BAB I
PENDAHULUAN

1.1. Latar Belakang

Perkembangan teknologi beton dewasa ini telah mengalami peningkatan sedemikian pesatnya sehingga manusia dituntut kreativitasnya dalam menciptakan inovasi baru untuk kemajuan peradaban. Demikian pula dalam bidang konstruksi, penelitian-penelitian sering dilakukan dalam upaya menciptakan alternatif teknologi yang cukup inovatif. Bahan *Additive* adalah bahan selain unsur pokok beton (air, semen, pasir dan kerikil), yang nantinya akan dicampur antara unsur pokok beton dengan bahan tambahan sehingga menjadi satu kesatuan adukan beton yang monolit, merupakan salah satu upaya inovatif (Sulistyawati, 2009). Pada proyek yang besar dan berkondisi khusus (*ekstrim*) seperti pembangunan jembatan dengan bentang panjang di tengah laut, pembangunan dermaga, bangunan tinggi dan dinding penahan ombak laut perlu menggunakan beton mutu tinggi. Pembuatan beton mutu tinggi diperlukan nilai fas (faktor air semen) yang rendah yaitu berkisar antara 0,20-0,30 (ACI, 1998). Pada pengerjaan beton mutu tinggi di lapangan, untuk memudahkan pengerjaan beton karena mengingat menggunakan air yang sedikit, maka diperlukan bahan *admixture* berupa *Superplasticizer* untuk memudahkan pengadukan beton.

Besar dan kecilnya porositas juga dipengaruhi besar dan kecilnya fas yang digunakan. Semakin besar fasnya porositas semakin besar, sebaliknya semakin kecil fas-nya porositas semakin kecil. Beton mutu tinggi sendiri membutuhkan fas yang rendah, namun jika fas nya terlalu rendah pengerjaan beton terutama ketika diaduk, dituang, diangkut dan terutama ketika dipadatkan tidak maksimal, sehingga akan mengakibatkan beton menjadi keropos, hal tersebut akan mengakibatkan menurunnya kuat tekan beton, mengatasi hal tersebut dapat dipergunakan *superplasticizer*. *Superplasticizer* adalah bahan tambah yang bersifat kimia (*chemical admixture*) yang lebih banyak digunakan untuk memperbaiki kinerja pelaksanaan. Penggunaan *superplasticizer* dapat mengurangi jumlah pemakaian air, mempercepat waktu pengerasan dan meningkatkan *workability*. 
Penelitian ini dilakukan untuk menganalisis kuat tekan awal beton mutu sangat tinggi dengan variasi tambahan superplastisizer. Langkah-langkah yang harus dilakukan untuk mencapai kuat tekan awal beton mutu tinggi yaitu pengaruh beton terhadap FAS, agregat dan variasi bahan tambahan superplastisizer.

1.2. Rumusan Masalah

Pada penelitian ini, ada pun rumusan masalah yang digunakan sebagai berikut ini.
1. Berapa kuat tekan awal beton mutu tinggi dengan bahan tambahan superplastisizer pada umur 3 hari, 7 hari dan 28 hari?
2. Berapa nilai variasi superplasticizer yang dapat digunakan dalam pembuatan beton awal mutu tinggi?

1.3. Lingkup Penelitian

Lingkup penelitian ini meneliti kuat tekan beton mutu tinggi awal dengan variasi bahan tambahan superplastisizer. Penelitian ini dilakukan menggunakan variasi superplasticizer 0,6%, 0,8% dan 1% dengan umur perendaman selama 3 hari, 7 hari dan 28 hari. Adapun lingkup dan batasan penelitian adalah sebagai berikut ini.
1. Benda uji berbentuk silinder 15 cm x 30 cm.
2. Agregat kasar yang digunakan yaitu ukuran 9,5 mm.
3. Superplasticizer merk besmittel dan viscocrete 1003.
5. Mix design yang dipakai yaitu metode American Concrete Institute (ACI).

1.4. Tujuan Penelitian

Pada penelitian ini, ada pun tujuan yang dilakukan penelitian ini sebagai berikut:
1. mengkaji kuat tekan awal beton mutu tinggi dengan bahan tambahan superplastisizer pada umur 3 hari, 7 hari, dan 28 hari, dan
2. mengkaji nilai variasi superplasticizer yang dapat digunakan dalam pembuatan beton awal mutu tinggi.
1.5. Manfaat Penelitian

Manfaat penelitian ini adalah memberikan informasi dan ilmu pengetahuan bagaimana menganalisis kuat tekan awal beton mutu tinggi dengan variasi bahan tambahan *superplastisizer* dan diharapkan dapat dijadikan sebagai sumber informasi dan ilmu pengetahuan untuk pembangunan infrastruktur di masa mendatang.