BAB IV

HASIL PENELITIAN DAN PEMBAHASAN

4.1. Ratio Partisipasi Massa

Penentuan ratio partisipasi massa adalah rangkaian dalam melakukan analisis terhadap struktur bangunan, dimana partisipasi massa yang diperoleh harus lebih besar dari 90 % (BSN, 2012). Hasil yang diperoleh dari analisis dengan menggunakan *softwere* SAP2000 menunjukan bahwa partisipasi massa mencapai lebih dari 90 % dengan jumlah modal yang dibutuhkan sebanyak 30 modal, hal tersebut dapat dilihat berdasarkan Tabel 4.1.

Case	Mode	Periode	Sum UX	Sum UY
		(sec)		
Modal	1	0,683	0,395	0,051
Modal	2	0,678	0,462	0,425
Modal	4	0,469	0,491	0,474
Modal	6	0,298	0,592	0,513
Modal	8	0,289	0,666	0,524
Modal	10	0,261	0,667	0,586
Modal	12	0,239	0,667	0,653
Modal	14	0,231	0,667	0,657
Modal	16	0,202	0,686	0,666
Modal	18	0,183	0,695	0,696
Modal	20	0,158	0.721	0,707
Modal	22	0,139	0,755	0,744
Modal	24	0,114	0,779	0,768
Modal	26	0,087	0,819	0,818
Modal	28	0,065	0,858	0,855
Modal	30	0,015	0,935	0,928

Tabel 4.1 Ratio partisipasi massa

4.2. Nilai Gaya Geser

Nilai gaya geser dalam melakukan analisis ditentukan berdasarkan gaya geser statik (V_s) dan gaya geser dinamik (V_d) dengan ketentuan nilai V_d harus lebih besar dari 85 % V_s (BSN, 2012). Nilai V_s diperoleh dari perhitungan manual dengan menggunakan persamaan 2.1, sedangkan V_d didapatkan dari perhitungan parameter respon spektrum dengan menggunakan *softwere* SAP2000, maka hasil nilai gaya geser dasar tersebut ditampilkan dalam Tabel 4.2

Beban	Vstatik,	V _{dinamik} ,	Cf	CF.	V _d baru
Gempa	V _s (kN)	V _d (kN)	51 <i>a</i>	516	(k N)
RS 2010 x	30107,2644	12029,685	1,8506	3,936	25586,790
RS 2010 y	30364,5914	11366,105	1,8506	4,203	25812,424
RS 2017 x	32834,9311	12790,481	1,8506	4,038	27908,829
RS 2017 y	33246,6544	11366,105	1,8506	4,601	28256,136
DC D	•				

Tabel 4.2 Nilai gaya geser

RS : Respon spektrum

Sf_{*a*} : Faktor skala awal

Sf_{*b*} : Faktor skala baru Sf_{*a*} x 0,85 (V_s/V_d), apabila ratio $V_d/V_s < 0,85$

Diperoleh nilai V_d kurang dari 85 % V_s , sehingga nilai faktor skalanya perlu dikalikan dengan persamaan Sf_a x 0,85 (V_s/V_d) agar diperoleh nilai V_d baru yang sesuai dengan ketentuan, yaitu lebih besar dari 85 % V_s . Selain itu diketahui dari Tabel 4.2 bahwa terjadi peningkatan gaya geser respon spektrum pada peta gempa 2017, peningkatan yang terjadi adalah sebesar 9,075 % terhadap arah X dan sebesar 9,467 % terhadap arah Y, hal ini terjadi disebabkan karena adanya pengembangan peta gempa akibat percepatan pada permukaan tanah dan kondisi tanahnya (Arfiandi, 2013), peningkatan tersebut dapat diketahui pada Gambar 4.1.

Gambar 4.1 Grafik Peningkatan Gaya Geser

4.3. Analisis Simpangan pada Struktur

Simpangan yang terjadi pada struktur bangunan ditinjau pada bebarapa *joint* yang telah ditentukan, yang dianggap mengalami simpangan yang paling besar, dimana *joint* tinjauan tersebut dapat dilihat pada Gambar 4.2.

Gambar 4.2 Tinjauan joint untuk simpangan

Keterangan : Joint 1 adalah kolom K4
Joint 2 adalah kolom K1
Joint 3 adalah kolom K22
Joint 4 adalah kolom K11
Joint 5 adalah kolom K6

Analisis simpangan dilakukan untuk mengetahui batas izin dan respon dari suatu struktur, sehingga apabila respon struktur melebihi batas izin yang ditentukan maka perlu dilakukan evaluasi agar struktur mampu menerima beban yang terjadi (Soelarso dan Baehaki, 2017), batas izin struktur bangunan ditentukan berdasarkan struktur bangunan dan kategori risiko seperti dapat diliahat pada Tabel 2.10. Sehingga batas izin dari simpangan pada struktur rumah sakit UII ditentukan dengan persamaan Δ =0,010 h_{sx} dimana h_{sx} adalah tinggi struktur.

Batas izin simpangan

$$\Delta_{Izin} = 0,010 h_{sx}$$

= 0,010 x 4000 mm
= 40 mm

Sedangkan untuk perhitungan simpangan yang terjadi pada struktur dilakukan dengan persamaan 2.6, berikut adalah contoh perhitungan simpangan.

$$\Delta = \frac{perpindahan \times C_d}{I_e}$$
$$\Delta = \frac{53,86 \times 5,5}{1,5}$$
$$\Delta = 198 \text{ mm}$$

Nilai faktor keutamaan gempa (I_e) ditentukan berdasarkan Tabel 2.4 sedangkan faktor pembesaran defleksi (C_d) ditentukan berdasarkan Tabel 2.5. Hasil dari simpangan ditampilkan pada Tabel 4.3 sampai dengan Tabel 4.7, sedangkan respon simpangannya dapat dilihat dari Gambar 4.3 sampai dengan Gambar 4.12. 1. Simpangan yang Terjadi pada *Joint 1*

Tabel 4.3 Simpangan akibat respon spektrum pada *Joint 1*

	Elv -	∆ Aki	bat RS	Arah X	K (mm)	∆ Aki	(mm)	Δ		
Lantai	LIV (m)	20	10	20)17	2010		2017		Izin
(11)		X	Y	Х	Y	Х	Y	Х	Y	(mm)
L.A	24	198	64,8	217	71,1	64,7	193	70,8	212	240
L. 5	20	169	53,4	186	58,6	54,8	161	60,0	175	200
L. 4	16	132	40,3	145	44,2	42,5	123	46,5	135	160
L. 3	12	89,2	26,2	97,9	28,8	29,1	83,3	31,9	91,2	120
L. 2	8	53,3	13,8	58,5	15,1	18,8	45,9	20,6	50,2	80
L. 1	4	24,5	5,6	26,9	6,1	8,9	18,8	9,8	20,6	40
L.D	0	0	0	0	0	0	0	0	0	0

Gambar 4.3 Grafik simpangan akibat respon spektrum arah X pada Joint 1

Gambar 4.4 Grafik simpangan akibat respon spektrum arah Y pada Joint 1

2. Simpangan yang Terjadi pada Joint 2

	Elv -	∆ Aki	bat RS	Arah X	K (mm)	∆ Aki	(mm)	Δ		
Lantai		$\frac{2010}{2010}$		2017		2010		2017		Izin
(11)		X	Y	X	Y	X	Y	X	Y	(mm)
L. 3	12	76,5	41,5	83,8	44,2	34,3	98,7	37,6	108	120
L. 2	8	55,6	30,7	60,9	32,7	25,9	72,6	28,4	79,5	80
L. 1	4	26,9	15,6	29,5	16,6	12,5	36,5	13,7	39,9	40
L.D	0	0	0	0	0	0	0	0	0	0

Tabel 4.4 Simpangan akibat respon spektrum pada Joint 2

Gambar 4.5 Grafik simpangan akibat respon spektrum arah X pada Joint 2

3. Simpangan yang terjadi pada *joint 3*

Lantai	Elv ·	ΔAkibat RS Arah X (mm)				∆Akil	Δ			
		2010		2017		2010		20	17	Izin
	(111)	X	$\Delta \mathbf{Y}$	$\Delta \mathbf{X}$	$\Delta \mathbf{Y}$	X	$\Delta \mathbf{Y}$	$\Delta \mathbf{X}$	$\Delta \mathbf{Y}$	(mm)
L. 2	8	28,4	28,4	30,2	30,2	28,7	34,6	31,4	37,9	80
L. 1	4	16,2	12,8	17,2	13,6	16,0	15,7	17,5	17,2	40
L.D	0	0	0	0	0	0	0	0	0	0

Tabel 4.5 Simpangan akibat respon spektrum pada joint 3

Gambar 4.7 Grafik simpangan akibat respon spektrum arah X pada Joint 3

Gambar 4.8 Grafik simpangan akibat respon spektrum arah Y pada Joint 3

4. Simpangan yang terjadi pada *Joint 4*

	Elv ·	∆Aki	bat RS	Arah X	K (mm)	∆Aki	(mm)	Δ		
Lantai		2010		2017		2010		2017		Izin
	(111)	$\Delta \mathbf{X}$	$\Delta \mathbf{Y}$	(mm)						
L. 2	8	42,6	14,3	46,8	15,7	14,0	43,3	15,4	47,5	80
L. 1	4	18,6	7,1	20,3	7,6	8,5	18,5	9,3	20,2	40
L.D	0	0	0	0	0	0	0	0	0	0

Tabel 4.6 Simpangan akibat respon spektrum pada Joint 4

Gambar 4.9 Grafik simpangan akibat respon spektrum arah X pada Joint 4

Gambar 4.10 Grafik simpangan akibat respon spektrum arah Y pada Joint 4

5. Simpangan yang Terjadi pada *Joint 5*

	Fly	∆Aki	bat RS	Arah X	K (mm)	∆Aki	bat RS	Arah Y	(mm)	Δ
Lantai	EIV (m)	20	10	2017		20	10	2017		Izin
	(III)	$\Delta \mathbf{X}$	$\Delta \mathbf{Y}$	(mm)						
L.A	24	165	85,7	182	93,6	53,2	152	58,3	166	240
L. 5	20	144	71,0	158	77,6	46,3	126	50,7	138	200
L. 4	16	114	54,9	125	59,9	37,0	99,7	40,5	109	160
L. 3	12	79,7	38,3	87,5	41,8	26,3	72,7	28,8	79,6	120
L. 2	8	48,9	23,8	53,7	26,0	16,3	47,6	17,8	52,1	80
L. 1	4	22,2	10,8	24,4	11,8	7,4	21,8	8,1	23,9	40
L.D	0	0	0	0	0	0	0	0	0	0

 Tabel 4.7 Simpangan akibat respon spektrum pada Joint 5

 ΔAkibat RS Arah X (mm)

 ΔAkibat RS Arah X (mm)

Gambar 4.11 Grafik simpangan akibat respon spektrum arah X pada Joint 5

Gambar 4.12 Grafik simpangan akibat respon spektrum Arah Y pada Joint 5

Simpangan yang terjadi pada *joint* yang ditinjau menunjukan hasil berbeda, seperti terlihat pada *joint 1* yang mengalami simpangan tertinggi mencapai 217 mm sedangkan *joint 3* mengalami simpangan terendah yaitu 37,9 mm terlihat pada Tabel 4.3 dan Tabel 4.5, hal tersebut karena pengaruh ketinggian *joint* terhadap simpangan, dimana semakin tinggi *joint* pada struktur akan mengakibatkan simpangan yang semakin besar, begitu juga dengan batas simpangan izinnya, sehingga dalam hal ini simpangan yang terjadi masih berada dalam batas izin seperti dapat dilihat pada Gambar 4.3 sampai Gambar 4.12. Selain itu bentuk struktur juga mempengaruhi simpangan yang terjadi.

Bentuk struktur yang tidak beraturan membuat arah simpangan pada struktur menjadi tidak seragam, seperti dapat dilihat dari hasil analisis simpangan pada *joint 1* dan *joint 5* didapati simpangan yang terjadi lebih besar terhadap sumbu X, sehingga srtruktur pada tinjauan *joint 1* dan *joint 5* mengalami sumbu lemah pada arah X, sedangkan struktur dengan tinjauan pada *join 2, joint 3* dan *joint 4* diperoleh sumbu lemah ada pada arah Y, karena simpangan yang terjadi pada *joint* tersebut lebih besar akibat arah Y, seperti dapat dilihat pada Gambar 4.13. Hal lain yang mempengaruhi simpangan adalah akibat pengembangan peta gempa 2017.

Dampak dari pengembangan peta gempa tersebut adalah peningkatan yang terjadi pada gaya geser dasar seperti terlihat pada Gambar 4.1, yang kemudian mengakibatkan peningatan pada simpangan terlihat pada Tabel 4.3 sampai dengan Tabel 4.7, peningkatan terbesar mencapai 9,813% yang terjadi pada *joint 1*, dan peningkatan terkecil terdapat pada *joint 3* arah X yaitu sebesar 6,404 yang ditunjukan oleh Tabel 7.8, rata- rata peningkatan simpangan yang terjadi adalah 9,084% untuk arah X dan 9,504% untuk arah Y.

Tinjauan _	Peta Ger (m	npa 2010 m)	Peta Ger (m	npa 2017 m)	Peningkatan (%)			
	$\Delta \mathbf{X}$	$\Delta \mathbf{Y}$	$\Delta \mathbf{X}$	$\Delta \mathbf{Y}$	Arah X	Arah Y		
Joint 1	198	193	217	212	9,831	9,467		
Joint 2	76,5	98,7	83,8	108	9,611	9,472		
Joint 3	28,4	28,7	30,2	31,4	6,404	9,646		
Joint 4	42,6	43,3	46,8	47,5	9,751	9,465		
Joint 5	165	152	182	166	9,824	9,469		

Tabel 4.8 Peningkatan Simpangan

Gambar 4.13 Grafik Peningkatan pada Simpangan

4.4. Analisis Drift Ratio

Drift ratio merupakan penjabaran simpangan yang terjadi pada setiap lantai, dimana nilai *drift ratio* antar lantai diperoleh dari selisih *displacement* kemudian dihitung dengan persamaan 2.6, dengan batas *drift ratio* izinnya adalah 1% dari tinggi setiap lantai.

Drift ratio
$$= \frac{\Delta Antar lantai}{Tinggi antar lantai} x100$$
$$= \frac{28,563}{4000} x100$$
$$= 0,48 \%$$

 $\Delta \text{ antar lantai} = \frac{(\delta_2 - \delta_1) \times C_d}{I_e}$ $= \frac{(56,4-48,6) \times 5,5}{1,5}$ = 28,563 mm

Nilai *drift ratio* antar lantai yang terjadi ditampilkan dalam Tabel 4.9 sampai dengan Tabel 4.13, sedangkan bentuk *drift ratio* antar lantai yang terjadi ditunjukan dengan grafik seperti pada Gambar 4.14 sampai dengan Gambar 4.23.

F1-	Drift A	Akibat]	RS Arah	X (%)	Drift .	Akibat	RS Aral	h Y (%)	Drift
	20	10	2017		2010		2017		Izin
(m)	X	Y	Х	Y	Χ	Y	X	Y	(%)
24	0,48	0,23	0,53	0,25	0,16	0,65	0,18	0,71	1
20	0,69	0,28	0,76	0,30	0,23	0,74	0,25	0,81	1
16	0,84	0,30	0,92	0,33	0,25	0,82	0,27	0,90	1
12	0,67	0,26	0,73	0,28	0,18	0,76	0,19	0,83	1
8	0,49	0,15	0,54	0,17	0,16	0,50	0,18	0,55	1
4	0,38	0,09	0,42	0,09	0,14	0,29	0,15	0,32	1
0	0	0	0	0	0	0	0	0	1
	Elv (m) 24 20 16 12 8 4 0	Drift 20 20 X 24 0,48 20 0,69 16 0,84 12 0,67 8 0,49 4 0,38 0 0	Drift J Z010 Z010 X Y 24 0,48 0,23 20 0,69 0,28 16 0,84 0,30 12 0,67 0,26 8 0,49 0,15 4 0,38 0,09 0 0 0	Drift Akibat RS Arah 2010 20 X Y X 24 0,48 0,23 0,53 20 0,69 0,28 0,76 16 0,84 0,30 0,92 12 0,67 0,26 0,73 8 0,49 0,15 0,54 4 0,38 0,09 0,42 0 0 0 0	Drift Akibat RS Arah X (%) 2010 2017 2017 X Y X Y X Y X Y X Y X Y X Y X Y X Y 24 0,48 0,23 0,53 0,25 20 0,69 0,28 0,76 0,30 16 0,84 0,30 0,92 0,33 12 0,67 0,26 0,73 0,28 8 0,49 0,15 0,54 0,17 4 0,38 0,09 0,42 0,09 0 0 0 0 0	Drift Akibat RS Arah X (%) Drift 7 2010 2017 20 2010 2017 20 X Y X Y X 24 0,48 0,23 0,53 0,25 0,16 20 0,69 0,28 0,76 0,30 0,23 16 0,84 0,30 0,92 0,33 0,25 12 0,67 0,26 0,73 0,28 0,18 8 0,49 0,15 0,54 0,17 0,16 4 0,38 0,09 0,42 0,09 0,14 0 0 0 0 0 0	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Gambar 4.14 Grafik drift ratio akibat respon spektrum arah X pada Joint 1

Gambar 4.15 Grafik drift ratio akibat respon spektrum arah Y pada Joint 1

Lantai	Elv (m)	Drift Akibat RS Arah X (%)			Drift	Akibat	RS Ara	h Y (%)	Drift	
		2010		2017		2010		2017		Izin
	(III)	Х	Y	X	Y	X	Y	X	Y	(%)
L. 3	12	0,36	0,25	0,39	0,26	0,14	0,61	0,16	0,67	1
L. 2	8	0,55	0,36	0,61	0,38	0,27	0,86	0,29	0,94	1
L. 1	4	0,51	0,37	0,55	0,39	0,24	0,87	0,27	0,95	1
L.D	0	0	0	0	0	0	0	0	0	1

Tabel 4.10 Drift ratio akibat respon spektrum pada Joint 2

Gambar 4.16 Grafik drift ratio akibat respon spektrum arah X pada Joint 2

Gambar 4.17 Grafik drift ratio akibat respon spektrum arah Y pada Joint 2

Lantai	Elv - (m) -	Drift Akibat RS Arah X (%)				Drift .	Drift Akibat RS Arah Y (%)				
		2010		2017		2010		2017		Izin	
		X	Y	Х	Y	X	Y	Х	Y	(%)	
L. 2	8	0,13	0,25	0,14	0,26	0,16	0,30	0,17	0,32	1	
L. 1	4	0,23	0,18	0,24	0,19	0,24	0,22	0,26	0,24	1	
L.D	0	0	0	0	0	0	0	0	0	1	

Tabel 4.11 Drift ratio akibat respon spektrum pada Joint 3

Gambar 4.18 Grafik drift ratio akibat respon spektrum arah X pada Joint 3

Gambar 4.19 Grafik drift ratio akibat respon spektrum arah Y pada Joint 3

	Elv	Drift Akibat RS Arah X (%)				Drift	Drift Akibat RS Arah Y (%)					
Lantai		2010		2017		2010		2017		Izin		
	(m)	Χ	Y	Х	Y	X	Y	Х	Y	(%)		
L. 2	8	0,42	0,12	0,46	0,14	0,08	0,45	0,08	0,49	1		
L. 1	4	0,28	0,12	0,31	0,13	0,15	0,29	0,16	0,32	1		
L.D	0	0	0	0	0	0	0	0	0	1		

Tabel 4.12 Drift ratio akibat respon spektrum pada Joint 4

Gambar 4.20 Grafik drift ratio akibat respon spektrum arah X pada Joint 4

Gambar 4.21 Grafik drift ratio akibat respon spektrum arah Y pada Joint 4

Lantai	F 1	Drift	Akibat]	RS Arah	X (%)	Drift	Akibat	RS Ara	h Y (%)	Drift
		20	10	20)17	20	10	2	017	Izin
	(m)	X	Y	Х	Y	X	Y	X	Y	(%)
L.A	24	0,35	0,29	0,39	0,31	0,10	0,44	0,11	0,48	1
L. 5	20	0,55	0,33	0,60	0,36	0,16	0,48	0,18	0,52	1
L. 4	16	0,66	0,34	0,73	0,37	0,19	0,48	0,21	0,53	1
L. 3	12	0,57	0,28	0,63	0,31	0,18	0,44	0,20	0,48	1
L. 2	8	0,47	0,25	0,52	0,27	0,15	0,45	0,16	0,50	1
L. 1	4	0,36	0,19	0,40	0,21	0,11	0,35	0,12	0,39	1
L.D	0	0	0	0	0	0	0	0	0	1

Gambar 4.22 Grafik drift ratio akibat respon spektrum arah X pada Joint 5

Gambar 4. 23 Grafik drift ratio akibat respon spektrum arah Y pada Joint 5

Hasil analisis *drift ratio* menunjukan rasio simpangan yang terjadi pada setiap lantainya, dari hasil tersebut diketahui bahwa nilai tertinggi *drift ratio* antar lantai tidak terjadi pada lantai tertinggi, melainkan terjadi pada bagian tengah struktur seperti terlihat pada Tabel 4.9, hal tersebut terjadi karena pada bagian tengah struktur mengalami selisih *displacement* yang paling besar, sehingga difahami bahwa semakin besar selisih nilai *displacement* akan mengakibatkan nilai *drift ratio* antar lantai yang besar pula.

Nilai *drift ratio* terbesar berada pada *joint 2* di ketiggian empat meter dan delapan meter, dimana nilainya mencapai 0,95% dan 0,94% sangat dekat dengan batas izinnya yaitu 1% dari tinggi antar lantainya, seperti terlihat dari Tabel 4.10 dan Gambar 4.17, sehingga dapat dikatakan kondisi diatas merupakan kondisi kritis dimana nilai *drift ratio* antar lantai yang terjadi hampir mencapai 1%, namun demikian masih dapat dikatakan aman karena belum melewati batas izin yang disyaratkan.

Peningkatan yang terjadi akibat pengembangan peta gempa 2017 sama seperti peningkatan yang terjadi pada simpangan, hal tersebut karena keduanya mengalami peningkatan akibat peningkatan gaya geser dasar yang sama. Sedangkan batas izin *drift ratio* dibatasi hanya 1% dari tinggi antar lantainya, hasil analisis menunjukan *drift ratio* yang terjadi pada struktur tidak ada yang melewati batas izin yang ditentukan, sehingga respon struktur bangunan rumah sakit UII dapat dikatakan aman terhadap beban gempa pada peta gempa 2010 dan akibat pengembangan peta gempa 2017.

4.5. Analisis Kemampuan Elemen Struktur

4.5.1. Kemampuan Elemen Kolom

Kemampuan kolom dalam menerima beban ditentukan dengan diagram interaksi, dimana dalam hal ini beban yang diterima kolom diperoleh dari *output* SAP2000 yang kemudian dimasukan ke dalam diagram interaksi pada *softwere* spColumn, *output* SAP2000 yang digunakan merupakan akibat dari respon spektrum peta gempa 2010 dan peta gempa 2017 yang ditampilkan seperti pada Tabel 4.14 sampai dengan Tabel 4.19.

Output	No	Akibat peta gempa 2010		No	Akibat peta gempa 2017		
SAP	INU	P (kN)	M (kNm)	INU	P (kN)	M (kNm)	
P max	1	489,461	66,1028	9	535,799	72,3608	
P min	2	1479,46	4,809	10	1479,46	4,809	
V max	3	51,601	348,0268	11	56,284	381,6267	
V min	4	160,577	52,1604	12	160,577	52,1604	
$M_2 \max$	5	161,453	144,8972	13	176,738	158,6149	
$M_2 \min$	6	113,9	24,2041	14	113,9	24,2041	
M ₃ max	7	309,232	392,5022	15	339,062	429,5737	
M ₃ min	8	202,402	52,556	16	202,402	52,556	

Tabel 4.14 Peningkatan output SAP2000 pada kolom K1

Gambar 4.24 Diagram interaksi pada kolom K1

					-		
Output	No	Akibat peta gempa 2010		No	Akibat peta gempa 2017		
SAP	110	P (kN)	M (kNm)	110	P (kN)	M (kNm)	
P max	1	952,092	94,3453	9	1042,228	103,2772	
P min	2	2078,93	49,9217	10	2078,93	49,9217	
V max	3	63,243	429,6054	11	69,255	470,5803	
V min	4	2038,8	53,8663	12	2038,8	53,8663	
M_2 max	5	182,828	104,6808	13	200,137	114,5911	
$M_2 \min$	6	139,077	0,4027	14	139,077	0,4027	
M ₃ max	7	63,243	429,6054	15	69,255	470,5803	
M ₃ min	8	145,099	140,948	16	145,099	140,948	

Tabel 4.15 Peningkatan output SAP2000 pada kolom K4

Gambar 4.25 Diagram interaksi pada kolom K4

Output	No	Akibat peta gempa 2010		No	Akibat peta gempa 2017		
SAP	110	P (kN)	M (kNm)	110	P (kN)	M (kNm)	
P max	1	909,393	450,0264	9	998,507	491,7933	
P min	2	1983,39	2,977	10	1983,39	2,977	
V max	3	444,753	488,1459	11	487,109	534,4805	
V min	4	235,973	52,6065	12	235,973	52,6065	

Output	No	Akibat peta	gempa 2010	No	Akibat peta	a gempa 2017
SAP	110	P (kN)	M (kNm)	110	P (kN)	M (kNm)
M ₂ max	5	514,192	163,8235	13	562,871	179,333
$M_2 \min$	6	84,109	28,3771	14	84,109	28,3771
M ₃ max	7	444,753	488,1459	15	487,109	534,4805
M ₃ min	8	235,973	52,6065	16	235,973	52,6065

Gambar 4.26 Diagram interaksi pada kolom K6 Tabel 4. 17 Peningkatan *output* SAP2000 pada kolom K11

		-			-		
Output	No	Akibat peta gempa 2010		_ No	Akibat peta gempa 2017		
SAP	140	P (kN)	M (kNm)	110	P (kN)	M (kNm)	
P max	1	247,512	153,6965	9	271,783	166,6438	
P min	2	900,709	57,2223	10	900,709	57,2223	
V max	3	36,083	317,6556	11	38,974	347,8543	
V min	4	312,493	65,6709	12	312,493	65,6709	
M_2 max	5	60,449	173,8954	13	66,171	190,3585	
$M_2 \min$	6	810,835	6,1648	14	810,835	6,1648	
M ₃ max	7	36,083	421,2539	15	38,974	462,1089	
M ₃ min	8	781,576	177,703	16	781,576	177,703	

Gambar 4.27 Diagram interaksi pada kolom K11

Output	No	Akibat peta	gempa 2010	No	Akibat peta	a gempa 2017
SAP	110	P (kN)	M (kNm)	110	P (kN)	M (kNm)
P max	1	286,194	160,5494	9	313,289	175,749
P min	2	1046,67	23,3442	10	1046,67	23,3442
V max	3	136,444	222,5854	11	149,362	243,658
V min	4	207,468	170,98	12	207,468	170,98
$M_2 \max$	5	183,688	8,1557	13	149,362	243,658
$M_2 \min$	6	239,479	82,4068	14	239,479	82,4068
M ₃ max	7	173,537	245,1567	15	173,537	245,1567
$M_3 \min$	8	191,382	180,477	16	191,382	180,477

Tabel 4.18Peningkatan output SAP2000 pada kolom K22

Gambar 4.28 Diagram interaksi pada kolom K22

Nilai *output* SAP menunjukan adanya peningkatan gaya yang terjadi pada kolom akibat pengembanagan peta gempa 2017, seperti terlihat pada Tabel 4.14 sampai Tabel 4.18 peningkatan tersebut terjadi pada beban (*P*) dan momen (*M*) dari kolom, namun peningkatan yang terjadi tidak terlalu signifikan, sehingga jika dilihat pada diagram interaksi yang diperoleh dari *softwere* spColumn menunjukan peningkatan yang terjadi masih berada di dalam diagram, maka dari itu kolom dinyatakan masih mampu menerima peningkatan yang terjadi dan tidak memerlukan perkuatan.

Perkuatan dilakukan apabila gaya yang diterima kolom melebihi batas diagram interaksi, sehingga dilakukan perkuatan agar kolom mampu menerima beban yang terjadi dan memberikan keamanan pada struktur. dilakukan perhitungan kebutuhan tulangan untuk mengetahui kebutuhan tulangan ideal pada kolom

Digunakan kolom K1 sebagai contoh perhitungan kolom dengan data sebagai berikut:

b	= 500	mm	Es	= 200000 Mpa
h	= 700	mm	β_1	= 0,85
d'	= 59,5	mm	Ag	= b x h
fc'	= 30	Мра		= 500 x 800
fy	= 400	Мра		$= 400000 \text{ mm}^2$

Gambar 4.29 Detail tulangan pada kolom

Ast = 16D19 (Asumsi awal)
=
$$16 x \left(\frac{1}{4} \times \pi \times 19^2\right)$$

= 4536.46 mm²

Perhitungan kebutuhan tulangan pada kolom diawali dengan menghitung beberapa kondisi yang kemudian akan dijadikan sebagai diagram interaksi sebagai batasan reaksi pada kolom, kondisi tersebut adalah sebagai berikut.

$$\begin{array}{l} - & \phi P_{n_{max}} &= \theta(0,85 \ x \ Fc'x \ (Ag - Ast) + Fy \ x \ Ast) \\ &= 0,65(0,85 \ x \ 30 \ x \ (400000 - 4536,46) + 400 \ x \ 4536,46 \\ &= 11898904,19 \ N \\ &= 11898,904 \quad kN \\ - & \phi Pn &= 0,65 \ x \ Pn \\ &= 0,65 \ x \ 11898,904 \end{array}$$

2. Kondisi patah tarik, yaitu pada saat (ϕP_n , ϕMn)

= 7734,288

$$P_n = C_c + C_s + T$$

$$= 0.85 f'_c a b + A'_s (f'_s - 0.85 f'_c) - A_s' f_y$$

$$= 0.85 x 30x a x 500 + 1143, 11(400 - 0.85 x 30) - 1143, 11x30$$

$$= 12750 a - 28919, 93117$$

- Menentukan nilai a

$$Aa^{2} + Ba + C = 0$$

0,425 f_{c} 'b $a^{2} + 2A$ (e' - d) + $As'(f_{y} - 0.85F'_{c})$ (e'- d+d')-
 $A_{s}'f_{y}.e' = 0$

 $0,425x30x500 \ a^2 + 0,85x30 \ x \ 500 \ (690,5 - 740,5) + 1134,11$ $(400- 0,85 \ x \ 30)(690,5-740,5+59,5) - 1134,11x400x690,5 = 0$ $6375 \ a^2 - 637500 \ a - 309207651,2 = 0$

$$a = \frac{-B \pm \sqrt{B^2 - 4AC}}{2A}$$

$$a = \frac{-(-637500) \pm \sqrt{-637500^2 - 46375x - 309207651,2}}{26375}$$

$$a_1 = 275,8387942$$

$$a_2 = -175,8387942$$

- Memasukan nilai a_1 ke persamaan P_n

-
$$P_n$$
 = 12750 *a* -28919,93117
= 12750 (275,8387942) -28919,93117
= 9053721,376 N
= 9053,721 kN
- ϕP_n = 0,65 x P_n
= 0,65 x 9053,721

= 5884,919 kN

- Menghitung nilai Mn

-
$$M_n$$
 = P_n^e
= 5884,919 x 0,35
= 916,146 kNm
- ϕM_n = 0,65 x M_n

- Kontrol tulangan

$$- \varepsilon_{s}' = \frac{C-d'}{C} \times 0,003 > \varepsilon_{y} = \frac{f_{y}}{E_{s}}$$
$$= \frac{\frac{275,8387942}{0,85} - 59,5'}{\frac{275,8387942}{0,85}} \times 0,003 > \varepsilon_{y} = \frac{400}{200000}$$
$$= 0,002449 > \varepsilon_{y} = 0,002$$

Tulangan telah luluh

- Sehingga diperoleh nilai pada kondisi patah tarik seimbang adalah sebagai berikut

-
$$\phi P_n$$
 = 5884,92 kN

- ϕM_n = 595,5 kNm

3. Kondisi seimbang

$$- C_b = \frac{0,003}{0,003 + f_y/E_s} d$$

$$= \frac{0,003}{0,003 + 400/200000} 740,5$$

$$= 444,3 \text{ mm}$$

$$- \varepsilon_s' = \frac{C-d'}{C} x 0,003 > \varepsilon y = \frac{f_y}{E_s}$$

$$= \frac{444,3-59,5}{444,3} x 0,003 > \varepsilon y = \frac{400}{200000}$$

$$= 0,002449 > \varepsilon 0,002$$

Tulangan telah luluh

Tul:
-
$$a_b = \beta_1 C_b$$

= $(0.85 - 0.005 \times \frac{30 - 28}{7}) \times 444.3$
= 377.655 mm
- $C_c = 0.85 f_c' a_b b$
= $0.85 \times 30 \times 377.655 \times 500$
= 4815101.250 N
= 4815.101 kN
- $T = A_S f_y$
= 4536.46×400
= 1814584 N
= 1814.584 kN
- $C_s = A_s' (f_y - 0.85 f_c')$
= $4536.46 (400 - 0.85 \times 30)$
= 1698904.27 N
= 1698.904 kN
- $P_n = C_c + C_s - T$
= $4815.101 + 1698.904 - 1814.584$
= 5580.38 kN
- $\phi P_n = \phi P_n$
= 0.65×5580.38
= 3195.967 kN

-
$$M_n$$
 = $C_c \left(d'' - \frac{a}{2} \right) + C_s(d"-d') + T(d-d")$
= 4815,101 ((400- $\frac{377,655}{2}$) + 1698,904 (400-59,5))
+1814,584 (400-59,5)
= 1447375 Nm
= 1447,375 kNm
- $\emptyset M_n$ = $\emptyset M_n$
= 0,65 x 1447,375
= 940,794 kNm

- Sehingga pada kondisi seimbang diperoleh nilai sebagai berikut

-
$$\phi P_n$$
 = 1447,375 kNm

- ϕM_n = 940,794 kNm
- 4. Kondisi momen murni

-
$$a = \frac{A_s f_y}{0.85 f'_c b}$$

 $= \frac{4536.46 \times 400}{0.85 30 500}$
 $= 75,702 \text{ mm}$
- $M_n = A_s f_y (d - \frac{a}{2})$
 $= 4536.46 \times 400 (740.5 - \frac{75,702}{2})$
 $= 667378461.5 \text{ Nmm}$
 $= 667.855 \text{ kNm}$
- $\phi M_n = 0.65 \times 667.855$
 $= 440.294 \text{ kNm}$

- Sehingga pada kondisi momen murni diperoleh nilai sebagai berikut

$$- \phi P_n = 0$$

-
$$\phi M_n$$
 = 440,294 kNm

- 5. Menghitung kebutuhan tulangan geser 2D10-100
 - Kebutuhan Tulangan
 - V_u = 224,1 (diperoleh dari SAP2000)
 - Av $=\frac{1}{4}x \pi x D^2 x 2$

$$= \frac{1}{4} x \pi x 10^{2} x 2$$

$$= 157,079 \text{ mm}^{2}$$

$$= \frac{\sqrt{fc'}}{6} x \text{ b } x \text{ (h-d')}$$

$$= \frac{\sqrt{30}}{6} x 500 x (800-59,5)$$

$$= 337990,5 \text{ N}$$

$$= 337,991 \text{ kN}$$

$$= 337,991 \text{ kN}$$

$$= \frac{Av fy (h-d')}{s}$$

$$= \frac{157,079 240 (800-59,5)}{100}$$

$$= 279161,9 \text{ N}$$

$$= 279,162 \text{ kN}$$

$$= 0,6 (\text{Vc} + \text{Vs})$$

$$= 0,6 (337,991 + 279,162)$$

$$= 370,291 \text{ kN}$$

Peningkatan gaya yang terjadi pada kolom akibat pengembangan peta gempa 2017 tidak menunjukan hasil yang terlalu signifikan, sehingga tidak diperlukan perkuatan pada kolom

Tabel 4.19 Perbandingan Kebutuhan Tulangan						
Tipe	Dimensi	Ionia Tulangan	Akibat Bel	oan Gempa		
Kolom	(mm)	Jenns Turangan	Peta Gempa 2010	Peta Gempa 2017		
V 1	500, 800	T. Utama	16 D19	16 D19		
K1	3002000	T. Sengkang	2D10-100	2D10-100		
K/	500x700	T. Utama	16 D19	16 D19		
174	J00X700	T. Sengkang	2D10-100	2D10-100		
K6	600v800	T. Utama	20 D19	20 D19		
KU	0002000	T. Sengkang	2D10-100	2D10-100		
V 11	600x600	T. Utama	24 D19	24 D19		
K11	000x000	T. Sengkang	2D10-100	2D10-100		
клл	600v600	T. Utama	16 D19	16 D19		
N ZZ	600x600	T. Sengkang	1,5D10-150	1,5D10-150		

5.6.2. Kemampuan Elemen Balok

Kemampuan balok dalam menerima beban yang terjadi dilakukan dengan perhitungan menggunakan *softwere* excel, dimana data yang digunakan merupakan hasil *output* dari SAP2000 dengan material yang ada dilapangan, hasil *output* dari SAP2000 menunjukan adanya peningkatan gaya akibat pengembangan peta gempa 2017 seperti terlihat pada Tabel 4.20, sehingga dengan adanya peningkatan tersebut dilakuakan perhitungan kebutuhan tulangan untuk mengetahui kemampuan balok.

Jenis	Output	Peta gen	npa 2010	Peta gen	npa 2017
Balok	SAP	Negatif	Positif	Negatif	Positif
	M (kNm)	-697,623	835,6969	-697,623	914,814
Balok B1	V (kN)	-329,756	676,584	-329,756	740,638
	T (kNm)	-108,5	123,3868	-108,5	135,2868
	M (kNm)	-227,087	330,7637	-227,087	362,0778
Balok B3	V (kN)	-231,142	195,973	-214,526	231,142
	T (kNm)	-56,1147	87,3273	-56,1147	95,7483
	M (kNm)	-219,037	390,0898	-219,037	428,0935
Balok B4	V (kN)	-152,435	201,914	-152,435	221,588
	T (kNm)	-67,8039	65,9105	-67,8039	72,1503
	M (kNm)	-96,5785	178,6728	-96,5785	195,5881
Balok B28	V (kN)	-63,285	100,608	-63,285	110,133
	T (kNm)	-14,1586	18,4362	-14,1586	20,1816
	M (kNm)	-240,977	281,5537	-240,977	308,9468
Balok B31	V (kN)	-181,227	179,292	-181,227	179,292
	T (kNm)	-20,9839	45,9646	-20,9839	50,3893

Tabel 4.20 Hasil *output* SAP2000 pada balok

Hasil *output* SAP2000 pada Tabel 4.20 menunjukan adanya peningkatan gaya pada balok akibat pengembangan peta gempa 2017, peningkatan tersebut terjadi karena meningkatnya gaya geser dasar yang mengakibatkan meningkatnya simpangan, sehingga meningkat pula gaya yang terjadi pada balok, dengan adanya peningkatan tersebut dilakukan perhitungan kebutuhan tulangan untuk mengetahui kemampuan balok terhadap peningkatan akibat pengembangan peta gempa 2017,

Digunakan balok B1 sebagai contoh perhitungan balok dengan data yang diperoleh sebagai berikut:

Data material di lapangan

fc'	= 30	Mpa	d'	= 90,5	mm
fy	= 400	Мра	d	= 710	mm
b	= 450	mm	ts	= 40	mm
h	= 800	mm	У	= 65	mm

 $\beta_1 = 0.85$

Gambar 4.30 Detail penulangan pada balok

1. Perhitungan kebutuhan tulangan pada balok dilakukan dengan tahapan sebagai berikut

$$- \rho_b = 0,85 \ x \ \beta_1 \frac{f_c}{f_y} \left(\frac{600}{600+f_y}\right)$$

$$= 0,85 \ x \ \beta_1 \frac{30}{400} \left(\frac{600}{600+400}\right)$$

$$= 0,0325$$

$$- \rho_{max} = 0,75 \rho_b$$

$$= 0,0239$$

$$- R_{nmax} = \emptyset \rho_b f_y \left(1 - \frac{\frac{1}{2} \times 0,75 \times \rho_b f_y}{0,85 f_c}\right)$$

$$= 0,75 \ x \ 0,032 \ x \ 400 \ \left(1 - \frac{\frac{1}{2} \times 0,75 \times 0,032 \times 400}{0,85 \times 30}\right)$$

$$= 7,791$$

$$- R_n = \frac{M_n}{b \ d^2}$$

$$= \frac{\frac{697,7}{0,8}}{450 \ 710^2}$$

$$= 5,298$$

$$-\rho = \frac{0.85f_c}{f_y} \left(\sqrt{1 - \frac{2R_n}{0.85f_c}}\right)$$
$$= \frac{0.85 \times 30}{400} \left(\sqrt{1 - \frac{2 \times 5.298}{0.85 \times 30}}\right)$$
$$= 0.0150$$

 Menghitung kebutuhan tulangan dengan asumsi awal untuk tulangan bagian atas 10D25, bagian bawah 5D25 dengan sengkang 4D12-100

- As
=
$$\frac{1}{4}x \pi x d^2 x 10$$

= $\frac{1}{4}x \pi x 25^2 x 10$
= 4908,739 mm²
- As' = $\frac{1}{4}x \pi x d^2 x 5$
= $\frac{1}{4}x \pi x 25^2 x 5$
= 2454,369 mm²

3. Kontrol tulangan minimum

-
$$A_{min}$$
 = $\frac{1.4}{fy}x$ b x d
= $\frac{1.4}{400}x$ 450 x 800
= 1117,46 mm²
- A_{min} < As
1117,46 < 4908,739 oke
As dapat digunakan
- a = $\frac{(As - As')fy}{0.85 fc'b}$
= $\frac{(4908,739 - 2454,369)400}{0.85 30 450}$
= 85,543 mm ... tulangan desak telah
- C_c = 0,85 fc' a b
= 0,85 x 30 x 85,6 x 450
= 9,85 fc' a b
= 0,85 fc' a b

leleh

$$= 981747,704$$

$$- M_n = C_c (d - \frac{a}{2}) + C_s (d - d')$$

$$= 981747,704 (710 - \frac{85,6}{2}) + 981747,704 (710-90,5)$$

$$= 1311833197 \text{ Nmm}$$

$$= 1311,833 \text{ kNm}$$

$$- M_n > M_u / 0,9$$

1311,833 > 775,222Oke, Tulangan dapat digunakan

Kebutuhan tulangan utama pada tumpuan balok B1 adalah 10D25 untuk bagian atas dan untuk tulangan bawahnya digunakan 5D25, hal itu karena pada posisi tumpuan balok menerima momen positif. Sedangan pada bagian lapangan digunakan momen negatif untuk menghitung kebutuhan tulangan pada balok.

4. Menghitung kebutuhan tulangan geser dengan asumsi awal 4D12-80

-	A_{v}	$=\frac{1}{4}\pi d^2 4$			
		$=\frac{1}{4}x \pi x 12^2 x 4$			
		$= 452,389 \text{ mm}^2$			
-	V_u	=740,7 kN			
-	Vc	$=\frac{\sqrt{f_{c'}}}{6}b x d$			
		$=\frac{\sqrt{30}}{6} \ge 250 \ge 350$			
		= 312201,9 N			
		= 312,202 kN			
-	V_s	$=\frac{Av fy d}{s}$			
		$=\frac{452,389x240x760}{80}$			
		= 1031448 N			
		= 1031,448 kN			
-	ϕV_n	$=0.6 (V_c + V_s)$			
		= 0,6 (312,202 + 1031,448)			
		= 806,189			

-
$$\phi V_n$$
 > Vu
806,189 > 740,7 ... sengkang dapat digunakan

Hasil perhitungan kebutuhan tulangan menunjukan bahwa balok B1 mengalami penambahan kebutuhan tulangan, seperti dapat dilihat pada Tabel 4.21. penambahan tersebut menunjukan bahwa balok yang ada tidak mampu menerima beban akibat pengembangan peta gempa 2017, sehingga dibutuhkan perkuatan pada balok untuk memenuhi kebutuhan amannya, namun perkuatan yang dibutuhkan peningkatan beban yang diterima akibat pengembanagan peta gempa 2017.

Tine	Jenis Tulangan	Akibat Beban Gempa			
Balok		Peta Gempa 2010		Peta Gempa 2017	
Dalok		Tumpuan	Lapangan	Tumpuan	Lapangan
	T. Atas	10 D25	4 D25	10 D25	4 D25
B 1	T. Bawah	5 D25	7 D25	5 D25	10 D25
450x800	Sengkang	2D10-100	D10-100	4D12-80	2D12-100
	T. Torsi	2 D10	2 D10	2 D10	2 D10
	T. Atas	6 D25	3 D25	6 D25	3 D25
B4	T. Bawah	3 D25	5 D25	3 D25	5 D25
400x600	T. Sengkang	1,5D10-100	D10-100	1,5D10-100	D10-100
	T. Torsi	2 D10	2 D10	2 D10	2 D10
	T. Atas	9 D19	3 D19	9 D19	3 D19
B6	T. Bawah	4 D19	5 D19	4 D19	10 D19
450x600	T. Sengkang	1,5D10-100	D10-100	2D10-100	D10-100
	T. Torsi	2 D10	2 D10	2 D10	2 D10
	T. Atas	4 D25	3 D25	4 D25	3 D25
B11	T. Bawah	3 D25	4 D25	3 D25	5 D25
450x700	T. Sengkang	1,5D10-100	D10-100	2D10-100	D10-100
	T. Torsi	2 D10	2 D10	2 D10	2 D10
	T. Atas	6 D19	3 D19	6 D19	3 D19
B22	T. Bawah	3 D19	6 D19	3 D19	6 D19
400x600	T. Sengkang	D10-100	D10-100	D10-100	D10-100
	T. Torsi	2 D10	2 D10	2 D10	2 D10

Tabel 4.21 Perbandingan Kebutuhan Tulangan pada Balok