements SH1: 15002.750	F1:
DY: -6.600 mm	Hangers Flange Checks SH2: 16064.418	F2:
DZ:	SH3: 16064.418	E3:
Offsets	Forces/Moments	E4:
>>	Uniform Loads	F4.
Diameter: 24.0000	Wind / Wave SH5: 16064.418	F5:
Wt/Sch ⁻ 10,0000	>> SH6: 16064.418	F6:
Seam Welded	Material: (103)A105	F7:
WI Factor 1,0000	✓ Allowable Stress SH8: 16064.418	F8:
	Elastic Modulus (C): 2 0339E+007 >> 🚊 SH9- 16064.418	F9:
-Mill Tol %: 12.5000		
Corrosion:	Elastic Modulus (H1): 1.9753E+007	Fac:
Pipe Den: 7833.43994	Elastic Modulus (H2): 2.0339E+007	PVar:
Fluid Den 1: 4.08000	Elastic Modulus (H3): 2.0339E+007	Maximum of 1.2
Fluid Den 2:	Poisson's Ratio: 0.2920	On
Hydro Den:	Befract Thk:	Off
>>>		
Temp 1: 110,0000	Retract Density:	
Temp 2:	Insul Thk: 50.0000 5	Curves
Temp 3:	Clad Thk:	
Pressure 1: 19.6200	Insulation Density: 136.15793	
Pressure 2:	Cladding Density:	

Gambar 4.3 Tampilan Data Input Sistem Perpipaan.

4. Membuat Model

Setelah data input sudah dimasukan, *user* dapat membuat desain sistem perpipaan sesuai Gambar isometri jalur pipa yang kita buat. Terdapat beberapa fitur yang sering digunakan untuk memodelkan sistem perpipaan.

a. Node

Pembuatan desain/model sistem perpipaan dalam program mengacu pada titik koordinat yang disebut *node* disertai data masukan berupa panjang pipa seperti pada Gambar di bawah ini.

Gambar 4.4 Node

b. Bend

Bend memiliki fungsi yaitu sebagai elbow pada aplikasi ini. Terdapat 4 pilihan dalam penggunaan elbow yaitu *short radius, long radius,* 3D dan 5D seperti pada Gambar di bawah ini.

		- >>-	
Bend Reducer	3		
Rigid SIFs & Tees	8 Badius: Short		
Expansion Joint	Shot		
Restrainte Displacemente	Type: Long		
Hawaasa Elawaa Chaaka	5 3D		
Namla Flau Namla Let Cha	Angle 1: M Node 1: 39		
Forces/Moments	Angle 2: 0.000 Node 2: 38		
Uniform Loads	Angle 3: Node 3:		
Wind / Wave	es		
	>> 00		
Material: (354)A671 C55	Miter Points:		
✓ Allowable Stress	Eitting Thk:		
	>>> is in the second se		
Elastic Modulus (C): 2.0339E+005	C K-factor:		
Elastic Modulus (H1): 1.9753E+005	spl		
	Seam Welded		
Elastic Modulus (H2): 2.0339E+005			
Elastic Modulus (H3): 2.0339E+005	₩ WI Factor		
Poisson's Potio: 0.2920	m		
0.2320	<u>a</u>		

Gambar 4.5 Bend

c. Rigid

Fitur ini berfungsi untuk membuat semua komponen yang tidak bergerak seperti *flange* dan *valve* pada Gambar 4.6. Untuk menambahkan fitur ini *user* memerlukan data masukan berupa berat komponen tersebut.

Bend Reducer Rigid SIFs & Tees Expansion Joint	Code: B31.3 V SC: 160.644	
Restraints Displacements Hangers Flange Checks Nozzle Flex. Nozzle Lmt Check	SH1: 150.028 F1:	
Forces/Moments Uniform Loads Wind / Wave	SH3 H00.544 F3 SH4: 160.644 F4: SH5: 160.644 F5:	
Material: (103)A105 v Malowable Stress	SH6: 160.644 F6: SH7: 160.644 F7: SH8: 160.644 F8:	
Elastic Modulus (C): 2.0339E+005	SH9: 160.644 F9:	
Elastic Modulus (H2): 2.0339E+005 Elastic Modulus (H3): 2.0339E+005 Poisson's Ratio: 0.2920	Syr. 248.206 PVar. < f > Allowed Maximum of 1.2 O 0n	

Gambar 4.6 Rigid

d. Reducer

Fitur ini berguna untuk menambahkan komponen *reducer* pada sistem perpipaan dengan menambah data masukan berupa diameter dan tebal dinding ujung *reducer* pada Gambar di bawah ini.

Gambar 4.7 Reducer

e. SIF and Tees

Fitur ini umumnya digunakan untuk menambahkan komponen *tee* pada sistem perpipaan. Terdapat beberapa jenis sambungan *tee* pada fitur ini seperti pada Gambar di bawah ini.

Gambar 4.8 Tee

f. Restraint

Fitur ini berfungsi untuk menambahkan fitur support beserta arah reaksinya. Ada beberapa tipe *restraint* yang tersedia dalm aplikasi *CAESAR II* 2016 seperti pada Gambar 4.9 dan 4.10 di bawah ini.

1 - Anchor	ANC
2 - Translational Double Acting	X, Y, or Z
3 - Rotational Double Acting	RX, RY, or RZ
4 - Guide, Double Acting	GUI
5 - Double Acting Limit Stop	LIM
6 - Translational Double Acting Snubber	XSNB,YSNB, ZSNB
7 - Translational Directional	. +X, -X, +Y, -Y, +Z, -Z
8 - Rotational Directional	+RX, -RX, +RY, etc.
9 - Directional Limit Stop	+LIM, -LIM
10 - Large Rotation Rod	XROD, YROD, ZROD
11 - Translational Double Acting Bilinear	X2, Y2, Z2

Gambar 4.9 Jenis restraint pada CAESAR II 2016

Bend Reducer Rigid SIFs & Tees Expension Joint Image: Compare the second	Node: CNode: Type: × Gap: Stif: Mu:	
☐ Forces/Moments ☐ Uniform Loads ☐ Wind / Wave → Material: [354]A671 C55 •	Node: СNode: Туре: Y Gap: Stif: Ми:	
	Node: 120 CNode: Type: Z Gap: Stir: Mu Node: CNode:	

Gambar 4.10 Restraint arah X,Y, dan Z

5. Menambahkan pembebanan

Ada beberapa jenis pembebanan yang dapat ditambahkan pada model sistem perpipaan, yaitu:

a. Uniform load

Fitur ini berfungsi untuk menambahkan pembebanan dinamik gempa. *User* menambahkan data masukan percepatan gempa dalam arah sumbu X, Y, dan Z seperti pada Gambar di bawah ini.

Gambar 4.11 Uniform load

b. Wind /wave

Fitur ini berfungsi untuk menambahkan pembebanan dinamik angin. *User* menambahkan data masukan *wind shape factor* seperti pada Gambar di bawah ini.

Gambar 4.12 Wind /wave

6. Mengatur *loadcase*

Dengan memilih ikon *edit static load cases* pada menu *tools* user bisa menambahkan jenis *loadcase* yang akan dilakukan perhitungan dengan menggunakan aplikasi *CAESAR II 2016*. Tabel 4.1 menunjuka beberapa *loadcase* yang dapat ditentukan pada aplikasi ini.

Load Case	Load Case Description
1	L1 = WW+HP Case of hydrotest
2	L2 = W+T1+P1 (OPE) Operating Case at design conditions (T1)
3	L3 = W+T2+P1 (OPE) Operating Case at operating conditions (T2)
4	L4 = W+T3+P1 (OPE) Operating Case at operating conditions (T3)
5	L5 = W+T4+P1 (OPE) Operating Case at operating conditions (T4)
6	L6 = W+P1 (SUS) Case of sustained at cold design condition (P1)
7	L7 = U1 (OCC) Case of seismic acceleration in X direction
8	L8 = U2 (OCC) Case of seismic acceleration in Y direction
9	L9 = U3 (OCC) Case of seismic acceleration in Z direction
10	L10 = D1 (OCC) Case of seismic displacement in X direction
11	L11 = D2 (OCC) Case of seismic displacement in Y direction
12	L12 = D3 (OCC) Case of seismic displacement in Z direction
13	L13 = WIN1 (OCC) Wind in +X
14	L14 = WIN2 (OCC) Wind in +Y
15	L15 = F1 (OCC) Case of Static load (F1)
16	L16 = WNC (SUS) Case of Weight empty
17	L17 = T1 = L2 – L6 (EXP) Expansion at design condition.
18	L18 = T2 = L3 – L6 (EXP) Expansion at operating condition
19	L19 = T3 = L4 – L6 (EXP) Expansion at operating condition
20	L20 = T4 = L5 – L6 (EXP) Expansion at operating condition
21	L21 = U1+U2+U3 = L7+L8+L9 (OCC) Seismic acceleration combine all direction
22	L22 = D1+D2+D3 = L10+L11+L12 (OCC) Seismic displacement combine all direction
23	L23 = (L13,L14) (OCC) Maximum of wind Max(WIN1,WIN2)
24	L24 = W+P1+MAX(WIN1,WIN2) = L6+L23 (OCC) Maximum wind combine with sustained
25	L25 =W+P1+F1 = L6+L15 (OCC) Case of static load combine with dynamic
26	L26 = (L17,L18,L19,L20) (EXP) Maximum of thermal conditions Max(T1,T2)
27	L27 = L26+L22 (EXP) Combination of thermal conditions Max(T1,T2) and Seismic Displacement (D1+D2+D3)
28	L28 =W+P1+(U1+U2+U3) = L6+L21 (OCC) Case of seismic acceleration combine with sustained
29	L29 = (L2,L3) (OPE) Maximum of operating case Max(OPE1,OPE2)
30	L30 = L29+L23 (OPE) Combination of maximum operating case and maximum wind
31	L31 = L29+L21+L22 (OPE) Combination of maximum operating case and Seismic (Acceleration + Displacement)
32	L32 = L29+L15 (OPE) Combination of maximum operating case and Dynamic load (F1)

Tabel 4.1 Jenis-jenis loadcase pada sistem perpipaan

7. Pemeriksaan kesalahan pada model

Pemeriksaan ini berutujuan untung mengecek apakah model sistem perpipaan yang telah dibuat ada yang tidak sesuai ketentuan standar tertentu. Pemeriksaan ini otomatis langsung ditampilkan saat mulai kalkulasi nilai tegangan ataupun bisa dengan manual dengan meng-*klik* ikon *start run* ataupun dari menu *File-Error*

Check. Jika ada tulisan berwarna merah maka perlu dilakukan revisi pada *node* tersebut karena tidak sesuai standar. Gambar 4.13 menunjukan tidak terdapatnya eror pada model.

	Message Type	Message Number	Element/ Node Number	r Message Text		
18	WARNING	172E	460-470	On element 460 TO 470 the reducer alpha value was not specified. CAESAR II will use a default value of: 15.514.		
19	WARNING	172E	220-230	On element 220 TO 230 the reducer alpha value was not specified. CAESAR II will use a default value of: 19.136.		
20	WARNING	172E	340-350	On element 340 TO 350 the reducer alpha value was not specified. CAESAR II will use a default value of: 15.514.		
21	WARNING	172E		The [WARNING 172E] count exceeded the specified displ limit of [5].		
22	NOTE			CENTER OF GRAVITY REPORT Total Wght X cg N. mm. Pipe : 4311362.0 12819.4 Insulation : 25392.7 9011.0 - Refractory : 0.0 0.0 Fluid : 1806.5 9750.1 - Pipe+Ins+Rfrty : 4336757.5 12797.1 Pipe+Fluid : 4313168.5 12818.1 Pipe+Ins+Rfrty+Fld: 4338562.0 12795.8		

Gambar 4.13 Tampilan pemeriksaan kesalahan model

8. Kalkulasi Tegangan Pada Model

Setelah tidak terdapat eror pada model yang dibuat, kita langsung saja untuk melakukan kalkulasi dengan meng-*klik* ikon *batch run* atau pun dari *File-Batch Run*. Terdapat beberapa jenis *load case* yang terdapat pada sistem perpipaan tersebut sesuai dengan data yang telah dimasukan pada program seperti pada Gambar 4.14 di bawah ini.

Load Cases Analyzed	Standard Reports	General Computed Results
1 (SUS) WW+HP 2 (OPE) W+T1+P1 3 (SUS) W+P1 4 (OCC) U1 5 (OCC) U2 6 (OCC) U3 7 (OCC) WIN1 8 (OCC) WIN2 9 (SUS) WNC 10 (EXP) L10=L2-L3 11 (OCC) L11=L4+L5+L6 12 (OCC) L12=L7+L8 13 (OCC) L13=L3+L12 14 (OCC) L14=L3+L11	Displacements Restraints Restraints Extended Local Restraints Restraint Summary Restraint Summary Extended Nozzle Check Flange Peq Flange NC-3658.3 Global Element Forces Global Element Forces Extended Local Element Forces Stresses Stresses Extended Stress Summary Code Compliance Code Compliance Extended	Input Echo Miscellaneous Data Load Case Report Warnings

Gambar 4.14 Beberapa loadcase dan standard reprots

9. Menganalisis Hasil

Setelah dilakukan kalkulasi hal perlu dilakukan adalah menganalisa hasil tegangan ataupun sejenisnya sesuai keperluan untuk mengetahui apakah model sistem perpipaan yang telah dibuat tegangan maksimumnya tidak melebihi tegangan ijin ataupun jenis *report* lainnya sesuai keperluan seperti Gambar 4.15.

```
(3)Stress Summary
 CAESAR II 2016 Ver.8.00.00.5600, (Build 150930) Date: APR 9, 2018 Time: 22:21
 Job Name: PIPING MODEL
 Licensed To: SPLM: Edit company name in <system>\company.txt
 STRESS SUMMARY REPORT: Highest Stresses Mini Statement
 CASE 3 (SUS) W+P1
 LOAD CASE DEFINITION KEY
 CASE 3 (SUS) W+P1
 Piping Code: B31.3 = B31.3 -2014, Feb 27, 2014
 CODE STRESS CHECK FAILED
                                 : LOADCASE 3 (SUS) W+P1
 Highest Stresses: (N./sq.mm. ) LOADCASE 3 (SUS) W+P1
 Ratio (%): 318.6 @Node 120
                               398.0
Code Stress:398.0Allowable StrAxial Stress:6.6@Node 200Bending Stress:392.5@Node 120Torsion Stress:7.1@Node 719Hoop Stress:11.0@Node 30Max Stress Intensity:398.0@Node 120
 Code Stress:
                                             Allowable Stress:
                                                                       124.9
```

Gambar 4.15 Contoh stress report pada loadcase sustain stress

Selain dengan membaca nilai tegangan dengan menggunakan *stress report*, menganalisa hasil tegangan juga bisa dilihat dari distribusi tegangan sesuai warna pada model tersebut, Gambar berikut ini merupakan keterangan masing-masing warna yang ada pada aplikasi *CAESAR II 2016* :

Gambar 4.16 Keterangan warna yang menunjukan rasio tegangan maksimum terhadap tegangan ijin jalur pipa

Gambar 4.17 Contoh distribusi tegangan pada model

Gambar 4.17 menunjukan hasil visualisasi pemodelan sistem perpipaan dan distribusi tegangannya.