TUGAS AKHIR

STUDI KOMPARASI RESPON SPEKTRA INDONESIA UNTUK BANGUNAN GEDUNG DENGAN PEMBEBANAN PETA GEMPA 2010 DAN 2017

Diajukan guna melengkapi persyaratan untuk memenuhi gelar Sarjana Teknik di Jurusan Teknik Sipil Fakultas Teknik Universitas Muhammadiyah Yogyakarta

Disusun oleh: Rahma Amaliah 20140110183

PROGRAM STUDI TEKNIK SIPIL
FAKULTAS TEKNIK
UNIVERSITAS MUHAMMADIYAH YOGYAKARTA
2018

HALAMAN PERNYATAAN

Saya yang bertanda tangan di bawah ini:

Nama

: Rahma Amaliah

NIM

: 20140110183

Judul

: Studi Komparasi Respon Spektra Indonesia untuk

Bangunan Gedung dengan Pembebanan Peta Gempa

2010 dan 2017

Menyatakan dengan sebenarnya bahwa Tugas Akhir ini merupakan karya saya sendiri. Apabila terdapat karya orang lain yang saya kutip, maka saya akan mencantumkan sumber secara jelas. Jika dikemudian hari ditemukan ketidakbenaran dalam pernyataan ini, maka saya bersedia menerima sanksi dengan aturan yang berlaku. Demikian pernyataan ini saya buat tanpa ada paksaan dari pihak mana pun.

Yogyakarta, 08 Maret 2018

Yang membuat pernyataan

Rahma Amaliah

iv

HALAMAN PERSEMBAHAN

Bismillahirrahmanirrahim.

Dengan izin Allah SWT, tugas akhir ini dipersembahkan untuk kedua orang tua dan seluruh saudara.

Seluruh mahasiswa yang sedang berjuang menyelesaikan studinya. Semoga tugas akhir ini dapat bermanfaat bagi agama, bangsa, dan negara, Tanah Air Indonesia.

DAFTAR ISI

HAL	AMAN	JUDUL	i
LEM	BAR PI	ENGESAHAN	iii
HAL	AMAN	PERNYATAAN	iv
HAL	AMAN	PERSEMBAHAN	V
PRAI	KATA		vi
DAF	TAR IS	v	⁄iii
DAF	ΓAR TA	ABEL	X
DAF	ΓAR GA	AMBAR	хi
DAF	ΓAR LA	AMPIRAN	ciii
DAF	ΓAR SI	NGKATAN	ιiv
		ΓΙLAH	
ABS	ΓRAK	Σ	κix
ABST	RACT		XX
BAB	I. PENI	DAHULUAN	1
1.1.	Latar B	elakang	1
1.2.		an Masalah	
1.3.	Lingku	p Penelitian	2
1.4.	•	Penelitian	
1.5.	Manfaa	t Penelitian	3
BAB	II. TIN.	JAUAN PUSTAKA DAN LANDASAN TEORI	4
2.1.	Tinjaua	ın Pustaka	4
	2.1.1.	Respon Spektrum	6
	2.1.2.	Jenis Tanah	
	2.1.3.	Bangunan	8
2.2.	Dasar 7	Ceori	9
	2.2.1.	Gempa Bumi	
	2.2.2.	Peta Gempa 2010 dan 2017	10
	2.2.3.	Parameter percepatan gempa (terpetakan)	12
	2.2.4.	Kelas Situs	
		Koefisien-koefisien situs dan parameter-parameter respon spektral atan gempa maksimum yang dipertimbangkan risiko-tertarget	
)	
	Z., Z., b.	Parameter percepatan spektral desain	14

	2.2.7.	Respon Spektrum Desain	15
BAB	III. ME	TODE PENELITIAN	16
3.1.	Waktu	Penelitian	16
3.2.	Alur Pe	enelitian	16
3.3.	Pengan	ıbilan Data	18
BAB	IV. HA	ASIL PENELITIAN DAN PEMBAHASAN	19
4.1.	Kompa	rasi nilai S _{D1} tahun 2010 dan 2017	19
	4.1.1.	Tanah Keras	19
	4.1.2.	Tanah Sedang	21
	4.1.3.	Tanah Lunak	24
4.2.	Kompa	rasi nilai S _{DS} tahun 2010 dan 2017	27
	4.2.1.	Tanah Keras	27
	4.2.2.	Tanah Sedang	29
	4.3.1	Tanah Lunak	32
4.3.	Studi K	Comparasi Respons Spektrum	35
	4.3.1.	Studi Komparasi Respons Spektrum Kota Jayapura	35
	4.3.2.	Studi Komparasi Respons Spektrum Kota Pontianak	38
BAB	V. KES	SIMPULAN DAN SARAN	43
5.1.	Kesimp	pulan	43
5.2.	Saran		44
DAF	TAR PU	JSTAKA	xxi
LAM	PIRAN		xxiv

DAFTAR TABEL

Tabel 2.1	Koefisien situs, Fa	13
Tabel 2.2	Koefisien situs, Fv	14
Tabel 4.1	Perbandingan nilai S_{D1} Tanah Keras pada Peta Gempa Tahun	
	2010 dan 2017	20
Tabel 4.2	Perbandingan nilai S_{DI} Tanah Sedang pada Peta Gempa Tahun	
	2010 dan 2017	22
Tabel 4.3	Perbandingan nilai S_{D1} Tanah Lunak pada Peta Gempa Tahun	
	2010 dan 2017	25
Tabel 4.4	Kota yang Memiliki Nilai S _{D1} Tertinggi	26
Tabel 4.5	Perbandingan nilai S_{DS} Tanah Keras pada Peta Gempa Tahun	
	2010 dan 2017	28
Tabel 4.6	Perbandingan nilai S_{DS} Tanah Sedang pada Peta Gempa Tahun	
	2010 dan 2017	31
Tabel 4.7	Perbandingan nilai S_{DS} Tanah Lunak pada Peta Gempa Tahun	
	2010 dan 2017	33
Tabel 4.8	Kota yang Memiliki Nilai S _{DS} Tertinggi	34

DAFTAR GAMBAR

Gambar 1.1	Peta tektonik wilayah Indonesia dari data geodetik hingga	
	tahun 2016, vektor kecepatan pada referensi sistem ITRF	
	2008	1
Gambar 2.1	Peta percepatan spektrum respons 0,2 detik dengan nisbah	
	redaman 5% di batuan dasar (SB) untuk probabilitas	
	terlampaui 2% dalam 50 tahun (2010)	10
Gambar 2.2	Peta percepatan spektrum respons 1 detik dengan nisbah	
	redaman 5% di batuan dasar (SB) untuk probabilitas	
	terlampaui 2% dalam 50 tahun (2010)	10
Gambar 2.3	Peta percepatan spektrum respons 0,2 detik dengan nisbah	
	redaman 5% di batuan dasar (SB) untuk probabilitas	
	terlampaui 2% dalam 50 tahun (2017)	11
Gambar 2.4	Peta percepatan spektrum respons 1 detik dengan nisbah	
	redaman 5% di batuan dasar (SB) untuk probabilitas	
	terlampaui 2% dalam 50 tahun (2017)	11
Gambar 2.5	Respon Spektrum Desain	15
Gambar 3.1	Diagram Alir Penelitian	16
Gambar 3.2	Diagram Alir Penelitian (lanjutan)	17
Gambar 4.1	Komparasi Nilai S _{DI} Tanah Keras pada Peta Gempa Tahun	
	2010 dan 2017	19
Gambar 4.2	Grafik Peningkatan S _{D1} pada Tanah Keras	21
Gambar 4.3	Komparasi Nilai $S_{\rm D1}$ Tanah Sedang pada Peta Gempa Tahun	
	2010 dan 2017	23
Gambar 4.4	Grafik Peningkatan S _{D1} pada Tanah Sedang	23
Gambar 4.5	Komparasi Nilai S_{D1} Tanah Lunak pada Peta Gempa Tahun	
	2010 dan 2017	24
Gambar 4.6	Grafik Peningkatan S _{D1} Tanah Lunak	26
Gambar 4.7	Komparasi Nilai S _{DS} Tanah Keras pada Peta Gempa Tahun	
	2010 dan 2017	27
Gambar 4.8	Grafik Peningkatan S _{DS} pada Tanah Keras	29

Gambar 4.9	Komparasi Nilai S _{DS} Tanah Sedang pada Peta Gempa Tahun	
	2010 dan 2017	30
Gambar 4.10	Grafik Peningkatan S _{DS} pada Tanah Sedang	30
Gambar 4.11	Komparasi nilai S_{DS} Tanah Lunak pada Peta Gempa Tahun	
	2010 dan 2017	32
Gambar 4.12	Grafik Peningkatan S _{Ds} pada Tanah Lunak	34
Gambar 4.13	Respon Spektrum Kota Jayapura pada Peta Gempa 2017	35
Gambar 4.14	Respon Spektrum Tanah Keras di Kota Jayapura	35
Gambar 4.15	Respon Spektrum Tanah Sedang di Kota Jayapura	36
Gambar 4.16	Respon Spektrum Tanah Lunak di Kota Jayapura	36
Gambar 4.17	Regional Tektonik Papua dan Kegempaan	38
Gambar 4.18	Respon Spektrum Kota Pontianak pada Peta Gempa 2017	39
Gambar 4.19	Respon Spektrum Tanah Keras di Kota Pontianak	39
Gambar 4.20	Respon Spektrum Tanah Sedang di Kota Pontianak	40
Gambar 4.21	Respon Spektrum Tanah Lunak di Kota Pontianak	40
Gambar 4.22	Sebaran Sesar Aktif yang Berhasil diidentifikasi di	
	Kalimantan yang Terangkum dalam Peta Gempa Nasional	
	2017	42

DAFTAR LAMPIRAN

- Lampiran 1. Perhitungan percepatan respon spektrum dari membaca peta gempa 2017
- Lampiran 2. Nilai percepatan spektrum respons gempa
- Lampiran 3. Peta Gempa 2010 dan 2017

DAFTAR SINGKATAN

Simbol	Keterangan
Fa	Short-period site coefficient (at 0,2 s-period) merupakan
	koefisien situs untuk perioda pendek (pada perioda 0,2 detik)
$F_{\mathbf{v}}$	Long-period site coefficient (at 1,0 s-period) merupakan
	koefisien situs untuk perioda panjang (pada perioda 1 detik)
g	Gravitaty merupakan percepatan gravitasi, dinyatakan dalam
	meter per detik kuadrat (m/detik²)
MCE	Maximum Considered Earthquake merupakan gempa
	maksimum dengan pertimbangan berstandar
MCE_R	Risk-Targeted Maximum Considered Earthquake merupakan
	gempa maksimum yang dipertimbangkan dengan risiko
	tertarget.
S1	Mapped MCER, 5 percent damped, spectral response
	acceleration parameter at a period of 1 second merupakan
	percepatan respon spektral periode 1,0 detik, 5 % teredam,
	MCER yang dipetakan
SA	Site Class A merupakan klasifikasi sifat tanah yakni batuan
	keras
Sa	Spectral acceleration merupakan percepatan respon
	spektrum desain
SB	Site Class B merupakan klasifikasi sifat tanah yakni batuan
SC	Site Class C merupakan klasifikasi sifat tanah yakni tanah
CD.	keras, sangat padat dan batuan lunak
SD	Site Class D merupakan klasifikasi sifat tanah yakni tanah
C	sedang
S_{D1}	Design, 5 percent damped, spectral response acceleration parameter at a period of 1 s merupakan desain parameter
	percepatan respons spektral pada perioda 1 detik, 5 %
	teredam.
S_{DS}	Design, 5 percent damped, spectral response acceleration
<i>DD</i> 3	parameter at short periods merupakan desain parameter
	percepatan respons spektral pada perioda pendek, 5 %
	teredam.
SE	Site Class E merupakan klasifikasi sifat tanah yakni tanah
	lunak
SF	Site Class F merupakan klasifikasi sifat tanah yakni tanah
	khusus, yang membutuhkan investigasi geoteknik spesifik dan
	analisis respon
	<u>.</u>

- The MCE_R, 5 percent damped, spectral response acceleration parameter at a period of 1 s adjusted for site class effects merupakan parameter percepatan respon spektral gempa maksimum dipertimbangkan dengan risiko tertarget (MCE_R) pada perioda 1 detik yang sudah disesuaikan dengan kelas situs 5% teredam.
- The MCE_R, 5 percent damped, spectral response acceleration parameter at short periods adjusted for site class effects merupakan parameter percepatan respon spektral gempa maksimum dipertimbangkan dengan risiko tertarget (MCE_R) pada perioda pendek yang sudah disesuaikan dengan kelas situs, 5% teredam.
- S_S Mapped MCE_R, 5 percent damped, spectral response acceleration parameter at short periods merupakan percepatan respon spektral periode pendek 0,2 detik, 5 % teredam, MCE_R yang dipetakan
- T Period merupakan Periode getar fundamental struktur

DAFTAR ISTILAH

1. Analisis statik ekivalen

Analisis statik ekuivalen merupakan salah satu metode menganalisis struktur gedung terhadap pembebanan gempa dengan menggunakan beban gempa nominal statik ekivalen

2. Base shear

Base shear adalah perkiraan kekuatan lateral maksimum yang diharapkan yang akan terjadi karena gerakan tanah seismik di dasar struktur.

3. BMKG (Badan Meteorologi, Klimatologi, dan Geofisika)

BMKG adalah Lembaga Pemerintahan Non Departemen Indonesia yang mempunyai tugas pemerintahan di bidang meteorologi, klimatologi, dan geofisika.

4. Design Earthquake Ground Motion

Desain gerak tanah gempa merupakan gerakan tanah ketika gempa yang disesuaikan dengan dua per tiga dari gempa maksimum yang dipertimbangkan dengan resiko tertarget (MCE_R).

5. DRM-World Institute for Disaster Risk Management

DRM adalah jaringan untuk riset terapan, implementasi, dan diseminasi di bidang manajemen risiko bencana.

6. GCMT (Global Centroid Moment Tensor)

GCMT adalah sebuah proyek yang kegiatan penelitiannya didanai oleh *National Science Foundation* berupa katalog tensor momen.

7. Gelombang Seismik

Gelombang Seismik adalah rambatan energi yang disebabkan karena adanya gangguan di dalam kerak bumi, misalnya adanya patahan atau adanya ledakan. Energi ini akan merambat ke seluruh bagian bumi dan dapat direkam oleh seismometer.

8. Gempa desain

Pengaruh gempa yang besarnya dua per tiga dari pengaruh MCE_R

9. Gempa karakteristik

Suatu taksiran magnitudo gempa sebesar prakiraan gempa maksimum yang mungkin terjadi pada suatu sesar tertentu, tetapi tidak kurang dari magnitudo terbesar yang terjadi dalam rekaman historik untuk sesar tersebut.

10. Gerak tanah gempa desain

Gerak tanah yang besarnya dua per tiga gerak tanah MCE_R

11. Site Class

Kelas situs merupakan klasifikasi jenis tanah berdasarkan sifat-sifat tanah.

12. Mitigasi struktural

Mitigasi struktural adalah upaya untuk mengurangi kerentanan (*vulnerability*) terhadap bencana dengan cara rekayasa teknis bangunan tahan bencana.

13. Percepatan respons gerak tanah gempa maksimum yang dipertimbangkan dengan resiko tertarget (MCE_R)

Gempa terparah dalam SNI 1726-2012, ditetapkan dalam arah/orientasi yang menghasilkan respons gerak tanah horizontal maksimum terbesar, dan disesuaikan dengan risiko yang ditargetkan.

14. Peta Mikrozonasi

Peta Mikrozonasi adalah peta yang bertujuan untuk membuat perincian pada skala yang lebih kecil dari peta zonasi gempa bumi Indonesia.

15. Program *Matlab*

Matlab (Matrix Laboratory) adalah sebuah lingkungan komputasi numerikal dan bahasa pemrograman komputer generasi keempat

16. Redaman efektif

Nilai redaman viscous ekivalen sesuai dengan energi disipasi pada waktu respons siklik sistem isolasi

17. Respon spektrum

Respon spektrum adalah suatu spektrum yang disajikan dalam bentuk grafik/plot antara periode getar struktur T, lawan respon-respon maksimumnya untuk rasio redaman dan beban gempa tertentu.

18. Sesar (*Fault*)

Fault adalah retakan/patahan yang terjadi pada kerak/kulit bumi akibat pergerakan suatu lapisan tanah/batuan relatif terhadap batuan yang lain.

19. Sesar aktif

Sesar atau patahan yang dinyatakan aktif oleh yang berwewenang berdasarkan data yang memadai. Yang berwewenang adalah instansi, antara lain seperti pusat survei geologi, badan geologi, kementrian energi dan sumber daya mineral; dan badan meteorologi klimatologi dan geofisika.

20. Spektra

Spektra merupakan jamak dari Spektrum