BAB IV

HASIL PENELITIAN DAN PEMBAHASAN

4.1. Parameter Geoteknik dan Mekanik pada Model Drucker Prager

4.1.2. Tanah dengan Perbaikan Kolom Bentuk T dengan panjang 50 cm

Berdasarkan analisis numeris terhadap tanah dengan perbaikan kolom SiCC bentuk T dengan panjang 50 cm pada beban 140 kg di tengah kolom didapat parameter numerik untuk pemodelan tanah dengan perkuatan kolom SiCC ditunjukkan pada Tabel 4.1, 4.2, dan 4.3. Hasil dari pemodelan numeris, didapat nilai penurunan sebesar 11,11 mm pada beban 140 kg. Nilai ini telah mendekati dengan hasil pengujian laboratorium pada beban dan kolom yang sama yaitu 11,12 mm. Kurva penurunan dan tekanan untuk hasil pengujian laboratorium dan analisis numerik memiliki kecenderungan bentuk yang sama seperti yang ditunjukkan pada Gambar 4.1, serta reaksi tanah di sekitar kolom dari hasil pemodelan ditunjukkan pada Gambar 4.2, dan 4.3.

		Tanah
Material	Parameter	Nilai
Drucker Prager Hardening	Angle of Friction (°)	2
	Initial Tension	5×10 ⁻³
	Dilation Angel (°)	2
	Yield Stress (MPa)	5×10 ⁻³
	Abs Plastic Strain	0
Elastic	Young's Modulus (MPa)	1,25
	Poisson's Ratio	3,2×10 ⁻¹

Tabel 4.1. Data parameter material tanah

	Beton	
Material	Parameter	Nilai
Density (kg/m ³)		1,5×10 ⁻⁵
Elastic	Young's Modu (MPa)	<i>lus</i> 6,65×10 ⁴
	Poisson's Ratio	1,5×10 ⁻¹
	Dilatation Angle (°)	1
	Ecccentricity	1
Plasticity	Fb0/fc0	1,16
	K	6,7×10 ⁻¹
	Viscosity Parameter	· 5×10-3
	Tensile E	Sehaviour
	Yield Crackin	ng Damage
	Stress Strain	Parameter
	(MPa)	
	8×10^{-5} 0	0
	1,6×10 ⁻⁴ 2,45×10	<u>9,9×10⁻¹</u>
	Concrete Ten	ision Damage
Concrete	Damage Parameter	Cracking Strain
Damaged	0	0
Plasticity	9,9×10 ⁻¹	2,45×10 ⁻²
	Compressiv	e Behavior
	Yield Stress (MPa)	Inelastic Strain
	3.87×10 ⁻³	0
	7.74×10^{-3}	1.1×10 ⁻³
	1.16×10 ⁻³	2.4×10 ⁻³
	1,55×10 ⁻³	3.43×10 ⁻³
	1,94×10 ⁻³	4,6×10 ⁻³
	2,32×10 ⁻³	8,47×10 ⁻³
	2,71×10 ⁻³	1,1×10 ⁻²
	7×10 ⁻²	2,7×10 ⁻²
	Concrete Comp	ressive Damage
	Damage	Inclastic Strain
	Parameter	Inelastic Strain
	0	0
	5×10 ⁻²	8×10 ⁻³
	1×10 ⁻¹	1,6×10 ⁻²
	7,5×10 ⁻¹	2,7×10 ⁻²

Tabel 4.2. Data parameter material beton

	Pasir	
Material	Parameter	Nilai
	Young's Modulus (MPa)	5
Elastic	Poisson's Ratio	3×10 ⁻¹

Tabel 4.3. Data parameter material pasir

Gambar 4.1. Kurva hubungan tekanan dan penurunan pada hasil laboratorium dan analisis numerik.

Gambar 4.2. Hasil analisis numerik.

Gambar 4.3. Reaksi tanah pada analisis numerik.

4.1.2. Tanah dengan Perbaikan Kolom Bentuk T dengan panjang 70 cm

Berdasarkan analisis numeris terhadap tanah dengan perbaikan kolom SiCC bentuk T dengan panjang 70 cm pada beban 1400 N di tengah kolom didapat parameter numerik untuk pemodelan tanah dengan perkuatan kolom SiCC ditunjukkan pada Tabel 4.4, 4.5, dan 4.6. Hasil dari pemodelan numeris, didapat nilai penurunan sebesar 7,64 mm pada beban 140 kg. Nilai ini telah mendekati dengan hasil pengujian laboratorium pada beban dan kolom yang sama yaitu 7,68 mm. Kurva penurunan dan tekanan untuk hasil pengujian laboratorium dan analisis numerik memiliki kecenderungan bentuk yang sama seperti yang ditunjukkan pada Gambar 4.4, serta reaksi tanah di sekitar kolom dari hasil penodelan ditunjukkan pada Gambar 4.5. dan 4.6.

Matarial	Tanah		
Material	Parameter	Nilai	
	Angle of Friction (°)	5	
Duuskan Dugaan	Initial Tension	1,5×10 ⁻²	
Drucker Prager Hardoning	Dilation Angel (°)	5	
maraening	Yield Stress (MPa)	1,5×10 ⁻²	
	Abs Plastic Strain	0	
Elastic	Young's Modulus (MPa)	1,7	
	Poisson's Ratio	3,2×10 ⁻¹	

Tabel 4.4. Data parameter material tanah

	Beton	
Material	Parameter	Nilai
Density (kg/m ³)		1,5×10 ⁻⁵
Elastic	Young's Modu (MPa)	<i>lus</i> 6,65×10 ⁴
	Poisson's Ratio	1,5×10 ⁻¹
	Dilatation Angle (°)	1
	Ecccentricity	1
Plasticity	Fb0/fc0	1,16
	K	6,7×10 ⁻¹
	Viscosity Parameter	· 5×10-3
	Tensile E	Behaviour
	Yield Crackin	ng Damage
	Stress Strain	Parameter
	(MPa)	
	8×10^{-3} 0	0
	1,6×10 ⁻⁴ 2,45×10	<u>9,9×10⁻¹</u>
	Concrete Ter	ision Damage
Concrete	Damage Parameter	Cracking Strain
Damaged	0	0
Plasticity	9,9×10 ⁻¹	2,45×10 ⁻²
	Compressiv	e Behavior
	Yield Stress (MPa)	Inelastic Strain
	3.87×10 ⁻³	0
	7.74×10^{-3}	1.1×10 ⁻³
	1.16×10^{-3}	2.4×10 ⁻³
	1,55×10 ⁻³	3.43×10 ⁻³
	1,94×10 ⁻³	4,6×10 ⁻³
	2,32×10 ⁻³	8,47×10 ⁻³
	2,71×10 ⁻³	1,1×10 ⁻²
	7×10 ⁻²	2,7×10 ⁻²
	Concrete Comp	ressive Damage
	Damage	Inclastic Cturin
	Parameter	meiastic strain
	0	0
	5×10 ⁻²	8×10 ⁻³
	1×10 ⁻¹	1,6×10 ⁻²
	7,5×10 ⁻¹	2,7×10 ⁻²

Tabel 4.5. Data parameter material beton

-	Pasir		
Material	Parameter	Nilai	
	Young's	5	
Elastic	Modulus (MPa)	5	
Littistic	Poisson's Ratio	3×10 ⁻¹	

Tabel 4.6. Data parameter material pasir

Gambar 4.4. Kurva hubungan tekanan dan penurunan pada hasil laboratorium dan analisis numerik.

Gambar 4.5. Hasil analisis numerik.

Gambar 4.6. Reaksi tanah pada analisis numerik.

4.2. Pemodelan Sistem Pelat dengan Perbaikan Kolom SiCC

4.2.1. Pemodelan Sistem Pelat dengan Perbaikan Kolom SiCC Bentuk T dengan Panjang 50 cm

Berdasarkan nilai parameter geoteknik dan mekanik yang didapat pada pada pemodelan kolom tunggal, maka dimodelkan sistem pelat dengan perbaikan kolom SiCC bentuk T dengan panjang 50 cm. Pada pemodelan numeris, dilakukan analisis konvergensi agar didapatkan nilai penurunan yang sesuai dengan pengujian laboratorium. Analisis konvergensi ditunjukkan oleh Tabel 4.7. dan Gambar 4.7. Berdasarkan hasil pemodelan, didapat nilai penurunan pada beban maksimal sebesar 10,76 mm pada beban 8 ton, yang ditunjukkan pada Gambar 4.8. Sedangkan reaksi tanah yang terjadi di sekitar kolom ditunjukkan pada Gambar 4.9 dan 4.10.

T-1-1 47	Data	11 - 1 -	1
Tapel 4.7.	Data	analisis	Konvergensi
10001			

Mach	Jumlah	Penurunan
INICSII	Elemen	(mm)
150	1328	7.138
140	1418	9.472
130	2200	9.485
120	2264	8.392
110	2532	10.721
100	2800	10.761
90	3612	13.498
80	4092	12.369

Gambar 4.7. Kurva analisis konvergensi.

Gambar 4.8. Kurva hubungan penurunan dan beban pada pemodelan pelat dengan perbaikan kolom SiCC bentuk T 50 cm.

Gambar 4.9. Hasil analisis numerik pelat dengan perbaikan kolom SiCC bentuk T 50 cm.

Gambar 4.10. Reaksi tanah pada hasil analisis numerik pelat dengan perbaikan kolom SiCC bentuk T 50 cm.

4.2.2. Pemodelan Sistem Pelat dengan Perbaikan Kolom SiCC Bentuk T dengan Panjang 70 cm

Berdasarkan nilai parameter geoteknik dan mekanik yang didapat pada pada pemodelan kolom tunggal, maka dimodelkan sistem pelat dengan perbaikan kolom SiCC bentuk T dengan panjang 70 cm. Pada pemodelan numeris, dilakukan analisis konvergensi agar didapatkan nilai penurunan yang sesuai dengan pengujian laboratorium. Analisis konvergensi ditunjukkan oleh Tabel 4.8. dan Gambar 4.11. Berdasarkan hasil pemodelan, didapat nilai penurunan pada beban maksimal sebesar 7,04 mm pada beban 8 ton, yang ditunjukkan pada Gambar 4.10. Sedangkan reaksi tanah yang terjadi di sekitar kolom ditunjukkan pada Gambar 4.11. dan Gambar 4.12.

Mach	Jumlah	Penurunan
IVIESII	Elemen	(mm)
150	1328	7.036
145	1654	7.179
140	1418	9.463
135	1870	9.415
130	2200	9.241
125	1976	9.256
120	2264	8.408
115	2032	8.315

Tabel 4.8. Data analisis konvergensi

Gambar 4. 12. Kurva hubungan penurunan dan beban pada pemodelan pelat dengan perbaikan kolom SiCC bentuk T 70 cm.

Gambar 4.13. Hasil analisis numerik pelat dengan perbaikan kolom SiCC bentuk T 70 cm.

Gambar 4.14. Reaksi tanah pada hasil analisis numerik pelat dengan perbaikan kolom SiCC bentuk T 70 cm

4.3. Pembahasan

4.3.1. Parameter Geoteknik dan Mekanik pada Model Drucker Prager

Metode elemen hingga merupakan metode numerik untuk mendapatkan hasil yang mendekati dengan distribusi variabel lapangan pada suatu bidang permasalahan yang sulit untuk diperoleh analisisnya (Fattah dkk., 2015). Simulasi numerik menunjukkan bahwa ketika menerima beban, kolom mengalami deformasi arah lateral sehingga mampu mengurangi deformasi pelat. Berdasarkan hasil pemodelan, penggunaan analisis *elasto–plastic Drucker Prager* dapat diaplikasikan dalam pemodelan sistem pelat pada tanah ekspansif dengan perbaikan kolom SiCC.

Perilaku tanah pada masing-masing kolom berbeda dikarenakan oleh perbedaan pengaruh kapur yang terjadi. Muntohar (2009) menjelaskan bahwa ion kapur pada kolom kapur akan bermigrasi ke sekitarnya dan akan bereaksi dengan tanah sehingga kondisi tanah menjadi alkalinit. Kondisi ini menimbulkan reaksi Alumino-Silikat yang kemudian terhidrasi yang mengakibatkan sementasi pada tanah sehingga tanah menjadi lebih kaku. Semakin panjang kolom, maka penyebaran kapur semakin luas sehingga kekakuan tanah semakin besar. Hal ini menyebabkan nilai parameter tanah yang digunakan dalam pemodelan numerik sistem pelat dengan perkuatan kolom bentuk T dengan panjang kolom 50 cm berbeda dengan nilai parameter tanah yang digunakan dalam pemodelan numerik sistem pelat dengan perkuatan kolom bom panjang kolom 70 cm. Selain itu, proses stabilisasi yang terjadi dapat

menghasilkan kekakuan tanah dan mengurangi deformasi (Poorooshasb dan Meyerhof, (dalam Muntohar, 2013). Sehingga, hasil analisis numerik dipengaruhi oleh besar nilai kekakuan dari masing-masing material.

Dalam penelitian ini, nilai parameter yang digunakan untuk tanah ekspansif yang digunakan dalam pemodelan berbeda antara yang diperkuat dengan kolom SiCC berberntuk T dengan panjang 50 cm dan 70 cm berbeda. Perbedaan nilai kekakuan tersebut ditunjukkan pada Table 4.9.

	Tanah		
Material	Parameter	Diperkuat Kolom 50 cm	Diperkuat Kolom 70 cm
	Angle of Friction (°)	2	5
Druckar	Initial Tension	5×10 ⁻³	1,5×10 ⁻²
Drucker Prager Hardening	Dilation Angel (°)	2	5
	Yield Stress (MPa)	5×10-3	1,5×10 ⁻²
	Abs Plastic Strain	0	0
Elastic	Young's Modulus (MPa)	1,25	1,7
	Poisson's Ratio	3,2×10 ⁻¹	3,2×10 ⁻¹

Tabel 4.9. Nilai Parameter Material Tanah pada kolom SiCC bentuk T dengan

panjang 50 cm dan 70 cm

4.3.2. Pemodelan Sistem Pelat dengan Perbaikan Kolom SiCC

Berdasarkan analisis numerik, penurunan pada pelat perkerasan kaku pada tanah ekspansif yang diperkuat kolom bentuk T dengan panjang 70 cm lebih kecil dari 50 cm, ditunjukkan pada Gambar 4.13. Hal ini menunjukkan bahwa semakin panjang kolom, maka penurunan semakin kecil. Penggunaan kolom T-*shape* mampu mengurangi *settlement* dan deformasi pada arah vertikal, dikarenakan semakin besar diameter kolom, maka *transfer area* beban semakin besar (Liu dkk., 2012). Intensitas beban ultimit kolom bertambah akibat

undrained shear strength meningkat yang disebabkan oleh bertambahnya panjang kolom (Hasan dan Samadhiya, 2016). Kolom dimodelkan sebagai *floating piles* yang tidak menyentuh lapisan tanah keras. Pada kondisi ini, beban dari roda kendaraan akan dilawan oleh gesekan (*friction*) yang terjadi pada kolom sehingga mampu mengurangi penurunan yang terjadi pada perkerasan kaku.

Gambar 4.15. Kurva perbandingan penurunan pelat yang diperkuat kolom SiCC bentuk T dengan panjang 50 cm dan 70 cm.