BAB III METODE PENELITIAN

3.1. Metode Penelitian

Metode penelitian adalah langkah-langkah yang dilakukan dalam proses penelitian agar mencapai hasil sesuai dengan yang diharapkan dan dapat dipertanggung jawabkan. Penelitian ini dilakukan untuk mengetahui berapa biaya kemacetan yang didapat oleh pengendara kendaraan bermotor dan memberikan solusi terbaik untuk mengatasi kemacetan tersebut. Penelitian ini dilakukan dengan cara mengumpulkan data lapangan, yang dilakukan dengan mengukur lebar pada masing-masing bagian jalan dan melakukan survei lalu lintas pada simpang empat bersinyal. Dalam pengambilan data survei lalu lintas digunakan jam puncak dalam menentukan kemacetan tertingginya. Penelitian ini dilakukan dalam satu hari kerja.

3.2. Kerangka Umum Penelitian

Secara umum bagan alir yang menerangkan penelitian ini dapat dilihat pada Gambar 3.1.

3.3. Lokasi Penelitian

Tahap pemilihan lokasi dilakukan dengan cara observasi pada beberapa simpang sepanjang Jalan Kusuma Negara. Observasi dan survei dilakukan pada hari kerja dan hari libur untuk menentukan tingkat kemacetan yang terjadi.

Penelitian ini dilakukan pada simpang APILL SGM Jalan Kusuma Negara, Kota Yogyakarta. Setelah dilakukan observasi pada simpang ini sangat sering terjadi kemacetan terutama pada ruas jalan utama yang menghubungkan dua lokasi wisata dan jalan utama untuk menuju daerah Kota Yogyakarta yang ramai baik pada hari kerja maupun hari libur. Lokasi penelitian lebih jelasnnya dapat dilihat pada Gambar 3.2.

Gambar 3. 1 Langkah-langkah Penelitian

Gambar 3. 2 Lokasi Penelitian (Google Maps)

3.4. Alat Penelitian

Penelitian ini menggunakan alat sebagai berikut.

a. Tally Counting

Alat ini digunakan untuk menghitung jumlah kendaraan yang melintas pada ruas simpang baik kendaraan bermotor maupun tidak bermotor. *Tally Counting* dapat dilihat pada Gambar 3.3.

Gambar 3.3 Tally Counting

b. Papan Alas

Papan alas digunakan sebagai alat bantu menulis pada saat survei berlangsung. Papan alas dapat dilihat pada Gambar 3.4.

Gambar 3.4 Papan Alas

c. Walking Measure

Walking measure merupakan alat untuk mengukur geometrik jalan. *Walking measure* digunakan dalam penelitian ini karena lebih praktis dan akurat dibanding menggunakan meteran biasa. *Walking measure* dapat dilihat pada Gambar 3.5.

Gambar 3.5 Walking Measure

d. Speed Gun

Alat ini digunakan untuk mengukur kecepatan kendaraan bermotor dengan prinsip dopler. *Speed gun* dapat dilihat pada Gambar 3.6.

Gambar 3.6 Speed Gun

e. Safety Vest

Safety Vest adalah salah satu jenis Alat Pelindung Diri atau APD. Sebagaimana APD yang lain, *Safety vest* sangat bermanfaat bagi pekerja yang bekerja di luar perkantoran. *Safety Vest* dapat dilihat pada Gambar 3.7.

Gambar 3. 7 Safety Vest

3.5. Metode Pengumpulan Data

Data yang diperoleh pada penelitian ini dilakukan dengan cara survei dengan menggunakan metode *peak hour* atau survei pada jam puncak. Metode *peak hour* yaitu metode dimana pemilihan jam puncaknya diambil per 2 jam, dan dipilih pada jam yang sangat padat antrian dan tundaannya. Dalam menentukan jam puncak pada simpang APILL SGM Yogyakarta dilakukan observasi selama 12 jam untuk mengamati pada pukul berapakah jam puncak terjadi. Dan dari hasil observasi maka diambil jam puncak pada jam 06.00-08.00, 12.00-14.00 dan 16.00-18.00.

3.6. Langkah Penelitian

Untuk memperoleh hasil yang sesuai dengan yang diharapkan dan dapat dipertanggung jawabkan, penelitian harus dilakukan sesuai dengan urutannya, mulai dari pemilihan lokasi, penentuan metode, survei *traffic counting*, pengolahan data lapangan dan pemodelan. Pada penelitian ini dibagi beberapa tahap yaitu:

3.6.1. Pengambilan data

Lokasi dari penelitian adalah simpang APILL SGM Yogyakarta. Pengambilan data lalu lintas dilakukan dengan survei *traffic counting* yang diambil hanya pada jam puncak (*peak hour*). Survei dilakukan pada masing-masing ruas jalan yang terdiri dari 1 siklus 4 fase, yang masing-masing ruas terdapat 3 orang surveior yang menghitung jumlah kendaraan yang keluar dari ruas jalan yang ditinjau, dengan metode survei *peak hour*. Pengambilan datanya dalam 15 menit dihitung saat APILL mengisyaratkan untuk berjalan atau biasa ditandai dengan lampu hijau. Untuk yang belok kiri jalan terus (*BKJT*) atau *turn left go ahead* pengambilan datanya diambil dalam 15 menit sekaligus. Survei ini dilakukan dalam satu hari kerja.

3.6.2. Analisis data

Setelah survei selesai, maka dilakukan pengolahan data untuk menentukan kinerja pada simpang tersebut. Adapun data-data yang diperlukan yaitu:

 Menetapkan data masukan yang meliputi data geometrikk jalan, pengaturan arus lalu lintas, kondisi lingkungan simpang APILL dan data kondisi arus lalu lintas.

- b. Menetapkan penggunaan isyarat yang meliputi fase isyarat dan waktu antara hijau dan waktu hilang.
- c. Menentukan waktu isyarat yang meliputi tipe pendekatan, lebar pendekatan efektif, arus jenuh dasar, faktor-faktor penyesuaian, rasio arus atau arus jenuh, waktu siklus dan waktu hijau.
- d. Menetapkan kapasitas simpang APILL meliputi kapasitas dan derajat kejenuhan, keperluan untuk perubahan geometrik jalan.
- e. Menetapkan kinerja lalu lintas simpang APILL meliputi persiapan, panjang antrian, kendaraan terhenti dan tundaan.

Setelah dilakukan pengolahan data, maka diperoleh hasil bahwa simpang tersebut dapat bekerja sesuai dengan perencanaan atau tidak. Jika tidak sesuai maka dilakukan perbaikan kembali agar kinerja simpang tersebut lebih efektif dan sesuai dengan kebutuhan pengendara.

3.6.3. Pemodelan menggunakan software Vissim 10

Setelah dilakukan survei dan pengolahan data lalu lintas, maka dilakukan pemodelan menggukan *software Vissim* 10 *student version. Vissim* 10 merupakan *software* yang dirancang untuk pemodelan lalu lintas, dan dalam penelitian ini digunakan untuk pemodelan simpang empat APILL. Pemodelan *Vissim* 10 menggunakan data masukan dari volume kendaraan dan data geometrik simpang yang diteliti. Langkah-langkah pengoperasian *software Vissim* 10 *student version* dapat dilihat pada Gambar 3.8.

Gambar 3.8 Langkah-langkah Pengoperasian Vissim 10 student version.

Langkah-langkah dalam pembuatan simulasi menggunakan *software Vissim* 10 adalah sebagai berikut.

a. Input

Langkah awal yang harus dilakukan dalam proses *input* yaitu memasukkan *background* sesuai dengan lokasi yang dipilih untuk penelitian. Masukkan gambar yang sudah diambil terlebih dahulu dari *Google Earth* dengan cara klik panel *input background image* pada bagian kiri layar, kemudian klik kanan dan pilih gambar yang akan digunakan, seperti pada Gambar 3.9

1				PTV Vissim 1	0.00-03 Student Version		- 6 ×	
File	Edit View Lists Base	e Data Traffic Si	gnal Control Simulation Evaluat	on Presentation Scripts Help				
0	08.50	• •	T 🙃 🏠 🕨 🖿 🔳 .	Network Editor 👻				
Netwo	ork Objects	🛛 🗙 Netw	8	Select Bitmap File		×		k.
-	Links	Selec			0 1 1 1 10			
\odot	Desired Speed Decis		🐑 🎯 👻 T 🍺 « Tuga	s Akhir F Vissim IU F VG	Search vissim 10	Q		¢.
	Reduced Speed Are		Organise 🔻 New folder		🛋 👻 🗔	0	/*	1
	Conflict Areas		A	-				
∇	Priority Rules		Y Favourites					
•	Stop Signs		This DC					
	Signal Heads		Derkton	4 Ø				
	Detectors		Documents					
- ,	Vehicle Inputs		Downloads	alternatif 2 evie.results				
╧.	Vehicle Routes		Music					
Ρ	Parking Lots		Pictures		Select a file to preview.			
ЦP.	Public Transport Sto		Videos					
ΰs	Public Transport Lin		🏭 Local Disk (C:)	PUL PRIS				
\times	Nodes		🕞 New Volume (D:)	perbaikan sgm				
141	Data Collection Poin	1	🕞 New Volume (E:)					
Ø	Vehicle Travel Times		A					
	Queue Counters		Network					
\rightarrow	Flow Bundles							
1111	Sections		File oam		Alle Bilddateien (* hmor* ingr* (-		
2	Background Image	~		· · · · · · · · · · · · · · · · · · ·	wire prioratelet (1977) (1994) (1			
Netv	vork O Levels Bac	kgrounds			Open Cancel			
Quick	View	4 ×				.::		
Ju								
		50	000 km					
Quic	k View Smart Map	Star	t page Network Editor					
-1408	652.8:-2296716.5	_	System initiali:	red!				
\square	📋 🔺) 🦊	🔞 📲 👪				▲ †創 ♥ 19:39 ▲ †創 ♥ 1:107/2018	

Gambar 3.9 Input background

Langkah selanjutnya mengatur skala dengan cara tekan ctrl dan klik kanan secara bersamaan, kemudian pilih *set scale*. Klik kanan pada salah satu ujung jaringan jalan, kemudian akan muncul kotak *dialog scale* dan masukkan panjang jalan sesuai dengan kondisi sebenarnya seperti pada Gambar 3.10 dan 3.11.

Gambar 3.10 Mengatur Skala

Gambar 3.11 Input Skala

Membuat jaringan jalan dengan cara membuat *link* dan *connectors* sesuai dengan kondisi geometrik jalan. Klik *link* pada panel disebelah kiri atas layar lalu klik kanan, kemudian tarik garis mengikuti jaringan jalan. Pada kotak dialog *link* masukkan nama jalan, jumlah lajur dan lebar jalan seperti pada Gambar 3.12.

Gambar 3.12 Membuat Jaringan Jalan

Membuat rute yang akan dilewati kendaraan yaitu dengan cara klik *Vehicle Routes*, klik kanan pada jaringan jalan yang akan dibuat rutenya kemudian tarik ke arah jalan yang dipilih lalu klik kiri seperti pada Gambar 3.13.

Gambar 3.13 Membuat Vehicle Routes

Mengatur *Conflict Area* untuk mengontrol kendaraan agar tidak saling bertabrakan satu sama lain. *Conflict Area* juga dapat digunakan untuk mempriotitaskan kendaraan yang mana yang akan jalan terlebih dahulu. Klik *Conflict Area* kemudian atur sesuai yang dibutuhkan, seperti pada Gambar 3.14.

Gambar 3.14 Mengatur Conflict Area

Menentukan jenis kendaraan sesuai dengan jenis kendaraan yang disurvei pada 2D/3D *Model* yang disajikan pada Gambar 3.15.

Gambar 3.15 Membuat 2D/3D Model Kendaraan

Setelah dibuat jenis kendaraan, maka selanjutnya mengisi *Vehicle Types* yang dapat dilihat pada Gambar 3.16.

Vehicle	е Тур	es								
Select	layou	it 🝷 🎤	+ 🧷 🗙	🕻 🔖 🎍 👬 🛪	<single list=""></single>	- 🗈 🛢 💾	9 💾 😫 🎼			
Coun No Name		Category Model2D3DDistr		ColorDistr1	OccupDistr	Capacity				
2	200	HGV	HGV	20: HGV	1: Default		0			
3	300	Bus	Bus	30: Bus	1: Default	1: Single Occupancy	110			
4	610	Sepedah Motor	Bike	61: Sepedah mot	101: Shirt Man		0			
5	620	Sepedah	Bike	62: Sepedah	1: Default	1: Single Occupancy	9999			
Vehic	Vehicle I 2D/3D M Desired Vehicle T Vehicle 2D/3D M Vehicle C Static Ve 2D/3D M Links / L									
	System initialized!									
4			2 w] 📀	1 0					

Gambar 3.16 Input Vehicle Types

Mengisi Vehicle Classes, untuk mengklasifikasikan jenis kendaraan kedalam kategori kendaraan. Pada Vehicle Classes tetap dibagi menjadi 3 kelas kendaraan yaitu kendaraan berat (HV) terdiri dari bus dan truk, kendaraan ringan (LV) mobil pribadi, dan sepeda motor (MC). Untuk memunculkan menu pada Gambar 3.17 yaitu dengan cara klik *Base Data* lalu pilih Vehicle Classes.

Vehicle Classes / Vehicle Types														
Select	ıt	+ >	X 🔖	Å ↓	Z † ズ	Vehi	cle types	-	6		3	•		
Coun	No	Name		Veh	Types	UseV	ehType(Color	Color					^
1	10	Car		100		v			(255, 0, 0, 0)					
2	20	HGV		200			✓		(255, 0,	0, 0)				
3	30	Bus		300			✓		(255, 0,	0, 0)				
1	60	Senedah mote	or	610					(255.0.)	0.01				× .
2D/3	D M	. Desired	Vehic	le T	Vehi	cle	2D/3D	M	Vehicle C	Stati	ic Ve	2D/3	BD M.	Lin

Gambar 3.17 Input Vehicle Classes

Vehicle Input, digunakan untuk memasukkan volume arus lalu lintas. Cara memasukkan volume kendaraan yaitu klik *Vehicle Input,* Klik kanan pada jalan yang akan dimasukkan volume kendaraan, setelah itu maka akan muncul menu *Vehicle Inputs* seperti pada Gambar 3.18. Lalu masukkan volume kendaraan untuk tiap lengan.

elect layout 🔹 🥕 🗶 🐚 🛔 🕻 🕇 🥏 Vehicle volumes by tir 🔹 🗈 🛢 💾									
Coun	No	Name	Link	Volume(0)	VehComp(0)				
1	1		10: Jl. Kusuma Negara Timur BKJT	855.0	5: Timur kiri langsung				
2	2		3: Jl. Kusuma Negara Timur	4862.0	2: Timur				
3	3		7: Jl. Veteran	2044.0	3: Selatan				
4	4		1: Jl. Kusuma Negara Barat	1372.0	4: Barat				
5	6		5: Jl. Kenari	416.0	1: Utara				
6	7		9: Jl. Kenari BKJT	1186.0	1: Utara				
2D/3D M Desired S Vehicle T Vehicle Cl 2D/3D M Vehicle C Static Veh 2D/3D M Li									

Gambar 3.18 Input Vehicle Input

Membuat dan mengisi *Signal Controllers*, untuk mengatur *Traffic Light* pada jaringan jalan seperti pada Gambar 3.19.

Gambar 3.19 Mengatur Signal Controllers

Setelah mengatur *signal controllers* kemudian menyesuaikan karakteristik pengendara pada menu *driving behavior*. *Driving behavior* digunakan untuk mengatur karakteristik pengendara sesuai dengan keadaan yang ada di Indonesia. Pada *driving behavior* yang dirubah hanya pada menu *following* dan *lateral*. Tampilan *driving behavior* dapat dilihat pada Gambar 3.20 dan 3.21, sedangkan data masukan disajikan pada tabel 3.1 dan 3.2.

10	Driving Behavior ?	×
No.: 1 Name: Urban (m	notorized)	
Following Lane Change Lateral Signa	al Control Meso	
Look ahead distance	Car following model	
min.: 0.00 m	Wiedemann 74	~
max.: 250.00 m	Model parameters	
4 Observed vehicles	Average standstill distance: 2.00 m	
Look back distance	Additive part of safety distance: 2.00	
min.: 0.00 m	Multiplic. part of safety distance: 3.00	
max.: 150.00 m		
Temporary lack of attention		
Duration: 0 s		
Probability: 0.00 %		
riobubility.		
 Smooth closeup behavior 		
Ctandetill distance (in		
front of static obstacles) 0.50	m	
is fix		
	OK Canc	el

Gambar 3.20 Driving Behavior (Following)

	D	riving Behavior		?	×				
No.: 1 Nam	e: Urban (motorized)								
Following Lane Change La	teral Signal Control	Meso							
Desired position at free flow:	Middle of lane			~					
Observe adjacent lane(s)	Observe adjacent lane(s)								
Diamond queuing									
Consider next turn									
Collision time gain:	2.00 s								
Minimum longitudinal speed	i: 3.60 km/h								
Time between direction char	iges: 0 s								
Default behavior when overt	aking vehicles on the s	ame lane or on adjace	ent lanes						
Overtake on same lane	Minimum lateral o	distance							
Overtake left (default)	Distance standing	g: 0.20 m at 0	km/h						
Overtake right (default)	Distance driving:	1.00 m at 5	0 km/h						
Exceptions for overtaking ve	hicles of the following	vehicle classes							
Coun VehClass	OvtL	OvtR	LatDistStand	LatDistDriv					
				OK C-	ncol				
				UK Ca	ncer				

Gambar 3.21 Driving Behavior (Lateral)

b. Running

Untuk dapat melakukan *running* sekaligus mengeluarkan hasil (*output*) pada *Vissim* yaitu dengan cara klik *Nodes*, kemudian pilih area yang diinginkan. Untuk melihat hasil (*output*) klik *Evaluation*, *Result Lists*, pilih *Node Result*. Klik *run/ simulation continuou*. Tampilan dapat dilihat pada Gambar 3.20.

Gambar 3.22 Simulation Continuous

c. Keluaran dari Program Vissim (Output)

Output dari pemodelan *Vissim* yang dapat dilihat pada *Nodes Result* dapat digunakan dalam menganalisis kapasitas simpang, panjang antrian, derajat kejenuhan, tundaan, emisi gas buang dan lainnya. Hasil (*output*) *Vissim* dapat dilihat pada Gambar 3.21.

No	Node Results									
Sel	Select layout 🔹 🌽 🖞 🕹 🐇 t 🛍 🛢 🂾 😫 🔼 🖸									
Co	un	TimeInt	Movement	QLen	QLenMax	Vehs(All)	Pers(AII)	LOS(AII)	LOSVal(AII)	VehDelay(All)
	34 (0-3600	1: kfig - 7: Jl. Veteran@109.4 - 2: Jl. Kusuma Neg	86.07	180.80	42	42	LOS_F	6	136.66
	35 (0-3600	1: kfig - 7: Jl. Veteran@109.4 - 4: Jl. Kusuma Neg	86.07	180.80	49	49	LOS_F	6	120.12
	36 (0-3600	1: kfig - 7: Jl. Veteran@109.4 - 6: Jl. Kenari@65.7	86.07	180.80	72	72	LOS_F	6	137.09
	37 (0-3600	1: kfig - 9: Jl. Kenari BKJT@67.8 - 4: Jl. Kusuma N	0.33	24.95	165	165	LOS_B	2	10.36
	38 (0-3600	1: kfig - 10: Jl. Kusuma Negara Timur BKJT@319.	2.24	41.56	108	108	LOS_A	1	3.66
	39 (0-3600	1: kfig	48.73	443.33	741	741	LOS_F	6	80.73
	40 (0-3600	1: kfig - 1: Jl. Kusuma Negara Barat@241.5 - 4: Jl.	38.97	96.66	110	110	LOS_E	5	75.23
	41 (0-3600	1: kfig - 1: Jl. Kusuma Negara Barat@241.5 - 6: Jl.	38.97	96.66	3	3	LOS_D	4	40.05
<										

Gambar 3.23 Hasil Running Vissim

	Kelas Kendaraan							
Parameter	Default	Kendaraan Ringan	Kendaraan Berat	Sepeda Motor				
Following								
Look ahead distance								
Minimum	0 m	40 m	50 m	40 m				
Maximum	250 m	250 m	250 m	250 m				
Observed vehicles	4	4	4	4				
Look back distance								
Minimum	0 m	15 m	20 m	0 m				
Maximum	150 m	150 m	150 m	150 m				
Temprorary Lack of attention	on							
Duration	0 s	0 s	0 s	0 s				
Probability	0 s	0 s	0 s	0 s				
Smooth closeup behavior	Х	Х	Х	Х				
Standstill dist. For static obst	Х	х	0.5m	Х				
Car following model	Wiedemann	Wiedemann	Wiedemann	Wiedemann				
Model Parameter	74	74	74	74				
Average standstill distance	2 m	1.9 m	2 m	0.5 m				
Additive part of safety distance	2	1,9	2	0,5				
Multiplicative part for safety distance	3	2,9	3	1				

Tabel 3.1 Data Masukan Driving Behavior pada Menu Following (Pribadi, 2017)

Tabel 3. 2 Data Masukan Driving Behavior pada Menu Lateral (Pribadi, 2017)

	Kelas Kendaraan						
Parameter	Default	Kendaraan Ringan	Kendaraan Berat	Sepeda Motor			
Lateral							
Desired position at free flow	Middle of lane	Any	Middle of lane	Any			
Keep lateral distance	Х	Х	Х	Х			
Diamod queuing	Х	Х	Х	\checkmark			
Consider next turn	Х	Х	Х	Х			
Collision time gain	2 s	2 s	2 s	2 s			
Min. longitudinal speed	3.60 km/h	1 km/h	1 km/h	1 km/h			
Time between direction changes	0 s	0 s	0 s	0 s			
Overtake on same lane							
Overtake left	Х	\checkmark	Х	\checkmark			
Overtake right	Х	\checkmark	\checkmark	\checkmark			
Minimum lateral							
distance							
Distance standing	0.2 m at 0 km/h	0.1 m at 0 km/h	0.1 m at 0 km/h	0.1 m at 0 km/h			
Distance driving	1.00 m at 50 km/h	0.1 m at 50 km/h	0.1 m at 50 km/h	0.1 m at 50 km/h			
Exception for overtaking vehicles the following vehicles clasess	left blank	left blank	left blank	left blank			