BAB III METODOLOGI PENELITIAN

3.1. Alat Penelitian

Penelitian ini memerlukan beberapa alat yang digunakan yaitu perangkat lunak (*software*), dan perangkat keras (*hardware*) sebagai alat penelitian.

A. *Software* yang digunakan yaitu ANSYS Fluent 18.0 untuk simulasi numerik, Gambar 3.1 merupakan logo *software* ANSYS Fluent 18.0.

Gambar 3.1. Logo Software ANSYS Fluent 18.0

B. *Hardware* yang digunakan peneliti dipersiapkan seperti menentukan komputer yang digunakan untuk simulasi berdasarkan spesifikasinya dan melakukan instalasi *software* ANSYS Fluent 18.0, tabel 3.1 spesifikasi rinci perangkat.

No	Jenis Hardware	Perangkat Komputasi 1	Perangkat Komputasi 2
1	Processor	Intel Core i7-6700HQ 2.6 GHz	Intel i7-3770CPU 3.4 GHz
2	Motherboard	ASUS X550V	Simbadda Sim-X S-2636
3	RAM	Corsair vengeance DDR4 8 GB	Visipro DDR4 16 GB
4	Graphic Card	Nvidia GeForce GTX 950M	AMD Radeon HD 6570
5	Storage	HDD 1 TB	Seageate HDD 1 TB

Tabel 3.1. Spe	esifikasi P	Perangkat	Komputasi
----------------	-------------	-----------	-----------

3.2. Prosedur Penelitian

3.2.1. Variasi Penelitian

Variasi penelitian yang digunakan adalah variasi temperatur air masuk. Ada tiga variasi temperatur air masuk yaitu 55°C, 60°C, dan 65°C.

3.2.2. Diagram Alir Penelitian

Kerangka besar diagram alir penelitian dapat dilihat pada diagram alir di Gambar 3.2 berikut ini.

Gambar 3.2. Diagram Alir Penelitian

Gambar 3.2. Diagram Alir Penelitian (lanjutan)

Gambar 3.2. Diagram Alir Penelitian (lanjutan)

3.2.3. Langkah Penelitian

Penelitian ini dimulai dengan studi literatur dengan cara mencari referensi teori dan jurnal yang relevan dengan kasus. Jurnal atau referensi teori yang telah diperoleh peneliti, selanjutnya melakukan proses simulasi CFD yang terbagi menjadi 3 proses yaitu *pre-processing*, *processing*, dan *post-processing*.

3.2.3.1. Pre-Processing

Pre-Processing merupakan tahap pertama yang dilakukan pada saat simulasi CFD. Berikut beberapa langkah yang dibuat dalam tahap pertama untuk simulasi:

a. Pembuatan Geometri atau Domain Fluida

Bentuk geometri yang digunakan berbentuk anulus yang terdiri dari dua tabung. Tabung luar dan tabung dalam dipasang konsentrik. Tabung dalam berisi PCM berdiameter 10 cm dan panjang 40 cm. Tabung luar sebagai tempat mengalirnya HTF berdiameter 12,65 cm dan panjang 50 cm. Tabung PCM dan tabung luar berturut-turut memiliki ketebalan dinding 1,1 mm dan 3 mm. Desain geometri kasus awal dapat dilihat selengkapnya pada Lampiran I. Domain Fluida adalah *volume control* yang menjadi wilayah pengamatan simulasi. Bentuk geometrinya tidak sama persis dengan bentuk geometri *real*-nya karena untuk memperoleh *mesh* yang baik sehingga diperlukan penyederhanaan. Pembuatan *design* domain fluida dibuat langsung dengan menggunakan *Design Modeler* yang

terdapat pada *software* ANSYS Fluent. Gambar 3.3 merupakan bentuk *design* domain fluida dari TES yang telah dibuat pada *software* ANSYS Fluent.

Gambar 3.3.Bentuk Geometri TES

Untuk mengetahui evolusi temperatur tentu diperlukan penempatan titik termokopel pada desain. Gambar 3.4 memperlihatkan letak titik termokopel pada desain simulasi.

Gambar 3.4. Letak Titik Termokopel pada Geometri TES

b. Pembuatan Mesh

Mesh berfungsi sebagai pembagi domain fluida menjadi volume-volume kecil yang dianalisis oleh komputer berdasarkan metode FVM. Pembuatan mesh dapat menggunakan perangkat lunak lain maupun yang tedapat pada ANSYS Fluent. Mesh pada penelitian ini langsung dibuat menggunakan program yang ada pada software ANSYS Fluent.

Langkah utama dalam proses *meshing* adalah melakukan *sizing mesh* yaitu dengan cara memilih dan menginput ukuran nilai yang diinginkan pada *mesh* agar kualitas *mesh* baik. Memilih *size function* menjadi *curvature* dan menggunakan transisi *slow* lalu memasukkan nilai minimal dan maksimal *size* sebesar 3 mm, berarti satu ukuran *mesh* dalam geometri seragam sebesar 3 mm, selanjutnya untuk kolom *smoothing quality* dinaikkan menjadi *high* seperti pada Gambar 3.5. Setelah melakukan proses *sizing mesh* diperoleh hasil dari pembuatan *meshing* seperti yang disajikan pada Gambar 3.6.

Gambar 3.5. Panel Penentuan Sizing Mesh

Gambar 3.6. Hasil Pembuatan Mesh

Hasil *meshing* dari domain fluida pada Gambar 3.6 harus diperhatikan kualitas *mesh*-nya untuk memastikan *mesh* tersebut sudak baik atau tidak. Kualitas *mesh* mempengaruhi hasil dari perhitungan simulasi sehingga pemeriksaan kualitas *mesh* haruslah dilakukan. Tabel 3.2 menyajikan rentang kualitas *mesh* yang disediakan ANSYS Fluent.

kewness mes	sh metrics spe	ctrum			
Excellent	Very good	Good	Acceptable	Bad	Unacceptable
0-0.25	0.25-0.50	0.50-0.80	0.80-0.94	0.95-0.97	0.98-1.00
Unaccontable	Pad	Accontable	Good	Vorugood	Evcellant
Unacceptable	Bad	Acceptable	Good	very good	Excellent
0-0.001	0.001-0.14	0.15-0.20	0.20-0.69	0.70-0.95	0.95-1.00
0.001					

Kualitas dari mesh yang telah dibuat dapat dilihat pada Tabel 3.3 berikut.

Tabel 3.3. Kualitas Mesh Pada Console Fluent

```
Console

Mesh Quality:

Minimum Orthogonal Quality = 4.84423e-01

(To improve Orthogonal quality , use "Inverse Orthogonal Quality" in Fluent Meshing,

where Inverse Orthogonal Quality = 1 - Orthogonal Quality)

Maximum Aspect Ratio = 8.13614e+00
```

Tabel 3.3 menunjukkan bahwa nilai *minimum orthogonal quality mesh* 0,48 jika dilihat pada Tabel 3.2 ANSYS Fluent menandakan bahwa pada simulasi kualitas *mesh* dalam kualifikasi baik (*good*). Data *mesh* yang telah di *meshing* dan pengecekan selesai, kemudian di*export* ke dalam bentuk *Mesh files* (*.msh* *.MSH*).

3.2.3.2. Processing

Processing merupakan tahap kedua pada proses CFD. Tahap *processing* dilakukan konfigurasi fluent yaitu proses *set-up* pada ANSYS Fluent. Konfigurasi Fluent secara umum meliputi:

a. Fluent Launcher 18.0

Fluent launcher yaitu skema awal penentuan simulasi. Simulasi yang dilakukan dalam bentuk 3D, untuk *options double precision*. Gambar 3.7 merupakan pemilihan skema dan tempat penyimpanan data pada *fluent launcher* 18.0. Setelah masuk pada Fluent selanjutnya *read mesh files* (.msh) yang telah disimpan sebelumnya, maka *mesh* akan terbuka pada *fluent*.

Fluent Launcher	- □ >	<						
ANSYS	Fluent Launcher	•						
Dimension 2D © 3D	Options Double Precision Meshing Mode							
Display Options Processing Options Display Mesh After Reading V Workbench Color Scheme Parallel								
ACT Option								
Show Fewer Options	an Caladda Faringanat							
	ngs scheduler Environment							
Version 1800	Pre/Post Only							
10.00								
Working Directory								
E: \constant	· · · · · · · · · · · · · · · · · · ·							
Fluent Root Path								
C:\Program Files\ANSYS Inc\v1	80\fluent 🗸 📴 😂							
🗌 Use Journal File	Use Journal File							
ŌK	Default Cancel Help 🔻	_						

Gambar 3.7. Fluent Launcher 18.0

b. General

Gambar 3.8 menunjukkan penentuan *type solver* diperlukan untuk keberhasilan proses simulasi berdasarkan *tutorial guide*. Terdapat dua tipe *time solver* pada ANSYS Fluent yaitu *steady* dan *transient simulation*. Fenomena pelelehan dalam penelitian ini disimulasikan dengan *pressure-based* sebagai *type solver* serta yang terpenting yaitu penggunaan *time solver* pada kondisi *transient*. *Transient simulation* digunakan ketika seluruh *variable* pada simulasi tergantung oleh waktu.

Gambar 3.8. Panel General

c. Models

Perhitungan skenario eksperimen pelelehan serta pembekuan dapat dilakukan dengan Fluent. Konfigurasi untuk setiap skenario tersebut dapat dilihat pada buku panduan *user guide* ANSYS Fluent 18. Untuk menentukan skenario pelelehan pada Fluent dapat dilihat pada Gambar 3.9 dengan mengaktifkan *solidification* dan *melting* sehingga secara otomatis *energy* juga akan aktif.

Gambar 3.9. Panel Model Pelelehan

Gambar 3.9 penentuan viscous models berdasarkan perhitungan Reynold number, sebagai berikut:

Diketahui:

kecepatan (v)	$= 2 \text{ LPM} = \frac{Q}{\pi . (r)^2} = \frac{2 \frac{L}{menit} \times 10^{-3} \frac{m^3}{L} \times 1 \text{ menit}}{\pi \times (0,019 \text{ m})^2 \times 60 \text{ s}} = 0,03 \frac{m}{s}$
Diameter (d)	= 38 mm = 0,038 m
Densitas (ρ)	$= 999,1 \frac{kg}{m^3}$
Viskositas fluida (μ)	$= 1,003 \times 10^{-3} \ \frac{kg}{m.s}$

Persamaan 2.7 dapat digunakan untuk menghitung nilai Re yakni:

$$Re = \frac{\rho \times v \times d}{\mu}$$

$$Re = \frac{999,1 \frac{kg}{m^3} \times 0.03 \frac{m}{s} \times 0.038 m}{1.003 \times 10^{-3} \frac{kg}{m.s}} = 1135,567$$

Jadi, didapatkan bahwa nilai Re < 2300 maka aliran yang tepat untuk digunakan pada penelitian ini yaitu aliran laminar. Apabila skenario pelelehan pada panel telah dilakukan, langkah selanjutnya yaitu *input* nilai konstanta *porosity* seperti Gambar 3.10. Penentuan konstanta porositas bisa merujuk pada jurnal (Hosseini dkk, 2014). Konstanta porositas pada *set-up default* besarnya adalah 10⁵. Pengaruh mengenai konstanta porositas pada hasil simulasi yaitu dapat meningkatkan gradien pelelehan.

Solidification and Melting					
Model	Parameters				
Solidification/Melting	Mushy Zone Parameter constant				
Back Diffusion	1000000				
	Include Pull Velocities				
	OK Cancel Help				

Gambar 3.10. Memasukkan Konstanta Porositas

d. Parameter Material

Paraffin wax RT52 sebagai PCM, air sebagai *Heat Transfer Fluid* (HTF) dan tabung PCM terbuat dari tembaga, merupakan material yang digunakan pada simulasi ini. Material tersebut harus didefinisikan propertinya pada ANSYS Fluent supaya hasil perhitungan simulasi menjadi akurat. Tampilan panel properti material di Fluent dapat dilihat pada Gambar 3.11.

Gambar 3.11. Panel Pembuatan Properti Material

Fluent Solid Materials [1/13]	= = =	Material Type	
calcium-oxide (cao) calcium-sulfate (caso4)	^	Order Materials by	
copper (cu)		O Chemical Formula	
dolomite (cao_mgo_2co2) gold (au) gypsum (caso4_2h20)	ÿ		
Copy Materials from Case Delete			
Properties			
Density (kg/m3)	constant	▼ Vie	w
	8978		
Cp (Specific Heat) (j/kg-k)	constant	▼ Vie	w
	381		
Thermal Conductivity (w/m-k)	constant	▼ Vie	w
	387.6		
Electrical Conductivity (siemens/m)	constant	▼ Vie	w
	5.8e+07		
	(1,1	

Gambar 3.12. Panel Input Parameter Materials

Gambar 3.12 memperlihatkan tampilan panel untuk memasukan nilai parameter material. Untuk memasukan parameter material perlu merujuk pada sifat termal yang tersedia di jurnal (Rosler dkk, 2011), (Hosseini dkk, 2014), dan (Fornarelli dkk, 2017). Namun untuk material HTF dan PCM perlu didefinisikan lebih lanjut, sebagai berikut:

1. Heat Transfer Fluid (HTF)

Water liquid sebagai material HTF, metode yang digunakan untuk pembuatan properti pada *water liquid* adalah *piecewise liniear* dengan menggunakan data dari *table* A-9 *saturated water* dalam buku *Heat Transfer Appendix*, data selengkapnya dapat dilihat pada Lampiran II. Panel *input water liquid* material HTF dapat dilihat pada Gambar 3.13.

Name		Material Type					Order Materials by
water-liquid		fluid				•	Name
Chemical Formula		Fluent Fluid Mat	erials				O Chemical Formula
20 <l></l>		water-liquid (h2	2o <l>)</l>			•	Fluent Database
		Mixture					Hear Defined Database
		none					User-Defined Database
Properties							
Density (kg/m3)	piecewise-linear		•	Edit	^		
Cp (Specific Heat) (j/kg-k)	piecewise-linear		•	Edit			
Thermal Conductivity (w/m-k)	piecewise-linear		×	Edit			
Viscosity (kg/m-s)	piecewise-linear		•	Edit			
				0	~		

Gambar 3.13. Panel Input Material Water Liquid

2. Phase Change Material (PCM)

PCM yang digunakan yakni *parrafin wax* RT52, untuk mendefinisikan sifat termal dari PCM penelitian ini menggunakan asumsi *boussinesq*. Persamaan 2.8 digunakan untuk mendefinisikan densitas PCM. Pendefinisian persamaan 2.8 dihitung dengan menggunakan Ms. *Excel*. Gambar 3.14 merupakan panel properti PCM yang telah didefinisikan sebelumnya.

O Name O Chemical Formula
O Chemical Formula
 Eluent Database
Here Databasen
User-Defined Database

Gambar 3.14. Panel Properti PCM

Gambar 3.15 merupakan panel pembuatan *Custom functions fields* yang digunakan untuk mendefinisikan kontur dari densitas PCM yang akan ditampilkan nantinya. Berikut persamaan yang digunakan menurut Rosler dkk (2011) dalam mendefinisikan densitas PCM dapat dilihat pada persamaan 2.10.

+	-	X	1	у^х	ABS	Select Operand Field Functions from
INV	sin	COS	tan	In	log10	Field Functions
0	1	2	3	4	SQRT	Liquid Emption
5	6	7	8	9	CE/C	
()	PI	е		DEL	Select

Gambar 3.15. Panel Pembuatan Custom Functions Fields

e. Penentuan Cell Zone

klasifikasi jenis zona pada ANSYS Fluent. Material yang digunakan dikategorikan sesuai dengan zona yang tersedia di ANSYS Fluent. Semisal PCM

dikategorikan pada *fluid zone* walaupun pada fase awalnya adalah padat. HTF dikategorikan pada *fluid zone*. Penentuan *cell zone* dapat dilihat pada Gambar 3.16.

Tree	Task Page	×
 ✓ Setup General > ∰ Models > ঊ Materials > Cell Zone Conditions > ↓ Boundary Conditions 	Cell Zone Conditions Zone Filter Text pcm zone1 zone2	^ 0
> 🕼 Mest 🔛 Fluid	201122	×
 Refe Zone Name Solution pcm Met Con Material Name parrafin Rep Frame Motion Mot Mesh Motion Cell Initi Porous Zone Run Results Grav 	I-wax Edit 3D Fan Zone Source Terms Fixed Values OK Cancel Help	
 Control Plots Scene Animations Reports Parameters & Customization 	Edit Copy Profiles Parameters Operating Conditions	

Gambar 3.16. Penentuan Cell Zone

f. Boundary Conditions

Penentuan kondisi batas berupa data yang dibutuhkan dalam simulasi dimasukkan pada tahap ini. Gambar 3.17 dan Gambar 3.18 berturut-turut merupakan kondisi batas yang digunakan yaitu laju aliran massa *inlet* HTF, serta variasi temperatur HTF *inlet*.

🔛 Velocity Inlet							×
Zone Name							
inlet							
Momentum	Thermal	Radiation	Species	DPM	Multiphase	Potential	UDS
Velocity	Specificatio	on Method M	lagnitude, N	ormal to	Boundary		
	Refere	nce Frame A	bsolute				•
2	Velocity Ma	gnitude (m/s	6) 0.03		cons	tant	•
2	Gougo Dre	seure (nasca	D O		cons	tant	

Gambar 3.17. Panel Mass Flow Inlet

inlet							
Momentum	Thermal	Radiation	Species	DPM	Multiphase	Potential	UDS
Temperature (c) 00		CONSU	Inc			

Gambar 3.18. Panel Temperatur HTF Inlet

g. Penentuan Metode Perhitungan

Pemilihan metode perhitungan akan menentukan apakah perhitungan pada simulasi berjalan dengan stabil serta menghasilkan perhitungan yang akurat. Pemilihan metode simulasi merujuk pada jurnal (Hosseini dkk, 2014). Gambar 3.19 merupakan penentuan metode perhitungan simulasi.

 Setup General Models Models Materials Cell Zone Conditions If Boundary Conditions If Controls Solution Report Definitions If Calculation Activities If Calculation Activities If Calculation If Contours If Contours 		Task Page	×
 ✓ Image: Solution ✓ Image: Solution	tup General Models Materials Cell Zone Conditions Boundary Conditions Mesh Interfaces Dynamic Mesh	Setup General B General Pressure-Velocity Coupling Models Scheme Cell Zone Conditions SIMPLE Boundary Conditions Spatial Discretization Mesh Interfaces Gradient Dynamic Mesh Least Squares Cell Based	•
> ☐ Calculation Activities Ø Run Calculation ✓ Image: Second	Reference Values Iution Methods Controls Report Definitions Monitors Cell Registers Initialization	Reference Values Pressure Solution PRESTO! Momentum QUICK Nonitors Energy Cell Registers QUICK	• •
★2 Vectors □ Hight fact that the contraction options Pathlines □ Hight order Term Relaxation Options ♥ Particle Tracks Default	Calculation Activities Run Calculation sults Graphics Mesh Contours Vectors Pathlines Particle Tracks	Calculation Activities Run Calculation Results Graphics Mesh Contours Vectors Pathlines Pathlice Calculation Activities Transient Formulation First Order Implicit Default Contours Default Contours Contour	

Gambar 3.19. Panel Solution Methods

Gambar 3.20 merupakan penentuan *solution controls* serta *advanced* perhitungan simulasi. Besar nilai dari penentuan *solution controls* akan mempengaruhi tingkat

keakuratan hasil simulasi serta memudahkan perhitungan dalam persamaan aritmatik pada simulasi numerik.

Deserves	Multigrid		I	Aulti-Stage		Expert	
0.2 Density 0.8 Body Forces	Pressure X-Momentum Y-Momentum	F-Cycle Typ F-Cycle Flexible Flexible	e • •	Terminatio	n Restriction	AMG Method Aggregative • Aggregative •	Stabilization Method ABCGSTAB V
0.8 Womentum 0.6 Liquid Fraction Update 0.8 Energy 0.7	Algebraic Multi Scalar Parame Fixed Cycle P Pre-Sweeps Post-Sweep! Max Cycles	grid Conti ters arameter 0 1 30	s 1	Coarsening Max Coarse Coarsen by	Parameters 1 40 2 Coarsening	Flexible Cycl Max Fine F Max Coarse F	e Parameters Sweeps 2 ÷ Relaxations 30 ÷ Relaxations 50 ÷
Default Equations Limits Advanc	Default			Smoother Gauss-S ILU OK	Type eidel Cancel	Options Verbosity 0	÷

Gambar 3.20. Panel Solution Controls

h. Monitors

Monitors salah satunya terdapat *report files* yang berfungsi untuk penentuan titik termokopel, dimana data yang akan disimpan adalah data evolusi temperatur pada *shell and tube* saat proses *charging* dan menampilkan *plot* dari grafik temperatur titik termokopel seperti yang ditampilkan pada Gambar 3.21.

 Solution Methods 	🖪 Edit Report File	×
 Controls Report Definitions Residual Statistic Report Files Report Files Report Plots Convergence Co Cell Registers Lalution Activities Run Calculation 	Name report-fie-0 Available Report Definitions [0/3]	Add>> Selected Report Definitions t1 t2 t2 t2 t3 t4 t5 t6 t7 t8 t9
 ♥ Results > ⊕ Graphics > E Plots > ■ Animations > ⊕ Reports > ● Parameters & Customiza 	Output Fie Base Name output\\datax60.out Browse Full Fie Name Get Data Every 1 time-step + K Cancel	New V Edit

Gambar 3.21. Panel Saving Data Temperatur Termokopel

i. Solution Initialization

Proses yang bertujuan untuk mendapatkan nilai dari variabel aliran serta menginisialisasi medan aliran. Penelitian ini menggunakan *standart initialization*

sebagai *initialization methods*, dengan *reference frame* menggunakan *all zone* seperti pada Gambar 3.22.

Т	ee	Task Page	×
`	🕷 Setup \land	Solution Initialization	^
	General General B? Models Waterials G Cell Zone Conditions J ← Boundary Conditions J ← Mash Interfaces	Initialization Methods O Hybrid Initialization Standard Initialization Compute from all-zones	-
`	 Ø Dynamic Mesh Reference Values Solution Methods 	Reference Frame Relative to Cell Zone Absolute	
	 Controls Report Definitions Monitors Residual Statistic Report Files Report Plots Convergence Co 	Initial Values Gauge Pressure (pascal) 0 X Velocity (m/s) 0 Y Velocity (m/s) 0]-
•	 Cell Registers Initialization Calculation Activities Run Calculation Results Graphics Mesh Contours 	Z Velocity (m/s) 0 Temperature (c) 25 Initialize Reset Patch	

Gambar 3.22. Panel Solution Initialization

j. Run Calculation

Penelitian ini menggunakan *time-solver* kondisi *transient*. Oleh karena itu, penentuan jumlah *time step* akan mempengaruhi kesuksesan dari simulasi numerik. Gambar 3.23 merupakan penentuan *time step* beserta *Number of Iterations* serta *Max Iterations/Time Step*.

Gambar 3.23. Panel Penentuan Calculation

3.2.3.3. Post-Processing

Post-Processing merupakan proses menampilkan hasil dari perhitungan simulasi sesuai kasus yang diteliti. Penelitian ini untuk *variable* bebas yang dipakai yaitu temperatur HTF *inlet*, sedangkan *variable* terikatnya yaitu evolusi temperatur, *contour* pelelehan dan waktu pelelehan. Untuk menampilkan data variabel terikat maka dibuat *plane*, kontur, dan *saving solution animations*.

1. Plane

Dengan *plane* ditentukan area evolusi *temperature, liquid fraction,* serta densitas PCM baik arah aksial maupun arah radial. Gambar 3.24 dan 3.25 berturut-turut merupakan panel pembuatan *plane* arah aksial dan arah radial.

Options		Sample	Density	Curface	Elfor Tout	=	=
Aligned with Surface Aligned with View Plane Point and Normal Bounded Sample Points Plane Tool		Edge 1	1 🗘	Surrace	as Plicer Text	-0	
		Edge 2 1 🗘		 Inlet Interface Interface1a-contact_region-src interface1b-contact_region-trg interface2b-contact_region_2-src interface2b-contact_region_2-trg interface3a-contact_region_4-src 			1
		Select Points Reset Points					
Points				Norm	nal		
(mm)	x1 (mm)	x	2 (mm)	ix (mn	n)		
-10	-10	1	000	1			
/0 (mm)	y1 (mm)	y.	2 (mm)	iy (mn	n)		
-100	100	1	00	0			
20 (mm)	z1 (mm)	zž	? (mm)	iz (mm	n)		
0	0	0		0			
ew Surface Na	ime						
ambar-aksial							

Gambar 3.24. Panel Pembuatan Plane Arah Aksial

Options		Sample Density	Curfaces Elter Text	= =	
Aligned with Surface		Edge 1 1	\$	-0 15	
Aligned w	ith View Plane	Edge 2 1	♦ Inlet	-	
Point and Normal Bounded Sample Points Plane Tool		Select Points	 Interface interface1a-contact_region-src 		
		Reset Points	interface1b-conta interface2a-conta interface2b-conta interface3a-conta	act_region-trg act_region_2-src act_region_2-trg act_region_4-src	
Points			Normal	· · · ·	
x0 (mm)	x1 (mm)	x2 (mm)	ix (mm)		
210	210	210	1		
y0 (mm)	y1 (mm)	y2 (mm)	iy (mm)		
-100	100	100	0		
z0 (mm)	z1 (mm)	z2 (mm)	iz (mm)		
100	-100	-100	0		
New Surface N	lame				
	Charles and				

Gambar 3.25. Panel Pembuatan Plane Arah Radial

2. Contour and Legend

Contour akan memudahkan untuk pembacaan lebih detail pada pola hasil simulasi berdasarkan variabel yang dikehendaki di setiap *plane* yang telah ditentukan sebelumnya, sedangkan *Legend* digunakan untuk menentukan dimensi dari pola warna yang dihasilkan simulasi pada *contour*. Gambar 3.26 merupakan panel pembuatan *contour*, sehingga hasil kontur untuk membaca pola berdasarkan variabel terkait dideskripsikan dengan warna seperti Gambar 3.27 untuk arah aksial dan Gambar 3.28 untuk arah radial.

contour-1					
Options	Contours of				
Filled	Solidification/Melting				
Node Values					
Global Range	Min	Max			
✓ Auto Range	1	1			
Draw Profiles	Surfaces Filter	Text 📑 F. 🐺 F			
Coloring	> Outlet > Plane-surfa	ce			
Banded Smooth Colormap Options	gambar gambar > Point-surfac	-axial -radial ce			
	New Surface	•			

Gambar 3.26. Panel Pembuatan Contour

Gambar 3.27. Hasil Contour Arah Aksial

Gambar 3.28. Hasil Contour Arah Radial

3. Solution Animations

Solution Animations digunakan untuk menyimpan hasil dari simulasi berupa frame-frame animations yang nantinya dapat diputar untuk melihat evolusi temperatur, liquid fraction, dan density. Gambar 3.29 merupakan panel Solution Animations.

Tree	Task Page ×
 Setup Solution Results Graphics Flots Scene Animations 	Graphics and Animations Graphics Mesh Contours Vectors Pathlines Particle Tracks
 Playback Playback Playback Mode Play Once Start Frame Increment Increment	t End Frame 1 1
SlowReplay Speed- Write/Record Format Animatii	Fast Delete All Delete

Gambar 3.29. Panel Solution Animations