BAB IV

HASIL PENELITIAN DAN PEMBAHASAN

4.1 Hasil Pengukuran Peralatan Rumah Tangga

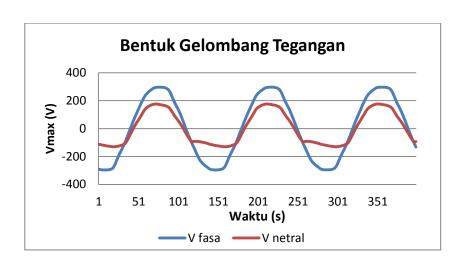
Berdasarkan hasil pengukuran yang telah dilakukan untuk mendapatkan nilai distorsi harmonisa dari peralatan rumah tangga. Pengukuran dilakukan pada beberapa peralatan rumah tangga, sehingga didapatkan data yang berbeda antara satu peralatan dengan peralatan yang lain. Pengukuran dilakukan untuk mengetahui nilai *Individual Harmonic Distortion* (IHD) dan *Total Harmonic Distortion* (THD) untuk arus dan tegangan dari masing-masing peralatan, sehingga dapat diketahui jenis peralatan yang menghasilkan nilai distorsi harmonisa dari yang paling rendah sampai nilai yang paling tinggi.

Pengukuran awal dilakukan dengan pengukuran masing-masing peralatan rumah tangga tanpa pemasangan filter pasif, untuk mengetahui nilai distorsi harmonisa murni yang dihasilkan oleh setiap peralatan rumah tangga. Pengukuran ini menghasilkan data sebagai berikut:

4.1.1 Komputer

A. Komputer All in One

Berdasarkan hasil pengukuran pada Komputer *All in One*, diketahui beberapa nilai sebagai berikut:


- Tegangan fasa (V1) = 218,39 V
- Tegangan netral (VN) = 114,86 V
- Arus fasa (I1) = 228,30 mA
- Arus netral (IN) = 230,19 mA

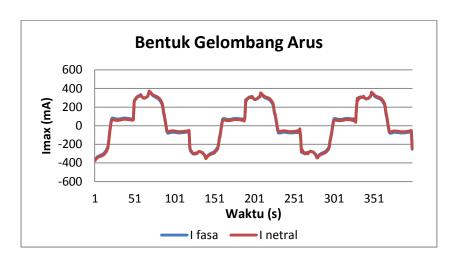
Tabel 4.1 Nilai THD_V Komputer All in One

Total Harmonic Distortion (THD _V)				
I	Fasa	Netra	ıl	
Volt (V)	Persen (%)	Volt (V)	Persen (%)	
8,30	3,81	27,74	24,94	

Tabel 4.2 Nilai IHD_V Komputer All in One

	Individual Harmonic Voltage Distortion			stortion
Orde	Fa	asa	Netral	
	Volt (V)	Persen (%)	Volt (V)	Persen (%)
h3	6,55	3,01	9,34	8,04
h9	2,51	1,15	1,36	1,23
h15	0,33	0,15	0,22	0,20
h21	0,08	0,04	0,03	0,03
h27	0,05	0,02	0,11	0,10
h33	0,03	0,02	0,05	0,05
h39	0,04	0,02	0,03	0,03
h45	0,04	0,02	0,03	0,03

Gambar 4.1 Bentuk Gelombang Tegangan Komputer All in One


Gelombang tegangan pada beban berupa Komputer *All in One* menunjukkan bahwa bentuk gelombangnya tidak sinus sempurna, hal ini diakibatkan karena adanya nilai distorsi harmonisa tegangan yang diakibatkan oleh penggunaan beban tersebut. Nilai *Total Harmonic Distortion* (THD_V) akibat penggunaan Komputer *All in One* pada sisi fasa, besarnya 8,30 V atau 3,81%, sedangkan pada sisi netral, besarnya 27,74 V atau 24,94%. Besarnya nilai *Total Harmonic Distortion* (THD_V) dipengaruhi oleh nilai *Individual Harmonic Distortion* (IHD_V). Pada beban berupa Komputer *All in One*, nilai IHD_V yang paling tinggi berada pada orde harmonisa ke-3, dengan nilai 6,55 V atau 3,01% pada sisi fasa, dan 9,34 V atau 8,04% pada sisi netral.

Tabel 4.3 Nilai THD_I Komputer All in One

Total Harmonic Distortion (THD _I)				
	Fasa	Netral		
mA	Persen (%)	mA	Persen (%)	
77,87	36,64	78,30	36,53	

Tabel 4.4 Nilai IHD_I Komputer All in One

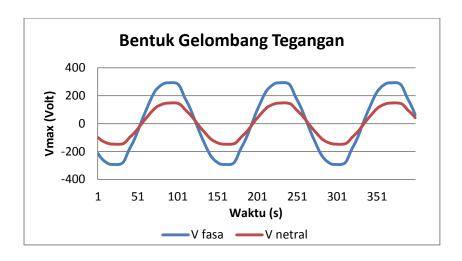
	Individual Harmonic Current Distortion				
Orde	Fas	sa	Ne	tral	
	mA	Persen (%)	mA	Persen (%)	
h3	57,17	27,17	58,20	27,09	
h9	27,15	12,78	27,28	12,73	
h15	7,44	3,47	7,49	3,47	
h21	4,26	2,02	4,27	2,01	
h27	2,25	1,05	2,25	1,05	
h33	3,14	1,49	3,15	1,48	
h39	3,09	1,46	3,10	1,45	
h45	1,91	0,90	1,91	0,89	

Gambar 4.2 Bentuk Gelombang Arus Komputer All in One

Gelombang arus akibat penggunaan beban berupa Komputer *All in One* menunjukkan bahwa bentuk gelombangnya cacat atau tidak berbentuk sinus sempurna, hal ini diakibatkan karena adanya nilai distorsi harmonisa arus yang diakibatkan oleh penggunaan beban tersebut. Nilai *Total Harmonic Distortion* (THD_I) akibat penggunaan Komputer *All in One* pada sisi fasa, besarnya 77,87 mA atau 36,64%, sedangkan pada sisi netral, besarnya 58,20 mA atau 36,53%. Besarnya nilai *Total Harmonic Distortion* (THD_I) dipengaruhi oleh nilai *Individual Harmonic Distortion* (IHD_I). Pada beban berupa Komputer *All in One*, nilai IHD_I yang paling tinggi berada pada orde harmonisa ke-3, dengan nilai 57,17 mA atau 27,17% pada sisi fasa, dan 58,20 mA atau 27,09% pada sisi netral.

B. CPU Komputer

Berdasarkan hasil pengukuran pada CPU Komputer, diketahui beberapa nilai sebagai berikut:


- Tegangan fasa (V1) = 218,71 V
- Tegangan netral (VN) = 110,29 V
- Arus fasa (I1) = 332,40 mA
- Arus netral (IN) = 332,83 mA

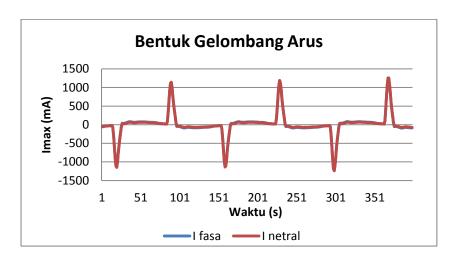
Tabel 4.5 Nilai THD_V CPU Komputer

Total Harmonic Distortion (THD _V)				
I	Fasa	Netral		
Volt (V)	Persen (%)	Volt (V)	Persen (%)	
8,68 3,98		4,25	3,86	

Tabel 4.6 Nilai IHD_V CPU Komputer

	Individual Harmonic Voltage Distortion			istortion
Orde	Fa	ısa	N	Vetral
	Volt (V)	Persen (%)	Volt (V)	Persen (%)
h3	6,81	3,12	3,42	3,11
h9	2,29	1,05	1,08	0,98
h15	0,35	0,16	0,17	0,16
h21	0,08	0,04	0,04	0,04
h27	0,03	0,02	0,02	0,02
h33	0,04	0,02	0,02	0,02
h39	0,04	0,02	0,02	0,02
h45	0,03	0,02	0,02	0,02

Gambar 4.3 Bentuk Gelombang Tegangan CPU Komputer


Gelombang tegangan pada beban berupa CPU Komputer menunjukkan bahwa bentuk gelombangnya tidak sinus sempurna, hal ini diakibatkan karena adanya nilai distorsi harmonisa tegangan yang diakibatkan oleh penggunaan beban tersebut. Nilai *Total Harmonic Distortion* (THD_V) akibat penggunaan Komputer pada sisi fasa, besarnya 8,68 V atau 3,98%, sedangkan pada sisi netral, besarnya 4,25 V atau 3,86%. Besarnya nilai *Total Harmonic Distortion* (THD_V) dipengaruhi oleh nilai *Individual Harmonic Distortion* (IHD_V). Pada beban berupa CPU Komputer, nilai IHD_V yang paling tinggi berada pada orde harmonisa ke-3, dengan nilai 6,81 V atau 3,12% pada sisi fasa, dan 3,42 V atau 3,11% pada sisi netral.

Tabel 4.7 Nilai THD_I CPU Komputer

Total Harmonic Distortion (THD _I)				
	Fasa	Netral		
mA	Persen (%)	mA	Persen (%)	
287,26 175,79		287,60	175,91	

Tabel 4.8 Nilai IHD_I CPU Komputer

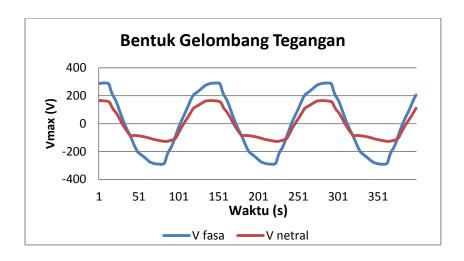
	Individual Harmonic Current Distortion			
Orde	F	asa	Netral	
	mA	Persen (%)	mA	Persen (%)
h3	156,95	95,29	157,09	95,30
h9	96,58	59,31	96,87	59,48
h15	38,56	24,13	38,59	24,14
h21	14,08	8,46	14,08	8,45
h27	6,00	3,75	6,01	3,76
h33	1,50	0,96	1,50	0,96
h39	1,34	0,88	1,34	0,89
h45	1,13	0,71	1,14	0,71

Gambar 4.4 Bentuk Gelombang Arus CPU Komputer

Gelombang arus akibat penggunaan beban berupa CPU Komputer menunjukkan bahwa bentuk gelombangnya cacat atau tidak berbentuk sinus sempurna, hal ini diakibatkan karena adanya nilai distorsi harmonisa arus yang diakibatkan oleh penggunaan beban tersebut. Nilai *Total Harmonic Distortion* (THD_I) akibat penggunaan CPU Komputer pada sisi fasa, besarnya 287,26 mA atau 175,79%, sedangkan pada sisi netral, besarnya 287,60 mA atau 175,91%. Besarnya nilai *Total Harmonic Distortion* (THD_I) dipengaruhi oleh nilai *Individual Harmonic Distortion* (IHD_I). Pada beban berupa CPU Komputer, nilai IHD_I yang paling tinggi berada pada orde harmonisa ke-3, dengan nilai 156,95 mA atau 95,29% pada sisi fasa, dan 157,09 mA atau 95,30% pada sisi netral.

C. Charger Laptop

Berdasarkan hasil pengukuran pada *Charger Laptop*, diketahui beberapa nilai sebagai berikut:


- Tegangan fasa (V1) = 213,01 V
- Tegangan netral (VN) = 110,54 V
- Arus fasa (I1) = 201,35 mA
- Arus netral (IN) = 200,37 mA

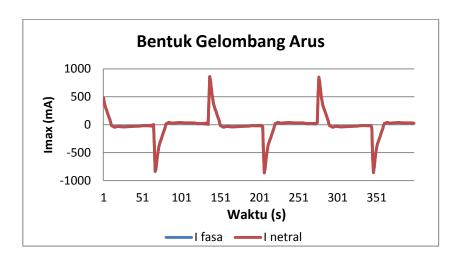
Tabel 4.9 Nilai THD_V Charger Laptop

Total Harmonic Distortion (THD _V)				
	Fasa	Netral		
Volt (V)	Persen (%)	Volt (V) Persen (9		
16,40 7,73		27,11	25,34	

Tabel 4.10 Nilai IHD_V Charger Laptop

	Individual Harmonic Voltage Distortion			
Orde	Harmon	isa Fasa	Harmo	nisa Netral
	Volt (V)	Persen (%)	Volt (V)	Persen (%)
h3	14,67	6,92	11,96	11,18
h9	4,11	1,94	1,67	1,56
h15	1,38	0,65	0,31	0,29
h21	0,61	0,29	0,18	0,16
h27	0,15	0,07	0,05	0,05
h33	0,13	0,06	0,07	0,07
h39	0,07	0,03	0,04	0,04
h45	0,04	0,02	0,04	0,04

Gambar 4.5 Bentuk Gelombang Tegangan Charger Laptop


Gelombang tegangan pada beban berupa Charger Laptop menunjukkan bahwa bentuk gelombangnya tidak sinus sempurna, hal ini diakibatkan karena adanya nilai distorsi harmonisa tegangan yang diakibatkan oleh penggunaan beban tersebut. Nilai *Total Harmonic Distortion* (THD_V) akibat penggunaan Charger Laptop pada sisi fasa, besarnya 16,40 V atau 7,73%, sedangkan pada sisi netral, besarnya 27,11 V atau 25,34%. Besarnya nilai *Total Harmonic Distortion* (THD_V) dipengaruhi oleh nilai *Individual Harmonic Distortion* (IHD_V). Pada beban berupa Charger Laptop, nilai IHD_V yang paling tinggi berada pada orde harmonisa ke-3, dengan nilai 14,67 V atau 6,92% pada sisi fasa, dan 11,96 V atau 11,18% pada sisi netral.

Tabel 4.11 Nilai THD_I Charger Laptop

Total Harmonic Distortion (THD _I)				
	Fasa	Netral		
mA	Persen (%)	mA	Persen (%)	
168,66 157,30		167,86	157,33	

Tabel 4.12 Nilai IHD_I Charger Laptop

	Individual Harmonic Current Distortion			
Orde	F	asa	1	Netral
	mA	Persen (%)	mA	Persen (%)
h3	101,31	93,86	100,71	93,77
h9	41,53	39,20	41,39	39,26
h15	30,75	28,62	30,63	28,65
h21	19,25	18,35	19,17	18,36
h27	13,80	13,13	13,75	13,15
h33	9,03	8,37	9,00	8,38
h39	6,89	6,58	6,86	6,58
h45	5,40	5,00	5,37	5,00

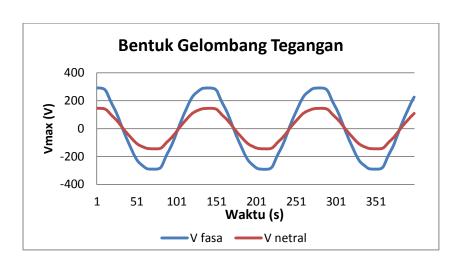
Gambar 4.6 Bentuk Gelombang Arus Charger Laptop

Gelombang arus akibat penggunaan beban berupa *Charger* Laptop menunjukkan bahwa bentuk gelombangnya cacat atau tidak berbentuk sinus sempurna, hal ini diakibatkan karena adanya nilai distorsi harmonisa arus yang diakibatkan oleh penggunaan beban tersebut. Nilai *Total Harmonic Distortion* (THD_I) akibat penggunaan *Charger* Laptop pada sisi fasa, besarnya 168,66 mA atau 157,30%, sedangkan pada sisi netral, besarnya 167,86 mA atau 157,33%. Besarnya nilai *Total Harmonic Distortion* (THD_I) dipengaruhi oleh nilai *Individual Harmonic Distortion* (IHD_I). Pada beban berupa *Charger* Laptop, nilai IHD_I yang paling tinggi berada pada orde harmonisa ke-3, dengan nilai 101,31 mA atau 93,86% pada sisi fasa, dan 100,71 mA atau 93,77% pada sisi netral.

4.1.2 Lampu Hemat Energi

A. Lampu Hemat Energi Merk A 8 Watt

Berdasarkan hasil pengukuran pada Lampu Hemat Energi Merk A 8 Watt, diketahui beberapa nilai sebagai berikut:


- Tegangan fasa (V1) = 216,55 V
- Tegangan netral (VN) = 107,45 V
- Arus fasa (I1) = 55,02 mA
- Arus netral (IN) = 54,58 mA

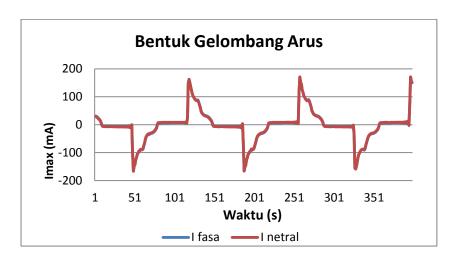
Tabel 4.13 Nilai THD_V Lampu Hemat Energi Merk A 8 Watt

Total Harmonic Distortion (THD _V)				
Fasa Netral				
Volt (V)	Persen (%)	Volt (V)	Persen (%)	
9,00	4,16	4,32	4,03	

Tabel 4.14 Nilai IHD_V Lampu Hemat Energi Merk A 8 Watt

	Individual Harmonic Voltage Distortion			
Orde	Fa	asa	Netral	
	Volt (V)	Persen (%)	Volt (V)	Persen (%)
h3	7,35	3,40	3,57	3,34
h9	2,65	1,23	1,24	1,16
h15	0,34	0,16	0,17	0,15
h21	0,05	0,02	0,02	0,02
h27	0,06	0,03	0,03	0,03
h33	0,03	0,02	0,02	0,02
h39	0,04	0,02	0,02	0,02
h45	0,03	0,02	0,02	0,02

Gambar 4.7 Bentuk Gelombang Tegangan Lampu Hemat Energi Merk A 8 Watt


Gelombang tegangan pada beban berupa Lampu Hemat Energi Merk A 8 Watt menunjukkan bahwa bentuk gelombangnya tidak sinus sempurna, hal ini diakibatkan karena adanya nilai distorsi harmonisa tegangan yang diakibatkan oleh penggunaan beban tersebut. Nilai *Total Harmonic Distortion* (THD_V) akibat penggunaan Lampu Hemat Energi Merk A 8 Watt pada sisi fasa, besarnya 9,00 V atau 4,16%, sedangkan pada sisi netral, besarnya 4,32 V atau 4,03%. Besarnya nilai *Total Harmonic Distortion* (THD_V) dipengaruhi oleh nilai *Individual Harmonic Distortion* (IHD_V). Pada beban berupa Lampu Hemat Energi Merk A 8 Watt, nilai IHD_V yang paling tinggi berada pada orde harmonisa ke-3, dengan nilai 7,35 V atau 3,40% pada sisi fasa, dan 3,57 V atau 3,34% pada sisi netral.

Tabel 4.15 Nilai THD_I Lampu Hemat Energi Merk A 8 Watt

Total Harmonic Distortion (THD _I)				
Fasa Netral				
mA	Persen (%)	mA	Persen (%)	
34,33	80,41	34,20	80,97	

Tabel 4.16 Nilai IHD_I Lampu Hemat Energi Merk A 8 Watt

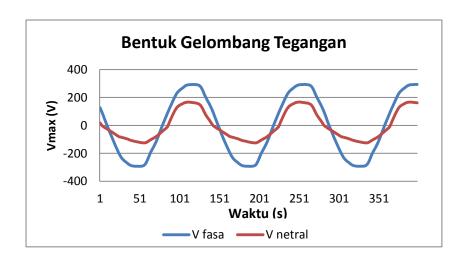
	Individual Harmonic Current Distortion				
Orde	Fa	ısa	N	letral	
	mA	Persen (%)	mA	Persen (%)	
h3	24,73	57,91	24,63	58,30	
h9	5,85	13,71	5,81	13,75	
h15	5,86	13,73	5,85	13,85	
h21	3,89	9,11	3,87	9,17	
h27	2,47	5,78	2,46	5,82	
h33	1,98	4,65	1,98	4,68	
h39	1,72	4,04	1,72	4,07	
h45	1,37	3,21	1,37	3,24	

Gambar 4.8 Bentuk Gelombang Arus Lampu Hemat Energi Merk A 8 Watt

Gelombang arus akibat penggunaan beban berupa Lampu Hemat Energi Merk A 8 Watt menunjukkan bahwa bentuk gelombangnya cacat atau tidak berbentuk sinus sempurna, hal ini diakibatkan karena adanya nilai distorsi harmonisa arus yang diakibatkan oleh penggunaan beban tersebut. Nilai *Total Harmonic Distortion* (THD_I) akibat penggunaan Lampu Hemat Energi Merk A 8 Watt pada sisi fasa, besarnya 34,33 mA atau 80,41%, sedangkan pada sisi netral, besarnya 34,20 mA atau 80,97%. Besarnya nilai *Total Harmonic Distortion* (THD_I) dipengaruhi oleh nilai *Individual Harmonic Distortion* (IHD_I). Pada beban berupa Lampu Hemat Energi Merk A 8 Watt, nilai IHD_I yang paling tinggi berada pada orde harmonisa ke-3, dengan nilai 24,73 mA atau 57,91% pada sisi fasa, dan 24,63 mA atau 58,30% pada sisi netral.

B. Lampu Hemat Energi Merk B 8 Watt

Berdasarkan hasil pengukuran pada Lampu Hemat Energi Merk B 8 Watt, diketahui beberapa nilai sebagai berikut:


- Tegangan fasa (V1) = 217,49 V
- Tegangan netral (VN) = 105,43 V
- Arus fasa (I1) = 55,88 mA
- Arus netral (IN) = 56,32 mA

Tabel 4.17 Nilai THD_V Lampu Hemat Energi Merk B 8 Watt

Total Harmonic Distortion (THD _V)				
	Fasa	Netral		
Volt (V)	Persen (%)	Volt (V)	Persen (%)	
9,13	4,21	25,91	25,41	

Tabel 4.18 Nilai IHD_V Lampu Hemat Energi Merk B 8 Watt

	Individual Harmonic Voltage Distortion			
Orde	Fa	nsa	Netral	
•	Volt (V)	Persen (%)	Volt (V)	Persen (%)
h3	7,38	3,40	2,45	2,40
h9	2,71	1,25	1,74	1,71
h15	0,29	0,13	0,50	0,49
h21	0,09	0,04	0,14	0,13
h27	0,06	0,03	0,10	0,10
h33	0,04	0,02	0,02	0,02
h39	0,03	0,02	0,05	0,04
h45	0,03	0,02	0,03	0,02

Gambar 4.9 Bentuk Gelombang Tegangan Lampu Hemat Energi Merk B 8 Watt


Gelombang tegangan pada beban berupa Lampu Hemat Energi Merk B 8 Watt menunjukkan bahwa bentuk gelombangnya tidak sinus sempurna, hal ini diakibatkan karena adanya nilai distorsi harmonisa tegangan yang diakibatkan oleh penggunaan beban tersebut. Nilai *Total Harmonic Distortion* (THD_V) akibat penggunaan Lampu Hemat Energi Merk B 8 Watt pada sisi fasa, besarnya 9,13 V atau 4,21%, sedangkan pada sisi netral, besarnya 25,91 V atau 25,41%. Besarnya nilai *Total Harmonic Distortion* (THD_V) dipengaruhi oleh nilai *Individual Harmonic Distortion* (IHD_V). Pada beban berupa Lampu Hemat Energi Merk B 8 Watt, nilai IHD_V yang paling tinggi berada pada orde harmonisa ke-3, dengan nilai 7,38 V atau 3,40% pada sisi fasa, dan 2,45 V atau 2,40% pada sisi netral.

Tabel 4.19 Nilai THD_I Lampu Hemat Energi Merk B 8 Watt

Total Harmonic Distortion (THD_I)				
Fasa Netral				
mA	Persen (%)	mA	Persen (%)	
39,57	101,54	39,72	100,80	

Tabel 4.20 Nilai IHD_I Lampu Hemat Energi Merk B 8 Watt

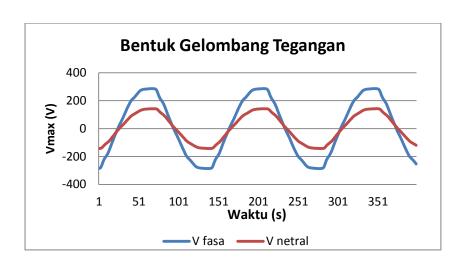
	Individual Harmonic Current Distortion			
Orde	Fa	ısa	N	Vetral
	mA	Persen (%)	mA	Persen (%)
h3	28,91	74,19	29,05	73,72
h9	9,50	24,37	9,57	24,29
h15	4,59	11,78	4,59	11,64
h21	4,48	11,50	4,51	11,45
h27	3,02	7,75	3,02	7,65
h33	2,07	5,31	2,08	5,27
h39	2,24	5,76	2,24	5,69
h45	1,57	4,04	1,58	4,01

Gambar 4.10 Bentuk Gelombang Arus Lampu Hemat Energi Merk B 8 Watt

Gelombang arus akibat penggunaan beban berupa Lampu Hemat Energi Merk B 8 Watt menunjukkan bahwa bentuk gelombangnya cacat atau tidak berbentuk sinus sempurna, hal ini diakibatkan karena adanya nilai distorsi harmonisa arus yang diakibatkan oleh penggunaan beban tersebut. Nilai *Total Harmonic Distortion* (THD_I) akibat penggunaan Lampu Hemat Energi Merk B 8 Watt pada sisi fasa, besarnya 39,57 mA atau 101,54%, sedangkan pada sisi netral, besarnya 39,72 mA atau 100,80%. Besarnya nilai *Total Harmonic Distortion* (THD_I) dipengaruhi oleh nilai *Individual Harmonic Distortion* (IHD_I). Pada beban berupa Lampu Hemat Energi Merk B 8 Watt, nilai IHD_I yang paling tinggi berada pada orde harmonisa ke-3, dengan nilai 28,91 mA atau 74,19% pada sisi fasa, dan 29,05 mA atau 73,72% pada sisi netral.

C. Lampu Hemat Energi Merk C 8 Watt

Berdasarkan hasil pengukuran pada Lampu Hemat Energi Merk C 8 Watt, diketahui beberapa nilai sebagai berikut:


- Tegangan fasa (V1) = 211,38 V
- Tegangan netral (VN) = 104,87 V
- Arus fasa (I1) = 49,59 mA
- Arus netral (IN) = 50,55 mA

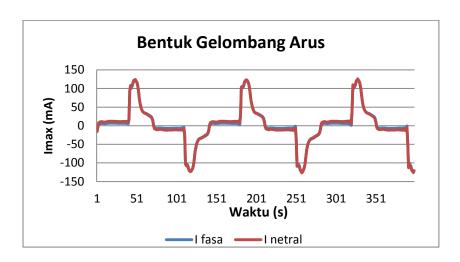
Tabel 4.21 Nilai THD_V Lampu Hemat Energi Merk C 8 Watt

Total Harmonic Distortion (THD_V)				
	Fasa	Netral		
Volt (V)	Persen (%)	Volt (V)	Persen (%)	
10,24	4,86	4,80	4,59	

Tabel 4.22 Nilai IHD $_{
m V}$ Lampu Hemat Energi Merk C 8 Watt

	Individual Harmonic Voltage Distortion			stortion
Orde	F	asa	Netral	
	Volt (V)	Persen (%)	Volt (V)	Persen (%)
h3	8,41	3,99	4,09	3,92
h9	3,24	1,54	1,35	1,29
h15	1,16	0,55	0,43	0,41
h21	0,39	0,18	0,12	0,11
h27	0,19	0,09	0,06	0,06
h33	0,07	0,03	0,03	0,03
h39	0,04	0,02	0,02	0,02
h45	0,03	0,02	0,02	0,02

Gambar 4.11 Bentuk Gelombang Tegangan Lampu Hemat Energi Merk C 8 Watt


Gelombang tegangan pada beban berupa Lampu Hemat Energi Merk C 8 Watt menunjukkan bahwa bentuk gelombangnya tidak sinus sempurna, hal ini diakibatkan karena adanya nilai distorsi harmonisa tegangan yang diakibatkan oleh penggunaan beban tersebut. Nilai *Total Harmonic Distortion* (THD_V) akibat penggunaan Lampu Hemat Energi Merk C 8 Watt pada sisi fasa, besarnya 10,24 V atau 4,86%, sedangkan pada sisi netral, besarnya 4,80 V atau 4,59%. Besarnya nilai *Total Harmonic Distortion* (THD_V) dipengaruhi oleh nilai *Individual Harmonic Distortion* (IHD_V). Pada beban berupa Lampu Hemat Energi Merk C 8 Watt, nilai IHD_V yang paling tinggi berada pada orde harmonisa ke-3, dengan nilai 8,41 V atau 3,99% pada sisi fasa, dan 4,09 V atau 3,92% pada sisi netral.

Tabel 4.23 Nilai THD_I Lampu Hemat Energi Merk C 8 Watt

Total Harmonic Distortion (THD _I)				
	Fasa	Netral		
mA	Persen (%)	mA	Persen (%)	
30,81	80,03	30,72	76,82	

Tabel 4.24 Nilai IHD_I Lampu Hemat Energi Merk C 8 Watt

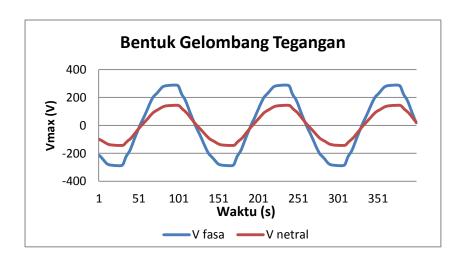
	Individual Harmonic Current Distortion				
Orde	Fa	ısa	N	letral	
	mA	Persen (%)	mA	Persen (%)	
h3	23,44	60,69	23,25	58,15	
h9	5,72	14,83	5,71	14,29	
h15	2,61	6,76	2,70	6,75	
h21	2,21	5,72	2,18	5,44	
h27	1,64	4,26	1,63	4,07	
h33	1,13	2,93	1,13	2,84	
h39	1,17	3,04	1,17	2,92	
h45	0,98	2,54	0,97	2,44	

Gambar 4.12 Bentuk Gelombang Arus Lampu Hemat Energi Merk C 8 Watt

Gelombang arus akibat penggunaan beban berupa Lampu Hemat Energi Merk C 8 Watt menunjukkan bahwa bentuk gelombangnya cacat atau tidak berbentuk sinus sempurna, hal ini diakibatkan karena adanya nilai distorsi harmonisa arus yang diakibatkan oleh penggunaan beban tersebut. Nilai *Total Harmonic Distortion* (THD_I) akibat penggunaan Lampu Hemat Energi Merk C 8 Watt pada sisi fasa, besarnya 30,81 mA atau 80,03%, sedangkan pada sisi netral, besarnya 30,72 mA atau 76,82%. Besarnya nilai *Total Harmonic Distortion* (THD_I) dipengaruhi oleh nilai *Individual Harmonic Distortion* (IHD_I). Pada beban berupa Lampu Hemat Energi Merk C 8 Watt, nilai IHD_I yang paling tinggi berada pada orde harmonisa ke-3, dengan nilai 23,44 mA atau 60,69% pada sisi fasa, dan 23,25 mA atau 58,15% pada sisi netral.

D. Lampu Hemat Energi Merk C 11 Watt

Berdasarkan hasil pengukuran pada Lampu Hemat Energi Merk C 11 Watt, diketahui beberapa nilai sebagai berikut:


- Tegangan fasa (V1) = 211,26 V
- Tegangan netral (VN) = 104,84 V
- Arus fasa (I1) = 70,64 mA
- Arus netral (IN) = 71,38 mA

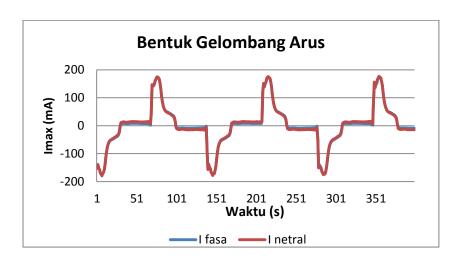
Tabel 4.25 Nilai THD_V Lampu Hemat Energi Merk C 11 Watt

Total Harmonic Distortion (THD _V)				
Fasa Netral				
Volt (V)	Persen (%)	Volt (V)	Persen (%)	
10,43	4,95	4,90	4,69	

Tabel 4.26 Nilai IHD $_{\rm V}$ Lampu Hemat Energi Merk C 11 Watt

	Individual Harmonic Voltage Distortion			stortion
Orde	F	asa	Netral	
	Volt (V)	Persen (%)	Volt (V)	Persen (%)
h3	8,58	4,07	4,18	4,00
h9	3,28	1,56	1,38	1,32
h15	1,22	0,58	0,45	0,43
h21	0,44	0,21	0,14	0,13
h27	0,19	0,09	0,06	0,06
h33	0,07	0,03	0,03	0,03
h39	0,05	0,02	0,02	0,02
h45	0,04	0,02	0,02	0,02

Gambar 4.13 Bentuk Gelombang Tegangan Lampu Hemat Energi Merk C 11 Watt


Gelombang tegangan pada beban berupa Lampu Hemat Energi Merk C 11 Watt menunjukkan bahwa bentuk gelombangnya tidak sinus sempurna, hal ini diakibatkan karena adanya nilai distorsi harmonisa tegangan yang diakibatkan oleh penggunaan beban tersebut. Nilai *Total Harmonic Distortion* (THD_V) akibat penggunaan Lampu Hemat Energi Merk C 11 Watt pada sisi fasa, besarnya 10,43 V atau 4,95%, sedangkan pada sisi netral, besarnya 4,90 V atau 4,69%. Besarnya nilai *Total Harmonic Distortion* (THD_V) dipengaruhi oleh nilai *Individual Harmonic Distortion* (IHD_V). Pada beban berupa Lampu Hemat Energi Merk C 11 Watt, nilai IHD_V yang paling tinggi berada pada orde harmonisa ke-3, dengan nilai 8,58 V atau 4,07% pada sisi fasa, dan 4,18 V atau 4,00% pada sisi netral.

Tabel 4.27 Nilai THD_I Lampu Hemat Energi Merk C 11 Watt

Total Harmonic Distortion (THD_I)				
Fasa Netral				
mA	Persen (%)	mA Persen (%		
44,24 80,62		43,99	78,55	

Tabel 4.28 Nilai IHD_I Lampu Hemat Energi Merk C 11 Watt

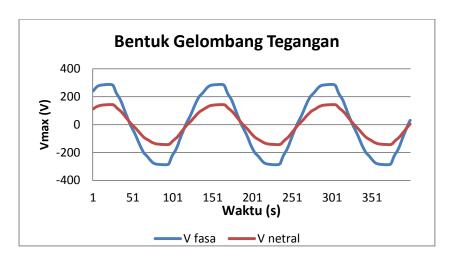
	Individual Harmonic Current Distortion			
Orde	e Fasa		N	Vetral
	mA	Persen (%)	mA	Persen (%)
h3	33,66	61,34	33,44	59,70
h9	8,48	15,46	8,47	15,13
h15	3,48	6,34	3,56	6,36
h21	3,12	5,69	3,09	5,52
h27	2,07	3,77	2,05	3,66
h33	1,45	2,64	1,45	2,59
h39	1,61	2,93	1,60	2,86
h45	1,37	2,49	1,36	2,43

Gambar 4.14 Bentuk Gelombang Arus Lampu Hemat Energi Merk C 11 Watt

Gelombang arus akibat penggunaan beban berupa Lampu Hemat Energi Merk C 11 Watt menunjukkan bahwa bentuk gelombangnya cacat atau tidak berbentuk sinus sempurna, hal ini diakibatkan karena adanya nilai distorsi harmonisa arus yang diakibatkan oleh penggunaan beban tersebut. Nilai *Total Harmonic Distortion* (THD_I) akibat penggunaan Lampu Hemat Energi Merk C 11 Watt pada sisi fasa, besarnya 30,81 mA atau 80,03%, sedangkan pada sisi netral, besarnya 43,99 mA atau 78,55%. Besarnya nilai *Total Harmonic Distortion* (THD_I) dipengaruhi oleh nilai *Individual Harmonic Distortion* (IHD_I). Pada beban berupa Lampu Hemat Energi Merk C 11 Watt, nilai IHD_I yang paling tinggi berada pada orde harmonisa ke-3, dengan nilai 33,66 mA atau 61,34% pada sisi fasa, dan 33,44 mA atau 59,70% pada sisi netral.

E. Lampu Hemat Energi Merk C 14 Watt

Berdasarkan hasil pengukuran pada Lampu Hemat Energi Merk C 14 Watt, diketahui beberapa nilai sebagai berikut:


- Tegangan fasa (V1) = 212,18 V
- Tegangan netral (VN) = 109,17 V
- Arus fasa (I1) = 86,78 mA
- Arus netral (IN) = 87,45 mA

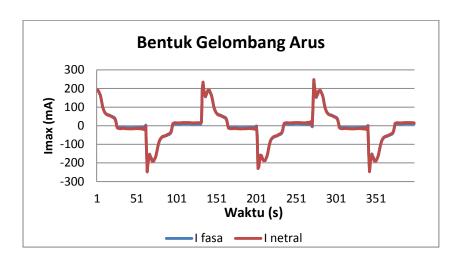
Tabel 4.29 Nilai THD_V Lampu Hemat Energi Merk C 14 Watt

Total Harmonic Distortion (THD_V)				
Fasa Netral				
Volt (V)	Persen (%)	Volt (V)	Persen (%)	
10,76	5,08	23,47	22,06	

Tabel 4.30 Nilai IHD_V Lampu Hemat Energi Merk C 14 Watt

	Individual Harmonic Voltage Distortion			stortion
Orde	Fasa		Netral	
-	Volt (V)	Persen (%)	Volt (V)	Persen (%)
h3	8,74	4,13	8,53	8,02
h9	3,41	1,61	1,04	0,98
h15	1,22	0,58	0,38	0,36
h21	0,39	0,18	0,19	0,18
h27	0,20	0,10	0,11	0,10
h33	0,07	0,04	0,07	0,06
h39	0,04	0,02	0,02	0,02
h45	0,04	0,02	0,03	0,02

Gambar 4.15 Bentuk Gelombang Tegangan Lampu Hemat Energi Merk C 14 Watt


Gelombang tegangan pada beban berupa Lampu Hemat Energi Merk C 14 Watt menunjukkan bahwa bentuk gelombangnya tidak sinus sempurna, hal ini diakibatkan karena adanya nilai distorsi harmonisa tegangan yang diakibatkan oleh penggunaan beban tersebut. Nilai *Total Harmonic Distortion* (THD_V) akibat penggunaan Lampu Hemat Energi Merk C 14 Watt pada sisi fasa, besarnya 10,76 V atau 5,08%, sedangkan pada sisi netral, besarnya 23,47 V atau 22,06%. Besarnya nilai *Total Harmonic Distortion* (THD_V) dipengaruhi oleh nilai *Individual Harmonic Distortion* (IHD_V). Pada beban berupa Lampu Hemat Energi Merk C 14 Watt, nilai IHD_V yang paling tinggi berada pada orde harmonisa ke-3, dengan nilai 8,74 V atau 4,13% pada sisi fasa, dan 8,53 V atau 8,02% pada sisi netral.

Tabel 4.31 Nilai THD_I Lampu Hemat Energi Merk C 14 Watt

Total Harmonic Distortion (THD _I)				
Fasa Netral				
mA	Persen (%)	mA	Persen (%)	
50,97	73,00	50,61	71,39	

Tabel 4.32 Nilai IHD_I Lampu Hemat Energi Merk C 14 Watt

	Inc	Individual Harmonic Current Distortion		
Orde	Fasa		N	letral
	mA	Persen (%)	mA	Persen (%)
h3	37,50	53,71	36,99	52,17
h9	3,29	4,71	3,10	4,38
h15	9,37	13,42	9,44	13,31
h21	5,31	7,61	5,26	7,42
h27	4,77	6,83	4,78	6,75
h33	3,70	5,30	3,70	5,22
h39	2,36	3,38	2,35	3,31
h45	2,27	3,25	2,26	3,19

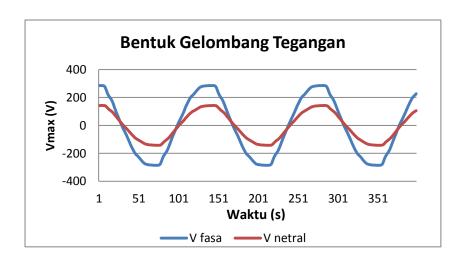
Gambar 4.16 Bentuk Gelombang Arus Lampu Hemat Energi Merk C 14 Watt

Gelombang arus akibat penggunaan beban berupa Lampu Hemat Energi Merk C 14 Watt menunjukkan bahwa bentuk gelombangnya cacat atau tidak berbentuk sinus sempurna, hal ini diakibatkan karena adanya nilai distorsi harmonisa arus yang diakibatkan oleh penggunaan beban tersebut. Nilai *Total Harmonic Distortion* (THD_I) akibat penggunaan Lampu Hemat Energi Merk C 14 Watt pada sisi fasa, besarnya 50,97 mA atau 73,00%, sedangkan pada sisi netral, besarnya 50,61 mA atau 71,39%. Besarnya nilai *Total Harmonic Distortion* (THD_I) dipengaruhi oleh nilai *Individual Harmonic Distortion* (IHD_I). Pada beban berupa Lampu Hemat Energi Merk C 14 Watt, nilai IHD_I yang paling tinggi berada pada orde harmonisa ke-3, dengan nilai 37,50 mA atau 53,71% pada sisi fasa, dan 36,99 mA atau 52,17% pada sisi netral.

4.1.3 Lampu LED

A. Lampu LED Merk D 7 Watt

Berdasarkan hasil pengukuran pada Lampu LED Merk D 7 Watt, diketahui beberapa nilai sebagai berikut:


- Tegangan fasa (V1) = 212,74 V
- Tegangan netral (VN) = 105.86 V
- Arus fasa (I1) = 55,38 mA
- Arus netral (IN) = 56,00 mA

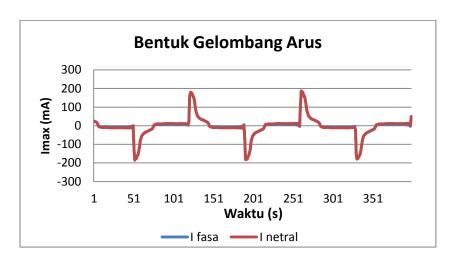
Tabel 4.33 Nilai THD_V Lampu LED Merk D 7 Watt

Total Harmonic Distortion (THD _V)				
Fasa Netral				
Volt (V)	Persen (%)	Volt (V)	Persen (%)	
10,51	4,96	4,93	4,67	

Tabel 4.34 Nilai IHD_V Lampu LED Merk D 7 Watt

	Individual Harmonic Voltage Distortion			
Orde	Fasa Netra		Vetral	
	Volt (V)	Persen (%)	Volt (V)	Persen (%)
h3	8,66	4,08	4,22	3,99
h9	3,35	1,56	1,40	1,33
h15	1,30	0,61	0,48	0,45
h21	0,38	0,18	0,12	0,11
h27	0,18	0,08	0,06	0,06
h33	0,07	0,03	0,03	0,03
h39	0,06	0,03	0,02	0,02
h45	0,04	0,02	0,02	0,02

Gambar 4.17 Bentuk Gelombang Tegangan Lampu LED Merk D 7 Watt


Gelombang tegangan pada beban berupa Lampu LED Merk D 7 Watt menunjukkan bahwa bentuk gelombangnya tidak sinus sempurna, hal ini diakibatkan karena adanya nilai distorsi harmonisa tegangan yang diakibatkan oleh penggunaan beban tersebut. Nilai *Total Harmonic Distortion* (THD_V) akibat penggunaan Lampu LED Merk D 7 Watt pada sisi fasa, besarnya 10,51 V atau 4,96%, sedangkan pada sisi netral, besarnya 4,93 V atau 4,67%. Besarnya nilai *Total Harmonic Distortion* (THD_V) dipengaruhi oleh nilai *Individual Harmonic Distortion* (IHD_V). Pada beban berupa Lampu LED Merk D 7 Watt, nilai IHD_V yang paling tinggi berada pada orde harmonisa ke-3, dengan nilai 8,66 V atau 4,08% pada sisi fasa, dan 4,22 V atau 3,99% pada sisi netral.

Tabel 4.35 Nilai THD_I Lampu LED Merk D 7 Watt

Total Harmonic Distortion (THD_I)				
Fasa Netral				
mA	Persen (%)	mA	Persen (%)	
41,50 114,48		41,34	110,62	

Tabel 4.36 Nilai IHD_I Lampu LED Merk D 7 Watt

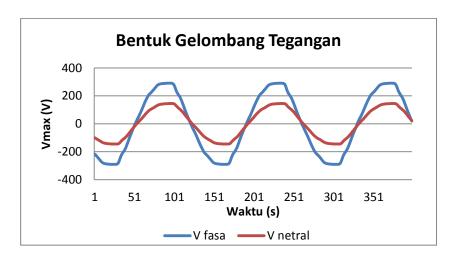
	Individual Harmonic Current Distortion			
Orde	Fa	ısa	N	Vetral
	mA	Persen (%)	mA	Persen (%)
h3	26,45	72,93	26,30	70,36
h9	14,02	38,67	14,12	37,78
h15	5,93	16,37	5,87	15,71
h21	3,20	8,84	3,18	8,50
h27	3,13	8,63	3,12	8,35
h33	2,36	6,52	2,36	6,32
h39	1,63	4,49	1,63	4,35
h45	1,39	3,83	1,39	3,71

Gambar 4.18 Bentuk Gelombang Arus Lampu LED Merk D 7 Watt

Gelombang arus akibat penggunaan beban berupa Lampu LED Merk D 7 Watt menunjukkan bahwa bentuk gelombangnya cacat atau tidak berbentuk sinus sempurna, hal ini diakibatkan karena adanya nilai distorsi harmonisa arus yang diakibatkan oleh penggunaan beban tersebut. Nilai *Total Harmonic Distortion* (THD_I) akibat penggunaan Lampu LED Merk D 7 Watt pada sisi fasa, besarnya 41,50 mA atau 114,48%, sedangkan pada sisi netral, besarnya 41,34 mA atau 110,62%. Besarnya nilai *Total Harmonic Distortion* (THD_I) dipengaruhi oleh nilai *Individual Harmonic Distortion* (IHD_I). Pada beban berupa Lampu LED Merk D 7 Watt, nilai IHD_I yang paling tinggi berada pada orde harmonisa ke-3, dengan nilai 26,45 mA atau 72,93% pada sisi fasa, dan 26,30 mA atau 70,36% pada sisi netral.

B. Lampu LED Merk X 7 Watt

Berdasarkan hasil pengukuran pada Lampu LED Merk X 7 Watt, diketahui beberapa nilai sebagai berikut:


- Tegangan fasa (V1) = 212,64 V
- Tegangan netral (VN) = 105,76 V
- Arus fasa (I1) = 81,27 mA
- Arus netral (IN) = 82,61 mA

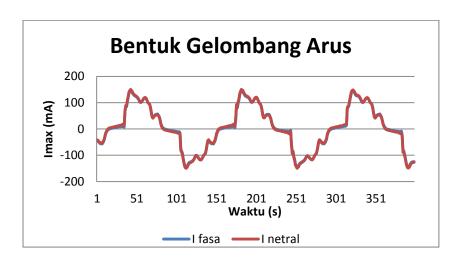
Tabel 4.37 Nilai THD_V Lampu LED Merk X 7 Watt

Total Harmonic Distortion (THD _V)				
Fasa Netral			1	
Volt (V) Persen (%)		Volt (V)	Persen (%)	
12,20	4,81	4,78	4,54	

Tabel 4.38 Nilai IHD_V Lampu LED Merk X 7 Watt

	Individual Harmonic Voltage Distortion			istortion
Orde	Fa	ısa	Netral	
	Volt (V)	Persen (%)	Volt (V)	Persen (%)
h3	8,37	3,95	4,07	3,86
h9	3,31	1,56	1,38	1,31
h15	1,20	0,57	0,44	0,42
h21	0,37	0,18	0,12	0,11
h27	0,19	0,09	0,06	0,06
h33	0,03	0,06	0,03	0,03
h39	0,04	0,02	0,02	0,02
h45	0,03	0,02	0,02	0,02

Gambar 4.19 Bentuk Gelombang Tegangan Lampu LED Merk X 7 Watt


Gelombang tegangan pada beban berupa Lampu LED Merk X 7 Watt menunjukkan bahwa bentuk gelombangnya tidak sinus sempurna, hal ini diakibatkan karena adanya nilai distorsi harmonisa tegangan yang diakibatkan oleh penggunaan beban tersebut. Nilai *Total Harmonic Distortion* (THD_V) akibat penggunaan Lampu LED Merk X 7 Watt pada sisi fasa, besarnya 12,20 V atau 4,81%, sedangkan pada sisi netral, besarnya 4,78 V atau 4,54%. Besarnya nilai *Total Harmonic Distortion* (THD_V) dipengaruhi oleh nilai *Individual Harmonic Distortion* (IHD_V). Pada beban berupa Lampu LED Merk X 7 Watt, nilai IHD_V yang paling tinggi berada pada orde harmonisa ke-3, dengan nilai 8,37 V atau 3,95% pada sisi fasa, dan 4,07 V atau 3,86% pada sisi netral.

Tabel 4.39 Nilai THD_I Lampu LED Merk X 7 Watt

Total Harmonic Distortion (THD _I)				
	Fasa	Netral		
mA	Persen (%)	mA Persen (%		
24,64	31,89	24,70	31,40	

Tabel 4.40 Nilai IHD_I Lampu LED Merk X 7 Watt

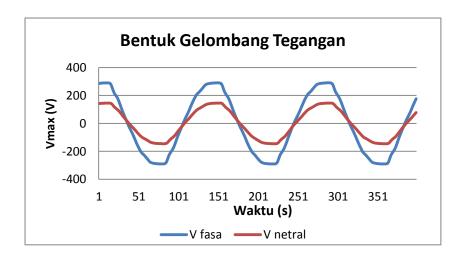
	Individual Harmonic Current Distortion			istortion
Orde	Fa	asa	Netral	
	mA	Persen (%)	mA	Persen (%)
h3	16,51	21,37	16,60	21,11
h9	4,11	5,32	4,12	5,24
h15	2,14	2,77	2,12	2,70
h21	0,30	0,38	0,08	0,10
h27	1,78	2,30	1,78	2,27
h33	1,06	1,37	1,06	1,35
h39	0,93	1,21	0,93	1,18
h45	0,75	0,97	0,74	0,95

Gambar 4.20 Bentuk Gelombang Arus Lampu LED Merk X 7 Watt

Gelombang arus akibat penggunaan beban berupa Lampu LED Merk X 7 Watt menunjukkan bahwa bentuk gelombangnya cacat atau tidak berbentuk sinus sempurna, hal ini diakibatkan karena adanya nilai distorsi harmonisa arus yang diakibatkan oleh penggunaan beban tersebut. Nilai *Total Harmonic Distortion* (THD_I) akibat penggunaan Lampu LED Merk X 7 Watt pada sisi fasa, besarnya 24,64 mA atau 31,89%, sedangkan pada sisi netral, besarnya 24,70 mA atau 31,40%. Besarnya nilai *Total Harmonic Distortion* (THD_I) dipengaruhi oleh nilai *Individual Harmonic Distortion* (IHD_I). Pada beban berupa Lampu LED Merk X 7 Watt, nilai IHD_I yang paling tinggi berada pada orde harmonisa ke-3, dengan nilai 16,51 mA atau 21,37% pada sisi fasa, dan 16,60 mA atau 21,11% pada sisi netral.

C. Lampu LED Merk C 6,5 Watt

Berdasarkan hasil pengukuran pada Lampu LED Merk C 6,5 Watt, diketahui beberapa nilai sebagai berikut:


- Tegangan fasa (V1) = 212,90 V
- Tegangan netral (VN) = 106,06 V
- Arus fasa (I1) = 52,10 mA
- Arus netral (IN) = 52,67 mA

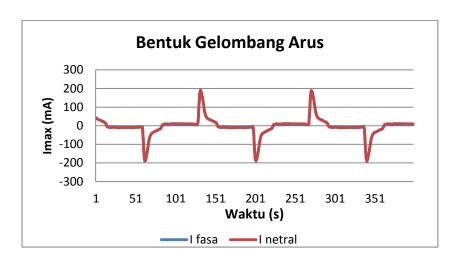
Tabel 4.41 Nilai THD_V Lampu LED Merk C 6,5 Watt

Total Harmonic Distortion (THD _V)				
Fasa Netral				
Volt (V)	Volt (V) Persen (%)		Persen (%)	
10,49 4,94		4,93	4,66	

Tabel 4.42 Nilai IHD_V Lampu LED Merk C 6,5 Watt

	Individual Harmonic Voltage Distortion			stortion
Orde	Fa	Fasa		letral
	Volt (V)	Persen (%)	Volt (V)	Persen (%)
h3	8,60	4,05	4,20	3,97
h9	3,30	1,56	1,39	1,32
h15	1,29	0,61	0,48	0,45
h21	0,41	0,19	0,13	0,12
h27	0,20	0,09	0,07	0,07
h33	0,07	0,03	0,03	0,03
h39	0,04	0,02	0,02	0,02
h45	0,04	0,02	0,02	0,02

Gambar 4.21 Bentuk Gelombang Tegangan Lampu LED Merk C 6,5 Watt


Gelombang tegangan pada beban berupa Lampu LED Merk C 6,5 Watt menunjukkan bahwa bentuk gelombangnya tidak sinus sempurna, hal ini diakibatkan karena adanya nilai distorsi harmonisa tegangan yang diakibatkan oleh penggunaan beban tersebut. Nilai *Total Harmonic Distortion* (THD_V) akibat penggunaan Lampu LED Merk C 6,5 Watt pada sisi fasa, besarnya 10,49 V atau 4,94%, sedangkan pada sisi netral, besarnya 4,93 V atau 4,66%. Besarnya nilai *Total Harmonic Distortion* (THD_V) dipengaruhi oleh nilai *Individual Harmonic Distortion* (IHD_V). Pada beban berupa Lampu LED Merk C 6,5 Watt, nilai IHD_V yang paling tinggi berada pada orde harmonisa ke-3, dengan nilai 8,60 V atau 4,05% pada sisi fasa, dan 4,20 V atau 3,97% pada sisi netral.

Tabel 4.43 Nilai THD_I Lampu LED Merk C 6,5 Watt

Total Harmonic Distortion (THD_I)				
Fasa Netral				
mA	Persen (%)	mA	Persen (%)	
40,23	121,90	40,11	117,89	

Tabel 4.44 Nilai IHD_I Lampu LED Merk C 6,5 Watt

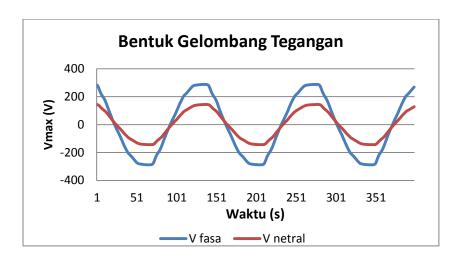
	Individual Harmonic Current Distortion			
Orde	Fa	ısa	a Netral	
	mA	Persen (%)	mA	Persen (%)
h3	24,70	74,81	24,60	72,30
h9	14,23	43,11	14,38	42,26
h15	7,09	21,47	7,13	20,94
h21	3,23	9,78	3,19	9,39
h27	2,34	7,09	2,32	6,82
h33	1,76	5,34	1,75	5,15
h39	1,03	3,13	1,03	3,02
h45	0,60	1,81	0,59	1,74

Gambar 4.22 Bentuk Gelombang Arus Lampu LED Merk C 6,5 Watt

Gelombang arus akibat penggunaan beban berupa Lampu LED Merk C 6,5 Watt menunjukkan bahwa bentuk gelombangnya cacat atau tidak berbentuk sinus sempurna, hal ini diakibatkan karena adanya nilai distorsi harmonisa arus yang diakibatkan oleh penggunaan beban tersebut. Nilai *Total Harmonic Distortion* (THD_I) akibat penggunaan Lampu LED Merk C 6,5 Watt pada sisi fasa, besarnya 40,23 mA atau 121,90%, sedangkan pada sisi netral, besarnya 40,11 mA atau 117,89%. Besarnya nilai *Total Harmonic Distortion* (THD_I) dipengaruhi oleh nilai *Individual Harmonic Distortion* (IHD_I). Pada beban berupa Lampu LED Merk C 6,5 Watt, nilai IHD_I yang paling tinggi berada pada orde harmonisa ke-3, dengan nilai 24,70 mA atau 74,81% pada sisi fasa, dan 24,60 mA atau 72,30% pada sisi netral.

D. Lampu LED Merk C 3 Watt

Berdasarkan hasil pengukuran pada Lampu LED Merk C 3 Watt, diketahui beberapa nilai sebagai berikut:


- Tegangan fasa (V1) = 211,71 V
- Tegangan netral (VN) = 105,15 V
- Arus fasa (I1) = 24,21 mA
- Arus netral (IN) = 25,09 mA

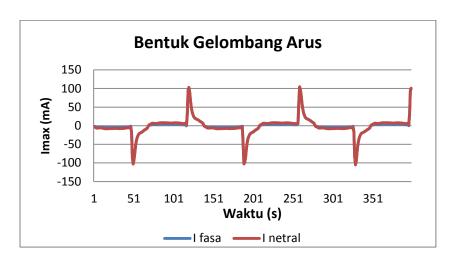
Tabel 4.45 Nilai THD_V Lampu LED Merk C 3 Watt

Total Harmonic Distortion (THD _V)				
Fasa Netral				
Volt (V) Persen (%)		Volt (V)	Persen (%)	
10,20	4,83	4,79	4,57	

Tabel 4.46 Nilai IHD_V Lampu LED Merk C 3 Watt

	Individual Harmonic Voltage Distortion			stortion
Orde	Fa	asa	Netral	
	Volt (V)	Persen (%)	Volt (V)	Persen (%)
h3	8,36	3,96	4,08	3,89
h9	3,18	1,50	1,33	1,26
h15	1,10	0,52	0,40	0,38
h21	0,37	0,18	0,12	0,11
h27	0,18	0,09	0,06	0,06
h33	0,06	0,03	0,03	0,03
h39	0,04	0,02	0,02	0,02
h45	0,03	0,02	0,02	0,02

Gambar 4.23 Bentuk Gelombang Tegangan Lampu LED Merk C 3 Watt


Gelombang tegangan pada beban berupa Lampu LED Merk C 3 Watt menunjukkan bahwa bentuk gelombangnya tidak sinus sempurna, hal ini diakibatkan karena adanya nilai distorsi harmonisa tegangan yang diakibatkan oleh penggunaan beban tersebut. Nilai *Total Harmonic Distortion* (THD_V) akibat penggunaan Lampu LED Merk C 3 Watt pada sisi fasa, besarnya 10,20 V atau 4,83%, sedangkan pada sisi netral, besarnya 4,79 V atau 4,57%. Besarnya nilai *Total Harmonic Distortion* (THD_V) dipengaruhi oleh nilai *Individual Harmonic Distortion* (IHD_V). Pada beban berupa Lampu LED Merk C 3 Watt, nilai IHD_V yang paling tinggi berada pada orde harmonisa ke-3, dengan nilai 8,36 V atau 3,96% pada sisi fasa, dan 4,08 V atau 3,89% pada sisi netral.

Tabel 4.47 Nilai THD_I Lampu LED Merk C 3 Watt

Total Harmonic Distortion (THD _I)				
Fasa Netral				
mA	Persen (%)	mA	Persen (%)	
19,19	131,54	19,15	119,36	

Tabel 4.48 Nilai IHD_I Lampu LED Merk C 3 Watt

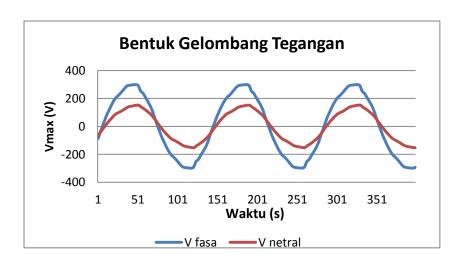
	Individual Harmonic Current Distortion			
Orde	Fa	nsa	N	Vetral
	mA	Persen (%)	mA	Persen (%)
h3	10,99	75,31	10,99	68,50
h9	6,38	43,71	6,56	40,88
h15	3,96	27,17	4,05	25,22
h21	2,40	16,47	2,42	15,11
h27	1,63	11,16	1,64	10,21
h33	1,12	7,69	1,12	7,01
h39	0,85	5,85	0,85	5,31
h45	0,68	4,68	0,68	4,25

Gambar 4.24 Bentuk Gelombang Arus Lampu LED Merk C 3 Watt

Gelombang arus akibat penggunaan beban berupa Lampu LED Merk C 3 Watt menunjukkan bahwa bentuk gelombangnya cacat atau tidak berbentuk sinus sempurna, hal ini diakibatkan karena adanya nilai distorsi harmonisa arus yang diakibatkan oleh penggunaan beban tersebut. Nilai *Total Harmonic Distortion* (THD_I) akibat penggunaan Lampu LED Merk C 3 Watt pada sisi fasa, besarnya 19,19 mA atau 75,31%, sedangkan pada sisi netral, besarnya 19,15 mA atau 68,50%. Besarnya nilai *Total Harmonic Distortion* (THD_I) dipengaruhi oleh nilai *Individual Harmonic Distortion* (IHD_I). Pada beban berupa Lampu LED Merk C 3 Watt, nilai IHD_I yang paling tinggi berada pada orde harmonisa ke-3, dengan nilai 10,99 mA atau 75,31% pada sisi fasa, dan 10,99 mA atau 68,50% pada sisi netral.

E. Lampu LED Merk C 10,5 Watt

Berdasarkan hasil pengukuran pada Lampu LED Merk C 10,5 Watt, diketahui beberapa nilai sebagai berikut:


- Tegangan fasa (V1) = 213,53 V
- Tegangan netral (VN) = 106,14 V
- Arus fasa (I1) = 83,31 mA
- Arus netral (IN) = 83,36 mA

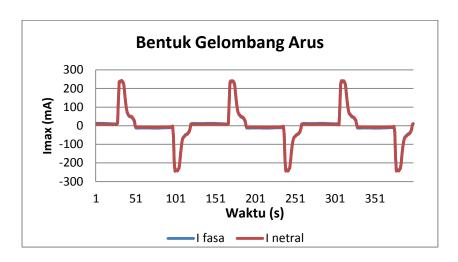
Tabel 4.49 Nilai THD_V Lampu LED Merk C 10,5 Watt

Total Harmonic Distortion (THD_V)				
	Fasa	Netral		
Volt (V)	Volt (V) Persen (%)		Persen (%)	
10,68 5,02		5,68	5,37	

Tabel 4.50 Nilai IHD_V Lampu LED Merk C 10,5 Watt

	Individual Harmonic Voltage Distortion			stortion
Orde	Fa	asa	Netral	
-	Volt (V)	Persen (%)	Volt (V)	Persen (%)
h3	9,04	4,24	5,08	4,81
h9	2,63	1,24	1,28	1,21
h15	1,20	0,56	0,36	0,34
h21	0,80	0,38	0,13	0,13
h27	0,31	0,15	0,06	0,06
h33	0,15	0,07	0,02	0,02
h39	0,09	0,04	0,02	0,02
h45	0,05	0,02	0,02	0,02

Gambar 4.25 Bentuk Gelombang Tegangan Lampu LED Merk C 10,5 Watt


Gelombang tegangan pada beban berupa Lampu LED Merk C 10,5 Watt menunjukkan bahwa bentuk gelombangnya tidak sinus sempurna, hal ini diakibatkan karena adanya nilai distorsi harmonisa tegangan yang diakibatkan oleh penggunaan beban tersebut. Nilai *Total Harmonic Distortion* (THD_V) akibat penggunaan Lampu LED Merk C 10,5 Watt pada sisi fasa, besarnya 10,68 V atau 5,02%, sedangkan pada sisi netral, besarnya 5,68 V atau 5,37%. Besarnya nilai *Total Harmonic Distortion* (THD_V) dipengaruhi oleh nilai *Individual Harmonic Distortion* (IHD_V). Pada beban berupa Lampu LED Merk C 10,5 Watt, nilai IHD_V yang paling tinggi berada pada orde harmonisa ke-3, dengan nilai 9,04 V atau 4,24% pada sisi fasa, dan 5,08 V atau 4,81% pada sisi netral.

Tabel 4.51 Nilai THD_I Lampu LED Merk C 10,5 Watt

Total Harmonic Distortion (THD _I)				
Fasa Netral				
mA	Persen (%)	mA	Persen (%)	
63,41	117,83	63,58	118,39	

Tabel 4.52 Nilai IHD_I Lampu LED Merk C 10,5 Watt

	Inc	dividual Harm	onic Current Di	istortion
Orde	Fasa Netral		letral	
	mA	Persen (%)	mA	Persen (%)
h3	43,23	80,31	43,37	80,74
h9	18,94	35,19	18,95	35,29
h15	3,97	7,37	3,97	7,40
h21	4,18	7,76	4,16	7,75
h27	3,60	6,69	3,60	6,71
h33	2,19	4,07	2,19	4,08
h39	1,79	3,32	1,79	3,34
h45	1,67	3,10	1,67	3,12

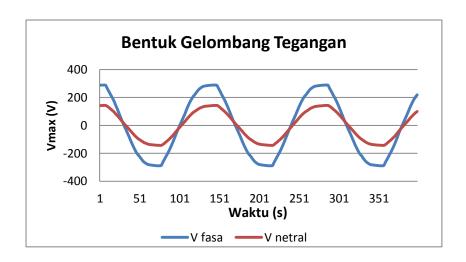
Gambar 4.26 Bentuk Gelombang Arus Lampu LED Merk C 10,5 Watt

Gelombang arus akibat penggunaan beban berupa Lampu LED Merk C 10,5 Watt menunjukkan bahwa bentuk gelombangnya cacat atau tidak berbentuk sinus sempurna, hal ini diakibatkan karena adanya nilai distorsi harmonisa arus yang diakibatkan oleh penggunaan beban tersebut. Nilai *Total Harmonic Distortion* (THD_I) akibat penggunaan Lampu LED Merk C 10,5 Watt pada sisi fasa, besarnya 63,41 mA atau 117,83%, sedangkan pada sisi netral, besarnya 63,58 mA atau 118,39%. Besarnya nilai *Total Harmonic Distortion* (THD_I) dipengaruhi oleh nilai *Individual Harmonic Distortion* (IHD_I). Pada beban berupa Lampu LED Merk C 10,5 Watt, nilai IHD_I yang paling tinggi berada pada orde harmonisa ke-3, dengan nilai 43,23 mA atau 80,31% pada sisi fasa, dan 43,37 mA atau 80,74% pada sisi netral.

4.1.4 TV LED

A. TV LED Merk E 14 inch

Berdasarkan hasil pengukuran pada TV LED Merk E 14 inch, diketahui beberapa nilai sebagai berikut:


- Tegangan fasa (V1) = 212,84 V
- Tegangan netral (VN) = 105,95 V
- Arus fasa (I1) = 111,93 mA
- Arus netral (IN) = 111,80 mA

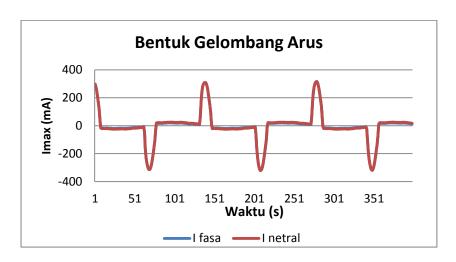
Tabel 4.53 Nilai THD_V TV LED Merk E 14 inch

Total Harmonic Distortion (THD _V)				
I	Fasa	Netral		
Volt (V)	Persen (%)	Volt (V)	Persen (%)	
9,16	4,32	4,35	4,11	

Tabel 4.54 Nilai IHD $_{V}$ TV LED Merk E 14 inch

	Individual Harmonic Voltage Distortion			istortion
Orde	Fasa Netra		Vetral	
	Volt (V)	Persen (%)	Volt (V)	Persen (%)
h3	7,55	3,56	3,67	3,47
h9	2,31	1,09	0,96	0,91
h15	0,53	0,25	0,18	0,17
h21	0,14	0,07	0,03	0,03
h27	0,18	0,09	0,06	0,05
h33	0,20	0,10	0,06	0,06
h39	0,14	0,06	0,04	0,04
h45	0,05	0,02	0,02	0,02

Gambar 4.27 Bentuk Gelombang Tegangan TV LED Merk E 14 inch


Gelombang tegangan pada beban berupa TV LED Merk E 14 inch menunjukkan bahwa bentuk gelombangnya tidak sinus sempurna, hal ini diakibatkan karena adanya nilai distorsi harmonisa tegangan yang diakibatkan oleh penggunaan beban tersebut. Nilai *Total Harmonic Distortion* (THD_V) akibat penggunaan TV LED Merk E 14 inch pada sisi fasa, besarnya 9,16 V atau 4,32%, sedangkan pada sisi netral, besarnya 4,35 V atau 4,11%. Besarnya nilai *Total Harmonic Distortion* (THD_V) dipengaruhi oleh nilai *Individual Harmonic Distortion* (IHD_V). Pada beban berupa TV LED Merk E 14 inch, nilai IHD_V yang paling tinggi berada pada orde harmonisa ke-3, dengan nilai 7,55 V atau 3,56% pada sisi fasa, dan 3,67 V atau 3,47% pada sisi netral.

Tabel 4.55 Nilai THD_I TV LED Merk E 14 inch

Total Harmonic Distortion (THD _I)				
	Fasa	Netral		
mA	Persen (%)	mA	Persen (%)	
91,42	142,04	91,28	141,85	

Tabel 4.56 Nilai IHD_I TV LED Merk E 14 inch

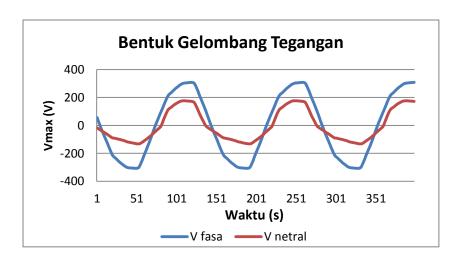
	Individual Harmonic Current Distortion			istortion
Orde	Fa	ısa	Netral	
	mA	Persen (%)	mA	Persen (%)
h3	60,22	93,51	60,11	93,36
h9	23,81	37,00	23,78	36,96
h15	5,28	8,20	5,29	8,21
h21	3,35	5,21	3,34	5,19
h27	3,16	4,91	3,16	4,90
h33	0,66	1,02	0,66	1,02
h39	1,60	2,49	1,60	2,48
h45	0,63	0,98	0,63	0,98

Gambar 4.28 Bentuk Gelombang Arus TV LED Merk E 14 inch

Gelombang arus akibat penggunaan beban berupa TV LED Merk E 14 inch menunjukkan bahwa bentuk gelombangnya cacat atau tidak berbentuk sinus sempurna, hal ini diakibatkan karena adanya nilai distorsi harmonisa arus yang diakibatkan oleh penggunaan beban tersebut. Nilai *Total Harmonic Distortion* (THD_I) akibat penggunaan TV LED Merk E 14 inch pada sisi fasa, besarnya 91,42 mA atau 142,04%, sedangkan pada sisi netral, besarnya 91,28 mA atau 141,85%. Besarnya nilai *Total Harmonic Distortion* (THD_I) dipengaruhi oleh nilai *Individual Harmonic Distortion* (IHD_I). Pada beban berupa TV LED Merk E 14 inch, nilai IHD_I yang paling tinggi berada pada orde harmonisa ke-3, dengan nilai 60,22 mA atau 93,51% pada sisi fasa, dan 60,11 mA atau 93,36% pada sisi netral.

B. TV LED Merk E 21 inch

Berdasarkan hasil pengukuran pada TV LED Merk E 21 inch, diketahui beberapa nilai sebagai berikut:


- Tegangan fasa (V1) = 226,14 V
- Tegangan netral (VN) = 111,06 V
- Arus fasa (I1) = 96,69 mA
- Arus netral (IN) = 96,51 mA

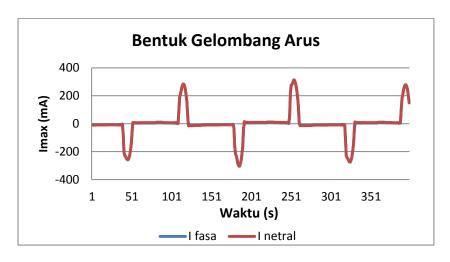
Tabel 4.57 Nilai THD_V TV LED Merk E 21 inch

Total Harmonic Distortion (THD _V)					
	Fasa	Netral			
Volt (V)	Persen (%)	Volt (V)	Persen (%)		
15,68	6,96	27,60	25,70		

Tabel 4.58 Nilai IHD $_{V}$ TV LED Merk E 21 inch

	Individual Harmonic Voltage Distortion			stortion
Orde	Fasa		Netral	
	Volt (V)	Persen (%)	Volt (V)	Persen (%)
h3	14,39	6,39	4,33	4,03
h9	2,94	1,30	1,66	1,55
h15	0,32	0,14	0,41	0,39
h21	0,13	0,06	0,12	0,11
h27	0,13	0,06	0,05	0,04
h33	0,07	0,03	0,03	0,02
h39	0,04	0,02	0,03	0,03
h45	0,04	0,02	0,02	0,02

Gambar 4.29 Bentuk Gelombang Tegangan TV LED Merk E 21 inch


Gelombang tegangan pada beban berupa TV LED Merk E 21 inch menunjukkan bahwa bentuk gelombangnya tidak sinus sempurna, hal ini diakibatkan karena adanya nilai distorsi harmonisa tegangan yang diakibatkan oleh penggunaan beban tersebut. Nilai *Total Harmonic Distortion* (THD_V) akibat penggunaan TV LED Merk E 21 inch pada sisi fasa, besarnya 15,68 V atau 6,96%, sedangkan pada sisi netral, besarnya 27,60 V atau 25,70%. Besarnya nilai *Total Harmonic Distortion* (THD_V) dipengaruhi oleh nilai *Individual Harmonic Distortion* (IHD_V). Pada beban berupa TV LED Merk E 21 inch, nilai IHD_V yang paling tinggi berada pada orde harmonisa ke-3, dengan nilai 14,39 V atau 6,39% pada sisi fasa, dan 4,33 V atau 4,03% pada sisi netral.

Tabel 4.59 Nilai THD_I TV LED Merk E 21 inch

Total Harmonic Distortion (THD _I)				
Fasa Netral				
mA	Persen (%)	mA	Persen (%)	
80,31	151,48	80,24	151,98	

Tabel 4.60 Nilai IHD_I TV LED Merk E 21 inch

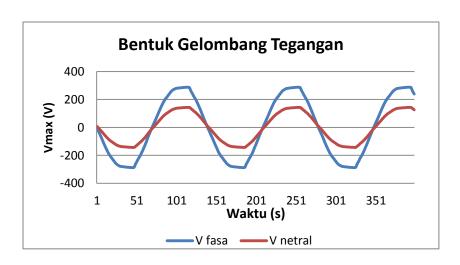
	Individual Harmonic Current Distortion			
Orde	Fa	ısa	N	Vetral
	mA	Persen (%)	mA	Persen (%)
h3	49,51	93,29	49,52	93,69
h9	24,05	45,40	24,03	45,54
h15	1,50	2,83	1,49	2,82
h21	6,19	11,68	6,17	11,69
h27	1,17	2,21	1,18	2,23
h33	3,47	6,55	3,46	6,55
h39	0,60	1,14	0,60	1,14
h45	2,05	3,87	2,04	3,88

Gambar 4.30 Bentuk Gelombang Arus TV LED Merk E 21 inch

Gelombang arus akibat penggunaan beban berupa TV LED Merk E 21 inch menunjukkan bahwa bentuk gelombangnya cacat atau tidak berbentuk sinus sempurna, hal ini diakibatkan karena adanya nilai distorsi harmonisa arus yang diakibatkan oleh penggunaan beban tersebut. Nilai *Total Harmonic Distortion* (THD_I) akibat penggunaan TV LED Merk E 21 inch pada sisi fasa, besarnya 80,31 mA atau 151,48%, sedangkan pada sisi netral, besarnya 80,24 mA atau 151,98%. Besarnya nilai *Total Harmonic Distortion* (THD_I) dipengaruhi oleh nilai *Individual Harmonic Distortion* (IHD_I). Pada beban berupa TV LED Merk E 21 inch, nilai IHD_I yang paling tinggi berada pada orde harmonisa ke-3, dengan nilai 49,51 mA atau 93,29% pada sisi fasa, dan 49,52 mA atau 93,69% pada sisi netral.

C. TV LED Merk F 21 inch

Berdasarkan hasil pengukuran pada TV LED Merk F 21 inch, diketahui beberapa nilai sebagai berikut:


- Tegangan fasa (V1) = 212,29 V
- Tegangan netral (VN) = 106,43 V
- Arus fasa (I1) = 182,58 mA
- Arus netral (IN) = 181,78 mA

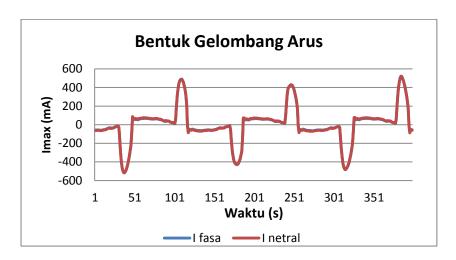
Tabel 4.61 Nilai THD_V TV LED Merk F 21 inch

Total Harmonic Distortion (THD _V)				
Fasa Netral				
Volt (V)	Persen (%)	Volt (V)	Persen (%)	
9,29	4,39	4,55	4,29	

Tabel 4.62 Nilai IHD $_{V}$ TV LED Merk F 21 inch

	Individual Harmonic Voltage Distortion			stortion
Orde	Fa	asa	Netral	
-	Volt (V)	Persen (%)	Volt (V)	Persen (%)
h3	7,62	3,60	3,79	3,57
h9	2,29	1,08	1,04	0,98
h15	0,62	0,29	0,26	0,24
h21	0,19	0,09	0,07	0,06
h27	0,22	0,10	0,08	0,07
h33	0,23	0,11	0,08	0,08
h39	0,19	0,09	0,06	0,06
h45	0,08	0,04	0,02	0,02

Gambar 4.31 Bentuk Gelombang Tegangan TV LED Merk F 21 inch


Gelombang tegangan pada beban berupa TV LED Merk F 21 inch menunjukkan bahwa bentuk gelombangnya tidak sinus sempurna, hal ini diakibatkan karena adanya nilai distorsi harmonisa tegangan yang diakibatkan oleh penggunaan beban tersebut. Nilai *Total Harmonic Distortion* (THD_V) akibat penggunaan TV LED Merk F 21 inch pada sisi fasa, besarnya 9,29 V atau 4,39%, sedangkan pada sisi netral, besarnya 4,55 V atau 4,29%. Besarnya nilai *Total Harmonic Distortion* (THD_V) dipengaruhi oleh nilai *Individual Harmonic Distortion* (IHD_V). Pada beban berupa TV LED Merk F 21 inch, nilai IHD_V yang paling tinggi berada pada orde harmonisa ke-3, dengan nilai 7,62 V atau 3,60% pada sisi fasa, dan 3,79 V atau 3,57% pada sisi netral.

Tabel 4.63 Nilai THD_I TV LED Merk F 21 inch

Total Harmonic Distortion (THD_I)				
Fasa Netral				
mA	Persen (%)	mA	Persen (%)	
141,20 124,84		140,91	125,58	

Tabel 4.64 Nilai IHD_I TV LED Merk F 21 inch

	Individual Harmonic Current Distortion			istortion
Orde	Fa	Fasa		Vetral
	mA	Persen (%)	mA	Persen (%)
h3	102,74	90,80	102,49	91,29
h9	21,27	18,82	21,25	18,95
h15	14,74	13,03	14,72	13,12
h21	4,73	4,18	4,72	4,21
h27	3,57	3,16	3,57	3,19
h33	4,35	3,84	4,35	3,87
h39	2,93	2,59	2,93	2,61
h45	1,54	1,36	1,54	1,37

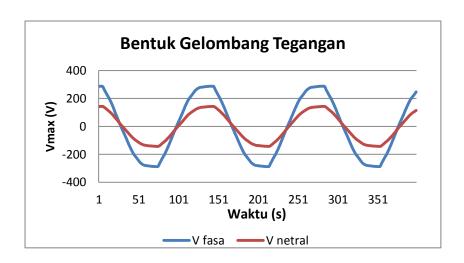
Gambar 4.32 Bentuk Gelombang Arus TV LED Merk F 21 inch

Gelombang arus akibat penggunaan beban berupa TV LED Merk F 21 inch menunjukkan bahwa bentuk gelombangnya cacat atau tidak berbentuk sinus sempurna, hal ini diakibatkan karena adanya nilai distorsi harmonisa arus yang diakibatkan oleh penggunaan beban tersebut. Nilai *Total Harmonic Distortion* (THD_I) akibat penggunaan TV LED Merk F 21 inch pada sisi fasa, besarnya 141,20 mA atau 124,84%, sedangkan pada sisi netral, besarnya 140,91 mA atau 125,58%. Besarnya nilai *Total Harmonic Distortion* (THD_I) dipengaruhi oleh nilai *Individual Harmonic Distortion* (IHD_I). Pada beban berupa TV LED Merk F 21 inch, nilai IHD_I yang paling tinggi berada pada orde harmonisa ke-3, dengan nilai 102,74 mA atau 90,80% pada sisi fasa, dan 102,49 mA atau 91,29% pada sisi netral.

4.1.5 TV Tabung

A. TV Tabung Merk G 14 inch

Berdasarkan hasil pengukuran pada TV Tabung Merk G 14 inch, diketahui beberapa nilai sebagai berikut:


- Tegangan fasa (V1) = 211,65 V
- Tegangan netral (VN) = 105,15 V
- Arus fasa (I1) = 403,56 mA
- Arus netral (IN) = 401,18 mA

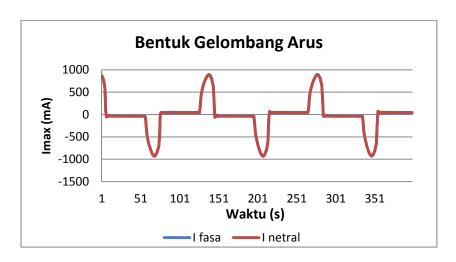
Tabel 4.65 Nilai THD_V TV Tabung Merk G 14 inch

Total Harmonic Distortion (THD_V)				
Fasa Netral				
Volt (V)	Persen (%)	Volt (V)	Persen (%)	
9,35	4,43	4,45	4,28	

Tabel 4.66 Nilai IHD_V TV Tabung Merk G 14 inch

	Individual Harmonic Voltage Distortion			stortion
Orde	Fasa		Netral	
-	Volt (V)	Persen (%)	Volt (V)	Persen (%)
h3	7,66	3,63	3,76	3,58
h9	2,10	0,99	0,87	0,83
h15	0,60	0,28	0,21	0,20
h21	0,19	0,09	0,06	0,06
h27	0,16	0,08	0,05	0,05
h33	0,18	0,09	0,05	0,05
h39	0,16	0,08	0,05	0,05
h45	0,08	0,04	0,02	0,02

Gambar 4.33 Bentuk Gelombang Tegangan TV Tabung Merk G 14 inch


Gelombang tegangan pada beban berupa TV Tabung Merk G 14 inch menunjukkan bahwa bentuk gelombangnya tidak sinus sempurna, hal ini diakibatkan karena adanya nilai distorsi harmonisa tegangan yang diakibatkan oleh penggunaan beban tersebut. Nilai *Total Harmonic Distortion* (THD_V) akibat penggunaan TV Tabung Merk G 14 inch pada sisi fasa, besarnya 9,35 V atau 4,43%, sedangkan pada sisi netral, besarnya 4,45 V atau 4,28%. Besarnya nilai *Total Harmonic Distortion* (THD_V) dipengaruhi oleh nilai *Individual Harmonic Distortion* (IHD_V). Pada beban berupa TV Tabung Merk G 14 inch, nilai IHD_V yang paling tinggi berada pada orde harmonisa ke-3, dengan nilai 7,66 V atau 3,63% pada sisi fasa, dan 3,76 V atau 3,58% pada sisi netral.

Tabel 4.67 Nilai THD_I TV Tabung Merk G 14 inch

Total Harmonic Distortion (THD_I)				
Fasa Netral				
mA	Persen (%)	mA	Persen (%)	
290,80	104,71	289,53	105,04	

Tabel 4.68 Nilai IHD_I TV Tabung Merk G 14 inch

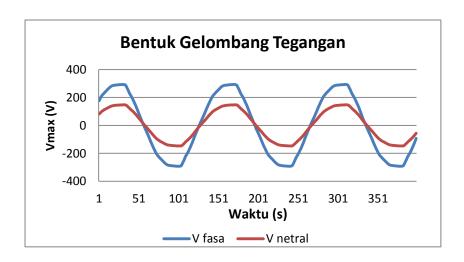
	Individual Harmonic Current Distortion			
Orde	Fa	ısa	N	Vetral
	mA	Persen (%)	mA	Persen (%)
h3	229,30	82,35	228,25	82,60
h9	16,15	5,88	16,12	5,92
h15	18,42	6,72	18,35	6,74
h21	18,37	6,63	18,30	6,66
h27	13,56	4,87	13,51	4,89
h33	6,85	2,46	6,83	2,47
h39	3,20	1,17	3,19	1,17
h45	4,81	1,75	4,79	1,76

Gambar 4.34 Bentuk Gelombang Arus TV Tabung Merk G
14 inch

Gelombang arus akibat penggunaan beban berupa TV Tabung Merk G 14 inch menunjukkan bahwa bentuk gelombangnya cacat atau tidak berbentuk sinus sempurna, hal ini diakibatkan karena adanya nilai distorsi harmonisa arus yang diakibatkan oleh penggunaan beban tersebut. Nilai *Total Harmonic Distortion* (THD_I) akibat penggunaan TV Tabung Merk G 14 inch pada sisi fasa, besarnya 290,80 mA atau 104,71%, sedangkan pada sisi netral, besarnya 289,53 mA atau 105,04%. Besarnya nilai *Total Harmonic Distortion* (THD_I) dipengaruhi oleh nilai *Individual Harmonic Distortion* (IHD_I). Pada beban berupa TV Tabung Merk G 14 inch, nilai IHD_I yang paling tinggi berada pada orde harmonisa ke-3, dengan nilai 229,30 mA atau 82,35% pada sisi fasa, dan 228,25 mA atau 82,60% pada sisi netral.

B. TV Tabung Merk H 21 inch

Berdasarkan hasil pengukuran pada TV Tabung Merk H 21 inch, diketahui beberapa nilai sebagai berikut:


- Tegangan fasa (V1) = 215,28 V
- Tegangan netral (VN) = 108,36 V
- Arus fasa (I1) = 492,42 mA
- Arus netral (IN) = 487,90 mA

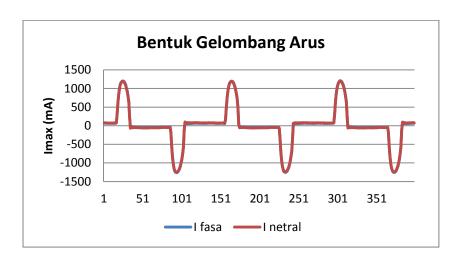
Tabel 4.69 Nilai THD_V TV Tabung Merk H 21 inch

Total Harmonic Distortion (THD_V)				
Fasa Netral				
Volt (V)	Persen (%)	Volt (V)	Persen (%)	
9,71	4,52	4,71	4,36	

Tabel 4.70 Nilai IHD_V TV Tabung Merk H 21 inch

	Individual Harmonic Voltage Distortion			
Orde	Fasa		Netral	
	Volt (V)	Persen (%)	Volt (V)	Persen (%)
h3	7,99	3,72	3,93	3,64
h9	2,88	1,34	1,27	1,18
h15	0,77	0,36	0,33	0,30
h21	0,26	0,12	0,10	0,09
h27	0,10	0,04	0,05	0,04
h33	0,13	0,06	0,05	0,05
h39	0,07	0,03	0,03	0,03
h45	0,05	0,02	0,03	0,03

Gambar 4.35 Bentuk Gelombang Tegangan TV Tabung Merk H 21 inch


Gelombang tegangan pada beban berupa TV Tabung Merk H 21 inch menunjukkan bahwa bentuk gelombangnya tidak sinus sempurna, hal ini diakibatkan karena adanya nilai distorsi harmonisa tegangan yang diakibatkan oleh penggunaan beban tersebut. Nilai *Total Harmonic Distortion* (THD_V) akibat penggunaan TV Tabung Merk H 21 inch pada sisi fasa, besarnya 9,71 V atau 4,52%, sedangkan pada sisi netral, besarnya 4,71 V atau 4,36%. Besarnya nilai *Total Harmonic Distortion* (THD_V) dipengaruhi oleh nilai *Individual Harmonic Distortion* (IHD_V). Pada beban berupa TV Tabung Merk H 21 inch, nilai IHD_V yang paling tinggi berada pada orde harmonisa ke-3, dengan nilai 7,99 V atau 3,72% pada sisi fasa, dan 3,93 V atau 3,64% pada sisi netral.

Tabel 4.71 Nilai THD_I TV Tabung Merk H 21 inch

Total Harmonic Distortion (THD _I)				
Fasa Netral				
mA	Persen (%)	mA	Persen (%)	
368,97	113,55	366,39	114,12	

Tabel 4.72 Nilai IHD_I TV Tabung Merk H 21 inch

	Individual Harmonic Current Distortion			
Orde	Fa	ısa	N	Vetral
	mA	Persen (%)	mA	Persen (%)
h3	277,77	85,37	275,76	85,78
h9	34,09	10,57	33,88	10,63
h15	38,30	11,81	38,05	11,87
h21	17,14	5,27	17,02	5,30
h27	2,64	0,82	2,62	0,83
h33	8,08	2,50	8,02	2,51
h39	7,05	2,17	7,00	2,18
h45	3,38	1,04	3,35	1,04

Gambar 4.36 Bentuk Gelombang Arus TV Tabung Merk H 21 inch

Gelombang arus akibat penggunaan beban berupa TV Tabung Merk H 21 inch menunjukkan bahwa bentuk gelombangnya cacat atau tidak berbentuk sinus sempurna, hal ini diakibatkan karena adanya nilai distorsi harmonisa arus yang diakibatkan oleh penggunaan beban tersebut. Nilai *Total Harmonic Distortion* (THD_I) akibat penggunaan TV Tabung Merk TV Tabung Merk H 21 inch pada sisi fasa, besarnya 368,97 mA atau 113,55%, sedangkan pada sisi netral, besarnya 366,39 mA atau 114,12%. Besarnya nilai *Total Harmonic Distortion* (THD_I) dipengaruhi oleh nilai *Individual Harmonic Distortion* (IHD_I). Pada beban berupa TV Tabung Merk TV Tabung Merk H 21 inch, nilai IHD_I yang paling tinggi berada pada orde harmonisa ke-3, dengan nilai 277,77 mA atau 85,37% pada sisi fasa, dan 275,76 mA atau 85,78% pada sisi netral.

Nilai prosentase yang tercantum di dalam tabel merupakan perbandingan antara nilai harmonisa dengan nilai *fundamental*, atau dapat dirumuskan sebagai berikut:

$$%V = \left(\frac{Vh}{Vf}\right) \times 100\%$$
, untuk tegangan

atar

$$%I = \left(\frac{Ih}{If}\right) \times 100\%$$
, untuk arus

dengan:

%V = Prosentase tegangan (%)

Vh = Tegangan harmonisa (V)

Vf = Tegangan fundamental (V)

%I = Prosentase arus (%)

Ih = Arus harmonisa (A)

If = Arus fundamental (A)

Berdasarkan data hasil pengukuran pada setiap peralatan, maka diketahui jenis peralatan yang menghasilkan nilai IHD_I orde ke-3 yang paling tinggi dan yang paling rendah. Urutan peralatan rumah tangga yang menghasilkan nilai IHD_I orde ke-3 dari yang paling tinggi yaitu:

Tabel 4.73 Data Masing-masing Peralatan

No	Nama Peralatan	Daya Tertera (Watt)	Daya Terukur (Watt)	THD _I (%)	IHD _I h-3 (%)
1	CPU Komputer	-	32,22	175,79	95,29
2	Charger Laptop	25	22,13	157,30	93,86
3	TV LED Merk E 14 inch	20	14,41	142,04	93,51
4	TV LED Merk E 21 inch	-	11,8	151,48	93,29
5	TV LED Merk F 21 inch	26	22,87	124,84	90,8

6	TV Tabung Merk H 21 inch	80	69,11	113,55	85,37
7	TV Tabung Merk G 14 inch	60	57,98	104,71	82,35
8	Lampu LED Merk C	10,5	9,84	117,83	80,31
9	Lampu LED Merk C	3	2,76	131,54	75,31
10	Lampu LED Merk C	6,5	6,31	121,90	74,81
11	Lampu Hemat Energi Merk B	8	7,1	101,54	74,19
12	Lampu LED Merk D	7	6,75	114,48	72,93
13	Lampu Hemat Energi Merk C	11	10,08	80,62	61,34
14	Lampu Hemat Energi Merk C	8	7,02	80,03	60,69
15	Lampu Hemat Energi Merk A	8	7,76	80,41	57,51
16	Lampu Hemat Energi Merk C	14	12,62	73,00	53,71
17	Komputer All in One	-	40,2	36,64	27,17
18	Lampu LED Merk X	7	1,31	31,89	21,37

Data pada Tabel 4.73 menunjukkan jika CPU Komputer menghasilkan nilai IHD_I orde ke-3 dan THD_I yang paling tinggi, sedangkan Lampu LED Merk X 7 Watt memiliki nilai IHD_I orde ke-3 dan THD_I yang paling rendah. Namun setelah dilakukan pengukuran, diketahui jika terjadi perbedaan yang sangat jauh antara nilai daya yang tertera pada lampu dengan daya hasil pengukuran. Selain itu, cahaya yang dihasilkan oleh Lampu LED Merk X ini lebih redup, berbeda dengan Lampu LED Merk D yang memiliki kesamaan pada nilai daya yang tertera pada lampu, yaitu 7 Watt. Dari Tabel 4.73, diketahui juga bahwa

perubahan nilai harmonisa pada setiap peralatan rumah tangga dipengaruhi oleh daya peralatan dan komponen-komponen semikonduktor yang digunakan dalam peralatan tersebut.

Harmonisa memiliki dampak buruk terhadap sistem tenaga listrik. Adanya harmonisa pada sistem tenaga listrik dapat menyebabkan penurunan kualitas daya listrik, meningkatkan pemanasan pada kabel penghantar, dan mengakibatkan terjadinya kesalahan pengukuran pada kWh meter. Meski dampak harmonisa sangat merugikan, harmonisa tidak dapat dihilangkan, hanya dapat diturunkan nilainya. Cara yang digunakan untuk mengurangi nilai harmonisa adalah dengan melakukan penambahan filter pasif *single tuned*. Pemasangan filter pasif *single tuned* didasarkan pada nilai orde harmonisa (IHD) yang paling tinggi. Dari hasil penelitian yang telah dilakukan, diketahui jika nilai IHD yang paling tinggi berada pada orde ke-3. Sehingga penambahan filter pasif *single tuned* dilakukan untuk menurunkan nilai IHD orde ke-3.

4.2 Nilai Filter Pasif Single Tuned untuk Mereduksi Harmonisa

Berdasarkan data yang telah didapatkan setelah pengukuran nilai harmonisa pada peralatan-peralatan rumah tangga, maka dilakukan perhitungan spesifikasi dari filter pasif *single tuned* yang dapat mereduksi nilai *Individual Harmonic Distortion* (IHD_I) tertinggi, yaitu pada orde ke-3. Perhitungan spesifikasi filter *single tuned* adalah sebagai berikut:

4.2.1 Komputer

A. Komputer All in One

a. Spesifikasi Resistor

$$R = \frac{V}{I_{h3}}$$

Diketahui nilai arus harmonisa pada orde ke-3 adalah 57,17 mA, dan tegangan 220 V.

$$R = \frac{220}{0,05717}$$

$$R = 3848,17 \Omega$$

Untuk mengetahui nilai rating daya resistor, maka digunakan persamaan:

$$P = V \times I_{h3}$$

$$P = 220 \times 0.05717$$

$$P = 12,58 \text{ Watt}$$

b. Nilai Q Faktor

Q Faktor memiliki nilai 30 – 100. Maka nilai Q faktor yang dipilih adalah 30.

$$X_L = X_C = X_n$$

$$Q = \frac{Xn}{R}$$

$$X_n = Q \times R$$

$$X_n = 30 \times 3848,17$$

$$X_n = 115.445,1 \Omega$$

c. Spesifikasi Induktor

Frekuensi pada harmonisa orde ke-3 adalah 150 Hz. Tetapi, diberikan nilai toleransi agar filter dapat bekerja maksimal. Sehingga nilai frekuensinya menjadi 145 Hz.

$$X_L = 2\pi f L$$

$$L = \frac{XL}{2\pi f}$$

$$L = \frac{115.445,1}{2 \times 3,14 \times 145}$$

$$L = 126,78 H$$

Dari hasil perhitungan, dapat diketahui nilai induktor yang digunakan adalah 126,78 H dan rating arusnya 57,17 mA.

d. Spesifikasi Kapasitor

Frekuensi pada harmonisa orde ke-3 adalah 150 Hz. Tetapi, diberikan nilai toleransi agar filter dapat bekerja maksimal. Sehingga nilai frekuensinya menjadi 145 Hz.

$$X_{C} = \frac{1}{2\pi fC}$$

$$C = \frac{1}{2\pi fX_{C}}$$

$$C = \frac{1}{2 \times 3.14 \times 145 \times 115.445.1}$$

$$C = 9.51 \times 10^{-9} \text{ F}$$

Dari hasil perhitungan, dapat diketahui nilai kapasitor yang digunakan adalah $9.51 \times 10^{-9} \, \mathrm{F}$ dan rating tegangannya $220 \, \mathrm{V}$.

B. CPU Komputer

a. Spesifikasi Resistor

$$R = \frac{V}{I_{h3}}$$

Diketahui nilai arus harmonisa pada orde ke-3 adalah 156,95 mA, dan tegangan 220 V.

$$R = \frac{220}{0,15695}$$

$$R = 1.401,72 \Omega$$

Untuk mengetahui nilai rating daya resistor, maka digunakan persamaan:

$$P = V \times I_{h3}$$

 $P = 220 \times 0,15695$
 $P = 34,53 \text{ Watt}$

b. Nilai Q Faktor

 $\,$ Q Faktor memiliki nilai 30 - 100. Maka nilai Q faktor yang dipilih adalah 30.

$$X_L = X_C = X_n$$

$$Q = \frac{Xn}{R}$$

$$X_n = Q \times R$$

$$X_n = 30 \times 1.401,72$$

$$X_n = 42.051,6 \Omega$$

c. Spesifikasi Induktor

Frekuensi pada harmonisa orde ke-3 adalah 150 Hz. Tetapi, diberikan nilai toleransi agar filter dapat bekerja maksimal. Sehingga nilai frekuensinya menjadi 145 Hz.

$$X_L = 2\pi f L$$

$$L = \frac{XL}{2\pi f}$$

$$L = \frac{42.051.6}{2 \times 3.14 \times 145}$$

$$L = 46.18 \text{ H}$$

Dari hasil perhitungan, dapat diketahui nilai induktor yang digunakan adalah 46,18 H dan rating arusnya 156,95 mA.

d. Spesifikasi Kapasitor

Frekuensi pada harmonisa orde ke-3 adalah 150 Hz. Tetapi, diberikan nilai toleransi agar filter dapat bekerja maksimal. Sehingga nilai frekuensinya menjadi 145 Hz.

$$X_{C} = \frac{1}{2\pi fC}$$

$$C = \frac{1}{2\pi fX_{C}}$$

$$C = \frac{1}{2 \times 3,14 \times 145 \times 42.051,6}$$

$$C = 2,61 \times 10^{-8} \text{ F}$$

Dari hasil perhitungan, dapat diketahui nilai kapasitor yang digunakan adalah $2,61 \times 10^{-8}$ F dan rating tegangannya 220 V.

C. Charger Laptop

a. Spesifikasi Resistor

$$R = \frac{V}{I_{h3}}$$

Diketahui nilai arus harmonisa pada orde ke-3 adalah 101,31 mA, dan tegangan 220 V.

$$R = \frac{220}{0,10131}$$

$$R = 2.171,55 \Omega$$

Untuk mengetahui nilai rating daya resistor, maka digunakan persamaan:

$$P = V \times I_{h3}$$

$$P = 220 \times 0,10131$$

$$P = 22,29 \text{ Watt}$$

b. Nilai Q Faktor

Q Faktor memiliki nilai 30 - 100. Maka nilai Q faktor yang dipilih adalah 30.

$$X_L = X_C = X_n$$

$$Q = \frac{Xn}{R}$$

$$X_n = Q \times R$$

$$X_n = 30 \times 2.171,55$$

$$X_n = 65.146,5 \Omega$$

c. Spesifikasi Induktor

Frekuensi pada harmonisa orde ke-3 adalah 150 Hz. Tetapi, diberikan nilai toleransi agar filter dapat bekerja maksimal. Sehingga nilai frekuensinya menjadi 145 Hz.

$$X_{L} = 2\pi f L$$

$$L = \frac{XL}{2\pi f}$$

$$L = \frac{65.146,5}{2 \times 3,14 \times 145}$$

$$L = 71,54 \text{ H}$$

Dari hasil perhitungan, dapat diketahui nilai induktor yang digunakan adalah 71,54 H dan rating arusnya 101,31 mA.

d. Spesifikasi Kapasitor

Frekuensi pada harmonisa orde ke-3 adalah 150 Hz. Tetapi, diberikan nilai toleransi agar filter dapat bekerja maksimal. Sehingga nilai frekuensinya menjadi 145 Hz.

$$X_{C} = \frac{1}{2\pi fC}$$

$$C = \frac{1}{2\pi fX_{C}}$$

$$C = \frac{1}{2 \times 3.14 \times 145 \times 65.146.5}$$

$$C = 1.68 \times 10^{-8} \text{ F}$$

Dari hasil perhitungan, dapat diketahui nilai kapasitor yang digunakan adalah $1,68 \times 10^{-8}$ F dan rating tegangannya 220 V.

4.2.2 Lampu Hemat Energi

A. Lampu Hemat Energi Merk A 8 Watt

a. Spesifikasi Resistor

$$R = \frac{V}{I_{h3}}$$

Diketahui nilai arus harmonisa pada orde ke-3 adalah 24,73 mA, dan tegangan 220 V.

$$R = \frac{220}{0,02473}$$

$$R = 8.896,08 \Omega$$

Untuk mengetahui nilai rating daya resistor, maka digunakan persamaan:

$$P = V \times I_{h3}$$

 $P = 220 \times 0.02473$

$$P = 5,44$$
 Watt

b. Nilai Q Faktor

Q Faktor memiliki nilai 30 – 100. Maka nilai Q faktor yang dipilih adalah 30.

$$X_L = X_C = X_n$$

$$Q = \frac{Xn}{R}$$

$$X_n = Q \times R$$

$$X_n = 30 \times 8.896,08$$

$$X_n = 266.882,4 \Omega$$

c. Spesifikasi Induktor

Frekuensi pada harmonisa orde ke-3 adalah 150 Hz. Tetapi, diberikan nilai toleransi agar filter dapat bekerja maksimal. Sehingga nilai frekuensinya menjadi 145 Hz.

$$X_L = 2\pi f L$$

$$L = \frac{XL}{2\pi f}$$

$$L = \frac{266.882,4}{2 \times 3,14 \times 145}$$

$$L = 293,08 H$$

Dari hasil perhitungan, dapat diketahui nilai induktor yang digunakan adalah 293,08 H dan rating arusnya 24,73 mA.

d. Spesifikasi Kapasitor

Frekuensi pada harmonisa orde ke-3 adalah 150 Hz. Tetapi, diberikan nilai toleransi agar filter dapat bekerja maksimal. Sehingga nilai frekuensinya menjadi 145 Hz.

$$X_{C} = \frac{1}{2\pi fC}$$

$$C = \frac{1}{2\pi f X_{C}}$$

$$C = \frac{1}{2 \times 3.14 \times 145 \times 266.882.4}$$

$$C = 4.11 \times 10^{-9} \text{ F}$$

Dari hasil perhitungan, dapat diketahui nilai kapasitor yang digunakan adalah $4,11 \times 10^{-9}$ F dan rating tegangannya 220 V.

B. Lampu Hemat Energi Merk B 8 Watt

a. Spesifikasi Resistor

$$R = \frac{V}{I_{h3}}$$

Diketahui nilai arus harmonisa pada orde ke-3 adalah 28,91 mA, dan tegangan 220 V.

$$R = \frac{220}{0,02891}$$

$$R = 7.609,82 \Omega$$

Untuk mengetahui nilai rating daya resistor, maka digunakan persamaan:

$$P = V \times I_{h3}$$

 $P = 220 \times 0.02891$
 $P = 6.36 \text{ Watt}$

b. Nilai Q Faktor

Q Faktor memiliki nilai 30 - 100. Maka nilai Q faktor yang dipilih adalah 30.

$$X_L = X_C = X_n$$

$$Q = \frac{Xn}{R}$$

$$X_n = Q \times R$$

$$X_n = 30 \times 7.609,82$$

$$X_n = 228.294,6 \Omega$$

c. Spesifikasi Induktor

Frekuensi pada harmonisa orde ke-3 adalah 150 Hz. Tetapi, diberikan nilai toleransi agar filter dapat bekerja maksimal. Sehingga nilai frekuensinya menjadi 145 Hz.

$$X_L = 2\pi f L$$

$$L = \frac{XL}{2\pi f}$$

$$L = \frac{228.294,6}{2 \times 3,14 \times 145}$$

$$L = 250,71 \text{ H}$$

Dari hasil perhitungan, dapat diketahui nilai induktor yang digunakan adalah 250,71 H dan rating arusnya 28,91 mA.

d. Spesifikasi Kapasitor

Frekuensi pada harmonisa orde ke-3 adalah 150 Hz. Tetapi, diberikan nilai toleransi agar filter dapat bekerja maksimal. Sehingga nilai frekuensinya menjadi 145 Hz.

$$X_{C} = \frac{1}{2\pi f C}$$

$$C = \frac{1}{2\pi f X_{C}}$$

$$C = \frac{1}{2 \times 3,14 \times 145 \times 228.294,6}$$

$$C = 4,81 \times 10^{-9} \text{ F}$$

Dari hasil perhitungan, dapat diketahui nilai kapasitor yang digunakan adalah 4.81×10^{-9} F dan rating tegangannya 220 V.

C. Lampu Hemat Energi Merk C 8 Watt

a. Spesifikasi Resistor

$$R = \frac{V}{I_{h3}}$$

Diketahui nilai arus harmonisa pada orde ke-3 adalah 23,44 mA, dan tegangan 220 V.

$$R = \frac{220}{0,02344}$$

$$R=9.385,\!66\,\Omega$$

Untuk mengetahui nilai rating daya resistor, maka digunakan persamaan:

$$P = V \times I_{h3}$$

$$P = 220 \times 0.02344$$

$$P = 5,16$$
 Watt

b. Nilai Q Faktor

Q Faktor memiliki nilai 30-100. Maka nilai Q faktor yang dipilih adalah 30.

$$X_L = X_C = X_n$$

$$Q = \frac{Xn}{R}$$

$$X_n = Q \times R$$

$$X_n = 30 \times 9.385,66$$

$$X_n = 281.569,8 \Omega$$

c. Spesifikasi Induktor

Frekuensi pada harmonisa orde ke-3 adalah 150 Hz. Tetapi, diberikan nilai toleransi agar filter dapat bekerja maksimal. Sehingga nilai frekuensinya menjadi 145 Hz.

$$X_L = 2\pi f L$$

$$L = \frac{XL}{2\pi f}$$

$$L = \frac{281.569.8}{2 \times 3.14 \times 145}$$

$$L = 309.21 \text{ H}$$

Dari hasil perhitungan, dapat diketahui nilai induktor yang digunakan adalah 309,21 H dan rating arusnya 23,44 mA.

d. Spesifikasi Kapasitor

Frekuensi pada harmonisa orde ke-3 adalah 150 Hz. Tetapi, diberikan nilai toleransi agar filter dapat bekerja maksimal. Sehingga nilai frekuensinya menjadi 145 Hz.

$$X_{C} = \frac{1}{2\pi fC}$$

$$C = \frac{1}{2\pi f X_{C}}$$

$$C = \frac{1}{2 \times 3.14 \times 145 \times 281.569.8}$$

$$C = 3.9 \times 10^{-9} \text{ F}$$

Dari hasil perhitungan, dapat diketahui nilai kapasitor yang digunakan adalah 3,9 x 10^{-9} F dan rating tegangannya 220 V.

D. Lampu Hemat Energi Merk C 11 Watt

a. Spesifikasi Resistor

$$R = \frac{V}{I_{h3}}$$

Diketahui nilai arus harmonisa pada orde ke-3 adalah 33,66 mA, dan tegangan 220 V.

$$R = \frac{220}{0,03366}$$

$$R = 6.535,95 \Omega$$

Untuk mengetahui nilai rating daya resistor, maka digunakan persamaan:

$$P = V \times I_{h3}$$

$$P = 220 \times 0.03366$$

$$P = 7,41$$
 Watt

b. Nilai Q Faktor

Q Faktor memiliki nilai 30 – 100. Maka nilai Q faktor yang dipilih adalah 30.

$$X_L = X_C = X_n$$

$$Q = \frac{Xn}{R}$$

$$X_n = Q \times R$$

$$X_n = 30 \times 6.535,95$$

$$X_n = 196.078,5 \Omega$$

c. Spesifikasi Induktor

Frekuensi pada harmonisa orde ke-3 adalah 150 Hz. Tetapi, diberikan nilai toleransi agar filter dapat bekerja maksimal. Sehingga nilai frekuensinya menjadi 145 Hz.

$$X_L = 2\pi f L$$

$$L = \frac{XL}{2\pi f}$$

$$L = \frac{196.078,5}{2 \times 3,14 \times 145}$$
$$L = 215,33 \text{ H}$$

Dari hasil perhitungan, dapat diketahui nilai induktor yang digunakan adalah 215,33 H dan rating arusnya 33,66 mA.

d. Spesifikasi Kapasitor

Frekuensi pada harmonisa orde ke-3 adalah 150 Hz. Tetapi, diberikan nilai toleransi agar filter dapat bekerja maksimal. Sehingga nilai frekuensinya menjadi 145 Hz.

$$X_{C} = \frac{1}{2\pi fC}$$

$$C = \frac{1}{2\pi fX_{C}}$$

$$C = \frac{1}{2 \times 3.14 \times 145 \times 196.078,5}$$

$$C = 5.6 \times 10^{-9} \text{ F}$$

Dari hasil perhitungan, dapat diketahui nilai kapasitor yang digunakan adalah 5.6×10^{-9} F dan rating tegangannya 220 V.

E. Lampu Hemat Energi Merk C 14 Watt

a. Spesifikasi Resistor

$$R = \frac{V}{I_{h3}}$$

Diketahui nilai arus harmonisa pada orde ke-3 adalah 37,50 mA, dan tegangan 220 V.

$$R = \frac{220}{0,0375}$$

$$R=5.866,\!67~\Omega$$

Untuk mengetahui nilai rating daya resistor, maka digunakan persamaan:

$$P = V \times I_{h3}$$

 $P = 220 \times 0.0375$
 $P = 8.25 \text{ Watt}$

b. Nilai Q Faktor

Q Faktor memiliki nilai 30 – 100. Maka nilai Q faktor yang dipilih adalah 30.

$$X_L = X_C = X_n$$

$$Q = \frac{Xn}{R}$$
 $X_n = Q \times R$
 $X_n = 30 \times 5.866,67$
 $X_n = 176.000,1 \Omega$

c. Spesifikasi Induktor

Frekuensi pada harmonisa orde ke-3 adalah 150 Hz. Tetapi, diberikan nilai toleransi agar filter dapat bekerja maksimal. Sehingga nilai frekuensinya menjadi 145 Hz.

$$X_L = 2\pi f L$$

$$L = \frac{XL}{2\pi f}$$

$$L = \frac{176.000,1}{2 \times 3,14 \times 145}$$

$$L = 193,28 \text{ H}$$

Dari hasil perhitungan, dapat diketahui nilai induktor yang digunakan adalah 193,28 H dan rating arusnya 37,50 mA.

d. Spesifikasi Kapasitor

Frekuensi pada harmonisa orde ke-3 adalah 150 Hz. Tetapi, diberikan nilai toleransi agar filter dapat bekerja maksimal. Sehingga nilai frekuensinya menjadi 145 Hz.

$$X_{C} = \frac{1}{2\pi fC}$$

$$C = \frac{1}{2\pi fX_{C}}$$

$$C = \frac{1}{2 \times 3,14 \times 145 \times 176.000,1}$$

$$C = 6,24 \times 10^{-9} \text{ F}$$

Dari hasil perhitungan, dapat diketahui nilai kapasitor yang digunakan adalah $6,24 \times 10^{-9}$ F dan rating tegangannya 220 V.

4.2.3 Lampu LED

A. Lampu LED Merk D 7 Watt

a. Spesifikasi Resistor

$$R = \frac{V}{I_{h3}}$$

Diketahui nilai arus harmonisa pada orde ke-3 adalah 26,45 mA, dan tegangan 220 V.

$$R = \frac{220}{0,02645}$$

$$R=8.317,\!58\,\Omega$$

Untuk mengetahui nilai rating daya resistor, maka digunakan persamaan:

$$P = V \times I_{h3}$$

 $P = 220 \times 0.02645$
 $P = 5.82 \text{ Watt}$

b. Nilai Q Faktor

Q Faktor memiliki nilai 30 - 100. Maka nilai Q faktor yang dipilih adalah 30.

$$X_L = X_C = X_n$$

$$Q = \frac{Xn}{R}$$

$$X_n = Q \times R$$

$$X_n = 30 \times 8.317,58$$

$$X_n = 249.527,4 \Omega$$

Frekuensi pada harmonisa orde ke-3 adalah 150 Hz. Tetapi, diberikan nilai toleransi agar filter dapat bekerja maksimal. Sehingga nilai frekuensinya menjadi 145 Hz.

$$X_{L} = 2\pi f L$$

$$L = \frac{XL}{2\pi f}$$

$$L = \frac{249.527,4}{2 \times 3,14 \times 145}$$

$$L = 274,03 \text{ H}$$

Dari hasil perhitungan, dapat diketahui nilai induktor yang digunakan adalah 274,03 H dan rating arusnya 26,45 mA.

d. Spesifikasi Kapasitor

$$X_{C} = \frac{1}{2\pi fC}$$

$$C = \frac{1}{2\pi f X_{C}}$$

$$C = \frac{1}{2 \times 3.14 \times 145 \times 249.527.4}$$

$$C = 4.4 \times 10^{-9} \text{ F}$$

Dari hasil perhitungan, dapat diketahui nilai kapasitor yang digunakan adalah 4.4×10^{-9} F dan rating tegangannya 220 V.

B. Lampu LED Merk X 7 Watt

a. Spesifikasi Resistor

$$R = \frac{V}{I_{h3}}$$

Diketahui nilai arus harmonisa pada orde ke-3 adalah 16,51 mA, dan tegangan 220 V.

$$R = \frac{220}{0,01651}$$

$$R = 13.325,26 \Omega$$

Untuk mengetahui nilai rating daya resistor, maka digunakan persamaan:

$$P = V \times I_{h3}$$

$$P = 220 \times 0.01651$$

$$P = 3,63$$
 Watt

b. Nilai Q Faktor

Q Faktor memiliki nilai 30 - 100. Maka nilai Q faktor yang dipilih adalah 30.

$$X_L = X_C = X_n$$

$$Q = \frac{Xn}{R}$$

$$X_n = Q \times R$$

$$X_n = 30 \times 13.325,26$$

$$X_n = 399.757,8 \Omega$$

Frekuensi pada harmonisa orde ke-3 adalah 150 Hz. Tetapi, diberikan nilai toleransi agar filter dapat bekerja maksimal. Sehingga nilai frekuensinya menjadi 145 Hz.

$$X_{L} = 2\pi f L$$

$$L = \frac{XL}{2\pi f}$$

$$L = \frac{399.757.8}{2 \times 3.14 \times 145}$$

$$L = 439,004 \text{ H}$$

Dari hasil perhitungan, dapat diketahui nilai induktor yang digunakan adalah 439,004 H dan rating arusnya 16,51 mA.

d. Spesifikasi Kapasitor

Frekuensi pada harmonisa orde ke-3 adalah 150 Hz. Tetapi, diberikan nilai toleransi agar filter dapat bekerja maksimal. Sehingga nilai frekuensinya menjadi 145 Hz.

$$X_{C} = \frac{1}{2\pi fC}$$

$$C = \frac{1}{2\pi f X_{C}}$$

$$C = \frac{1}{2 \times 3.14 \times 145 \times 399.757.8}$$

$$C = 2.75 \times 10^{-9} \text{ F}$$

Dari hasil perhitungan, dapat diketahui nilai kapasitor yang digunakan adalah $2,75 \times 10^{-9}$ F dan rating tegangannya 220 V.

C. Lampu LED Merk C 6,5 Watt

a. Spesifikasi Resistor

$$R = \frac{V}{I_{h3}}$$

Diketahui nilai arus harmonisa pada orde ke-3 adalah 24,70 mA, dan tegangan 220 V.

$$R = \frac{220}{0,0247}$$

$$R = 8.906,88 \Omega$$

Untuk mengetahui nilai rating daya resistor, maka digunakan persamaan:

$$P = V \times I_{h3}$$

$$P = 220 \times 0.0247$$

$$P = 5,43$$
 Watt

b. Nilai Q Faktor

Q Faktor memiliki nilai 30 – 100. Maka nilai Q faktor yang dipilih adalah 30.

$$X_L = X_C = X_n$$

$$Q = \frac{Xn}{R}$$

$$X_n = Q \times R$$

$$X_n = 30 \times 8.906,88$$

$$X_n = 267.206.4 \Omega$$

c. Spesifikasi Induktor

$$X_L = 2\pi f L$$

$$L = \frac{xL}{2\pi f}$$

$$L = \frac{267.206,4}{2 \times 3,14 \times 145}$$

$$L = 293.44 H$$

Dari hasil perhitungan, dapat diketahui nilai induktor yang digunakan adalah 293.44 H dan rating arusnya 24,70 mA.

d. Spesifikasi Kapasitor

Frekuensi pada harmonisa orde ke-3 adalah 150 Hz. Tetapi, diberikan nilai toleransi agar filter dapat bekerja maksimal. Sehingga nilai frekuensinya menjadi 145 Hz.

$$X_{C} = \frac{1}{2\pi fC}$$

$$C = \frac{1}{2\pi fX_{C}}$$

$$C = \frac{1}{2 \times 3,14 \times 145 \times 267.206,4}$$

$$C = 4,11 \times 10^{-9} \text{ F}$$

Dari hasil perhitungan, dapat diketahui nilai kapasitor yang digunakan adalah $4,11 \times 10^{-9}$ F dan rating tegangannya 220 V.

D. Lampu LED Merk C 3 Watt

a. Spesifikasi Resistor

$$R = \frac{V}{I_{h3}}$$

Diketahui nilai arus harmonisa pada orde ke-3 adalah 10,99 mA, dan tegangan 220 V.

$$R = \frac{220}{0,01099}$$

$$R = 20.018,19 \Omega$$

Untuk mengetahui nilai rating daya resistor, maka digunakan persamaan:

$$P = V \times I_{h3}$$

 $P = 220 \times 0.01099$
 $P = 2.42 \text{ Watt}$

b. Nilai Q Faktor

Q Faktor memiliki nilai 30-100. Maka nilai Q faktor yang dipilih adalah 30.

$$X_L = X_C = X_n$$

$$Q = \frac{Xn}{R}$$
 $X_n = Q \times R$
 $X_n = 30 \times 20.018,19$
 $X_n = 600.545,7 \Omega$

c. Spesifikasi Induktor

Frekuensi pada harmonisa orde ke-3 adalah 150 Hz. Tetapi, diberikan nilai toleransi agar filter dapat bekerja maksimal. Sehingga nilai frekuensinya menjadi 145 Hz.

$$X_L = 2\pi f L$$

$$L = \frac{XL}{2\pi f}$$

$$L = \frac{600.545,7}{2 \times 3,14 \times 145}$$

$$L = 659,51 \text{ H}$$

Dari hasil perhitungan, dapat diketahui nilai induktor yang digunakan adalah 659,51 H dan rating arusnya 10,99 mA.

d. Spesifikasi Kapasitor

$$X_{C} = \frac{1}{2\pi fC}$$

$$C = \frac{1}{2\pi fX_{C}}$$

$$C = \frac{1}{2 \times 3,14 \times 145 \times 600.545,7}$$

$$C = 1,83 \times 10^{-9} \text{ F}$$

Dari hasil perhitungan, dapat diketahui nilai kapasitor yang digunakan adalah 1,83 x 10⁻⁹ F dan rating tegangannya 220 V.

E. Lampu LED Merk C 10,5 Watt

a. Spesifikasi Resistor

$$R = \frac{V}{I_{h3}}$$

Diketahui nilai arus harmonisa pada orde ke-3 adalah 43,23 mA, dan tegangan 220 V.

$$R = \frac{220}{0,04323}$$

$$R = 5.089,06 \Omega$$

Untuk mengetahui nilai rating daya resistor, maka digunakan persamaan:

$$P = V \times I_{h3}$$

$$P = 220 \times 0.04323$$

$$P = 9,51$$
 Watt

b. Nilai Q Faktor

Q Faktor memiliki nilai 30-100. Maka nilai Q faktor yang dipilih adalah 30.

$$X_L = X_C = X_n$$

$$Q = \frac{Xn}{R}$$

$$X_n = Q \times R$$

$$X_n = 30 \times 5.089,06$$

$$X_n = 152.671,8 \Omega$$

Frekuensi pada harmonisa orde ke-3 adalah 150 Hz. Tetapi, diberikan nilai toleransi agar filter dapat bekerja maksimal. Sehingga nilai frekuensinya menjadi 145 Hz.

$$X_{L} = 2\pi f L$$

$$L = \frac{XL}{2\pi f}$$

$$L = \frac{152.671.8}{2 \times 3.14 \times 145}$$

$$L = 167.66 \text{ H}$$

Dari hasil perhitungan, dapat diketahui nilai induktor yang digunakan adalah 167,66 H dan rating arusnya 43,23 mA.

d. Spesifikasi Kapasitor

Frekuensi pada harmonisa orde ke-3 adalah 150 Hz. Tetapi, diberikan nilai toleransi agar filter dapat bekerja maksimal. Sehingga nilai frekuensinya menjadi 145 Hz.

$$X_{C} = \frac{1}{2\pi fC}$$

$$C = \frac{1}{2\pi f X_{C}}$$

$$C = \frac{1}{2 \times 3.14 \times 145 \times 152.671.8}$$

$$C = 7.19 \times 10^{-9} \text{ F}$$

Dari hasil perhitungan, dapat diketahui nilai kapasitor yang digunakan adalah 7,19 x 10^{-9} F dan rating tegangannya 220 V.

4.2.4 TV LED

A. TV LED Merk E 14 inch

a. Spesifikasi Resistor

$$R = \frac{V}{I_{h3}}$$

Diketahui nilai arus harmonisa pada orde ke-3 adalah 60,22 mA, dan tegangan 220 V.

$$R = \frac{220}{0,06022}$$

$$R = 3.653,27 \Omega$$

Untuk mengetahui nilai rating daya resistor, maka digunakan persamaan:

$$P = V \times I_{h3}$$

 $P = 220 \times 0,06022$

P = 13,25 Watt

b. Nilai Q Faktor

Q Faktor memiliki nilai 30 – 100. Maka nilai Q faktor yang dipilih adalah 30.

$$X_L = X_C = X_n$$

$$Q = \frac{Xn}{R}$$
 $X_n = Q \times R$
 $X_n = 30 \times 3.653,27$
 $X_n = 109.598,1 \Omega$

c. Spesifikasi Induktor

$$X_L = 2\pi f L$$

$$L = \frac{XL}{2\pi f}$$

$$L = \frac{109.598,1}{2 \times 3,14 \times 145}$$

$$L = 120,36 \text{ H}$$

Dari hasil perhitungan, dapat diketahui nilai induktor yang digunakan adalah 120,36 H dan rating arusnya 60,22 mA.

d. Spesifikasi Kapasitor

Frekuensi pada harmonisa orde ke-3 adalah 150 Hz. Tetapi, diberikan nilai toleransi agar filter dapat bekerja maksimal. Sehingga nilai frekuensinya menjadi 145 Hz.

$$X_{C} = \frac{1}{2\pi fC}$$

$$C = \frac{1}{2\pi f X_{C}}$$

$$C = \frac{1}{2 \times 3.14 \times 145 \times 109.598,1}$$

$$C = 1,002 \times 10^{-9} \text{ F}$$

Dari hasil perhitungan, dapat diketahui nilai kapasitor yang digunakan adalah $1,002 \times 10^{-9}$ F dan rating tegangannya 220 V.

B. TV LED Merk E 21 inch

a. Spesifikasi Resistor

$$R = \frac{V}{I_{h3}}$$

Diketahui nilai arus harmonisa pada orde ke-3 adalah 49,51 mA, dan tegangan 220 V.

$$R = \frac{220}{0,04951}$$

$$R = 4.443,55 \Omega$$

Untuk mengetahui nilai rating daya resistor, maka digunakan persamaan:

$$P = V \times I_{h3}$$

 $P = 220 \times 0.04951$
 $P = 10.89 \text{ Watt}$

b. Nilai Q Faktor

Q Faktor memiliki nilai 30 – 100. Maka nilai Q faktor yang dipilih adalah 30.

$$X_L = X_C = X_n$$

$$Q = \frac{Xn}{R}$$

$$X_n = Q \times R$$

$$X_n = 30 \times 4.443,55$$

$$X_n = 133.306,5 \Omega$$

c. Spesifikasi Induktor

Frekuensi pada harmonisa orde ke-3 adalah 150 Hz. Tetapi, diberikan nilai toleransi agar filter dapat bekerja maksimal. Sehingga nilai frekuensinya menjadi 145 Hz.

$$X_L = 2\pi f L$$

$$L = \frac{XL}{2\pi f}$$

$$L = \frac{133.306,5}{2 \times 3,14 \times 145}$$

$$L = 146,39 \text{ H}$$

Dari hasil perhitungan, dapat diketahui nilai induktor yang digunakan adalah 146,39 H dan rating arusnya 49,51 mA.

d. Spesifikasi Kapasitor

$$X_{C} = \frac{1}{2\pi fC}$$

$$C = \frac{1}{2\pi fX_{C}}$$

$$C = \frac{1}{2 \times 3,14 \times 145 \times 133.306,5}$$

$$C = 8,24 \times 10^{-9} \text{ F}$$

Dari hasil perhitungan, dapat diketahui nilai kapasitor yang digunakan adalah $8,24 \times 10^{-9}$ F dan rating tegangannya 220 V.

C. TV LED Merk F 21 inch

a. Spesifikasi Resistor

$$R = \frac{V}{I_{h3}}$$

Diketahui nilai arus harmonisa pada orde ke-3 adalah 102,74 mA, dan tegangan 220 V.

$$R = \frac{220}{0,10274}$$

$$R = 2.141,33 \Omega$$

Untuk mengetahui nilai rating daya resistor, maka digunakan persamaan:

$$P = V \times I_{h3}$$

$$P = 220 \times 0,10274$$

$$P = 22,6$$
 Watt

b. Nilai Q Faktor

Q Faktor memiliki nilai 30-100. Maka nilai Q faktor yang dipilih adalah 30.

$$X_L = X_C = X_n$$

$$Q = \frac{Xn}{R}$$

$$X_n = Q \times R$$

$$X_n = 30 \times 2.141,33$$

$$X_n = 64.239,9 \Omega$$

Frekuensi pada harmonisa orde ke-3 adalah 150 Hz. Tetapi, diberikan nilai toleransi agar filter dapat bekerja maksimal. Sehingga nilai frekuensinya menjadi 145 Hz.

$$X_{L} = 2\pi f L$$

$$L = \frac{XL}{2\pi f}$$

$$L = \frac{64.239.9}{2 \times 3.14 \times 145}$$

$$L = 70.55 \text{ H}$$

Dari hasil perhitungan, dapat diketahui nilai induktor yang digunakan adalah 70,55 H dan rating arusnya 102,74 mA.

d. Spesifikasi Kapasitor

Frekuensi pada harmonisa orde ke-3 adalah 150 Hz. Tetapi, diberikan nilai toleransi agar filter dapat bekerja maksimal. Sehingga nilai frekuensinya menjadi 145 Hz.

$$X_{C} = \frac{1}{2\pi fC}$$

$$C = \frac{1}{2\pi fX_{C}}$$

$$C = \frac{1}{2 \times 3,14 \times 145 \times 64.239,9}$$

$$C = 1,71 \times 10^{-8} \text{ F}$$

Dari hasil perhitungan, dapat diketahui nilai kapasitor yang digunakan adalah $1,71 \times 10^{-8}$ F dan rating tegangannya 220 V.

4.2.5 TV Tabung

A. TV Tabung Merk G 14 inch

a. Spesifikasi Resistor

$$R = \frac{V}{I_{h3}}$$

Diketahui nilai arus harmonisa pada orde ke-3 adalah 229,30 mA, dan tegangan 220 V.

$$R = \frac{220}{0,2293}$$

$$R = 959,44 \Omega$$

Untuk mengetahui nilai rating daya resistor, maka digunakan persamaan:

$$P = V \times I_{h3}$$

$$P = 220 \times 0.2293$$

$$P = 50,45 \text{ Watt}$$

b. Nilai Q Faktor

Q Faktor memiliki nilai 30 – 100. Maka nilai Q faktor yang dipilih adalah 30.

$$X_L = X_C = X_n$$

$$Q = \frac{Xn}{R}$$

$$X_n = Q \times R$$

$$X_n = 30 \times 959,44$$

$$X_n = 28.783, 2 \Omega$$

c. Spesifikasi Induktor

$$X_L = 2\pi f L$$

$$L = \frac{XL}{2\pi f}$$

$$L = \frac{28.783,2}{2 \times 3,14 \times 145}$$

$$L = 31,61 H$$

Dari hasil perhitungan, dapat diketahui nilai induktor yang digunakan adalah 31,61 H dan rating arusnya 229,30 mA.

d. Spesifikasi Kapasitor

Frekuensi pada harmonisa orde ke-3 adalah 150 Hz. Tetapi, diberikan nilai toleransi agar filter dapat bekerja maksimal. Sehingga nilai frekuensinya menjadi 145 Hz.

$$X_{C} = \frac{1}{2\pi fC}$$

$$C = \frac{1}{2\pi fX_{C}}$$

$$C = \frac{1}{2 \times 3,14 \times 145 \times 28.783,2}$$

$$C = 3.82 \times 10^{-8} \text{ F}$$

Dari hasil perhitungan, dapat diketahui nilai kapasitor yang digunakan adalah 3.82×10^{-8} F dan rating tegangannya 220 V.

B. TV Tabung Merk H 21 inch

a. Spesifikasi Resistor

$$R = \frac{V}{I_{h3}}$$

Diketahui nilai arus harmonisa pada orde ke-3 adalah 277,77 mA, dan tegangan 220 V.

$$R = \frac{220}{0,27777}$$

$$R = 792,02 \Omega$$

Untuk mengetahui nilai rating daya resistor, maka digunakan persamaan:

$$P = V \times I_{h3}$$

 $P = 220 \times 0.27777$
 $P = 61.11 \text{ Watt}$

b. Nilai Q Faktor

Q Faktor memiliki nilai 30 – 100. Maka nilai Q faktor yang dipilih adalah 30.

$$X_L = X_C = X_n$$

$$Q = \frac{Xn}{R}$$

$$X_n = Q \times R$$

$$X_n = 30 \times 792,02$$

$$X_n = 23.760,6 \Omega$$

c. Spesifikasi Induktor

Frekuensi pada harmonisa orde ke-3 adalah 150 Hz. Tetapi, diberikan nilai toleransi agar filter dapat bekerja maksimal. Sehingga nilai frekuensinya menjadi 145 Hz.

$$X_L = 2\pi f L$$

$$L = \frac{XL}{2\pi f}$$

$$L = \frac{23.760,6}{2 \times 3,14 \times 145}$$

$$L = 26,09 \text{ H}$$

Dari hasil perhitungan, dapat diketahui nilai induktor yang digunakan adalah 26,09 H dan rating arusnya 277,77 mA.

d. Spesifikasi Kapasitor

$$X_{C} = \frac{1}{2\pi f C}$$

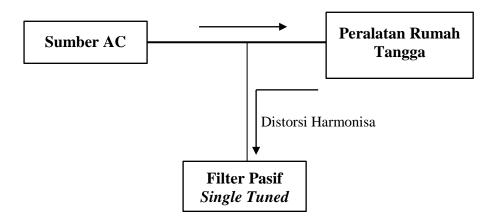
$$C = \frac{1}{2\pi f X_{C}}$$

$$C = \frac{1}{2 \times 3,14 \times 145 \times 23.760,6}$$

$$C = 4,62 \times 10^{-8} \text{ F}$$

Dari hasil perhitungan, dapat diketahui nilai kapasitor yang digunakan adalah $4,62 \times 10^{-8}$ F dan rating tegangannya 220 V.

Berdasarkan hasil perhitungan filter pasif *single tuned* yang telah dilakukan, maka nilai resistor (R), induktor (L), dan kapasitor (C)untuk masingmasing peralatan adalah sebagai berikut:


Tabel 4.74 Nilai Filter Pasif Single Tuned Masing-Masing Peralatan

No	Nama Peralatan	Nilai R	Nilai L	Nilai C
		(Ω)	(Henry)	(Farad)
1	Komputer All in One	3.848,17	126,78	9,51x10 ⁻⁹
2	CPU Komputer	1.401,72	46,18	$2,61 \times 10^{-8}$
3	Charger Laptop	2.171,55	71,54	1,68x10 ⁻⁸
4	Lampu Hemat Energi Merk A 8 Watt	8.896,08	293,08	4,11x10 ⁻⁹
5	Lampu Hemat Energi Merk B 8 Watt	7.609,82	250,71	4,81x10 ⁻⁹
6	Lampu Hemat Energi Merk C 8 Watt	9.385,66	309,21	3,9x10 ⁻⁹
7	Lampu Hemat Energi Merk C 11 Watt	6.535,95	215,33	5,6x10 ⁻⁹
8	Lampu Hemat Energi Merk C 14 Watt	5.866,67	193,28	6,24x10 ⁻⁹
9	Lampu LED Merk D 7 Watt	8.317,58	274,03	4,4x10 ⁻⁹
10	Lampu LED Merk X 7 Watt	13.325,26	439,004	2,75x10 ⁻⁹
11	Lampu LED Merk C 6,5 Watt	8.906,88	293,44	4,11x10 ⁻⁹
12	Lampu LED Merk C 3 Watt	20.018,19	659,51	1,83x10 ⁻⁹

13	Lampu LED Merk C 10,5 Watt	5.089,06	167,66	7,19x10 ⁻⁹
14	TV LED Merk E 14 inch	3.653,27	120,36	1,002x10 ⁻⁹
15	TV LED Merk E 21 inch	4.443,55	146,39	8,24x10 ⁻⁹
16	TV LED Merk F 21 inch	2.141,33	70,55	1,71x10 ⁻⁹
17	TV Tabung Merk G 14 inch	959,44	31,61	3,82x10 ⁻⁸
18	TV Tabung Merk H 21 inch	792,02	26,09	4,62x10 ⁻⁸

Data Tabel 4.74 menunjukkan bahwa nilai resistansi, induktansi, dan kapasitansi untuk filter pasif *single tuned* memiliki nilai yang berbeda-beda. Selain itu, diketahui juga jika nilai induktansi untuk semua jenis peralatan rumah tangga memiliki nilai yang sangat besar, hal ini diakibatkan karena nilai arus harmonisa orde ke-3 yang dihasilkan sangat kecil.

Filter pasif *single tuned* berfungsi untuk mengalirkan arus harmonisa orde ke-3 yang ditimbulkan dari peralatan rumah tangga, melewati jaringan filter. Dalam penerapannya, filter pasif *single tuned* terdiri dari resistor (R), induktor (L), dan kapasitor (C) yang yang disusun secara serial. Kemudian susunan filter pasif *single tuned* tersebut akan dipasang secara paralel pada jaringan listrik peralatan rumah tangga.

Gambar 0.37 Skema Penerapan Filter Pasif Single Tuned