TUGAS AKHIR

PERKUATAN STRUKTUR JEMBATAN KERETA API RANGKA BAJA TIPE WARREN BENTANG 42 METER AKIBAT PENURUNAN MUTU BAJA 30% DAN PEMBEBABAN GEMPA SNI 1725:2016 DENGAN METODE PENGANTIAN BATANG LEMAH

Diajukan guna melengkapi persyaratannya untuk memenuhi gelar Sarjana Teknik Program Studi Teknik Sipil Fakultas Teknik Universitas Muhammadiyah Yogyakarta

Disusun oleh:
Bintang Noorrohmad Wahyu Nugroho
20150110227

PROGRAM STUDI TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS MUHAMMADIYAH YOGYAKARTA
2019
HALAMAN PERNYATAAN

Saya yang bertanda tangan di bawah ini:
Nama : Bintang Noorrohmad Wahyu Nugroho
NIM : 20150110227
Judul : Perkuatan Struktur Jembatan Kereta Api Rangka Baja Tipe Warren Bentang 42 Meter Akibat Penurunan Mutu Baja 30% dan Pembebanan Gempa SNI 1725:2016 dengan Metode Pergantian Batang Lemah

Yogyakarta, 14 Juli 2019
Yang membuat pernyataan
Bintang Noorrohmad Wahyu Nugroho
HALAMAN PERSEMMBAHAN

Tugas akhir ini saya persembahkan untuk memperluas khasanah keilmuan mengenai jembatan di Indonesia, bagian dari baktiku kepada bapak Ponijo dan ibu Chory Ambariatun yang telah merawat dan membesarkan dengan kasih yang tak ada ujung serta dukungan moral, moril, doa dan material, untuk Fawwaz Naufal Rafiq saudaraku, untuk guru-guruku yang telah mengajarkan ilmu yang bermanfaat serta mendidikku dengan sabar, untuk perempuan yang kelak menjadi pasangan hidupku, untuk keluarga bahagiaku kelak, untuk seluruh kaum muslimin, serta untuk rekan-rekan yang telah membantu selama masa kuliah dan menyelesaikan penelitian ini. Semoga dapat bermanfaat bagi agama, bangsa, dan negaraku.
PRAKATA

Assalamu'alaikum warahmatullahi wabarakatuh

Segala puji bagi Allah ‘Azza wa Jalla Yang Menguasai segala sesuatu, Sholawat serta salam selalu tercurahkan kepada Rasulullah Shahallahu ‘alaihi wa salam beserta keluarga dan sahabat-sahabatnya.

Tugas akhir ini disusun sebagai salah satu syarat untuk memperoleh gelar Sarjana Teknik pada Jurusan Teknik Sipil Fakultas Teknik Universitas Muhammadiyah Yogyakarta. Penelitian ini ditujukan untuk mengetahui perkuatan efekif yang dapat dilakukan pada jembatan rangka baja.

Selama penyusunan Tugas Akhir ini penyusun mendapat bantuan, bimbingan, dan dorongan dari berbagai pihak sehingga dapat terselesaikan dengan baik. Penulis ingin menyampaikan rasa terima kasih atas dukungan dari berbagai pihak yakni kepada:

1. Bapak Puji Harsanto, S.T., M.T., Ph.D selaku Ketua Program Studi
2. Bapak Bagus Soebandono, S.T., M.Eng selaku Dosen Pembimbing

Akhirnya, setelah segala ikhtiar dicurahkan serta diiringi dengan doa untuk menyelesaikan tugas akhir ini hanya kepada Allah SWT semua dikembalikan.

Wallahu a’lam bi Showab.
Wassalamu’alaykum warahmatullahi wabarakatuh.

Yogyakarta, 14 Juli 2019

Penulis
DAFTAR ISI

HALAMAN JUDUL ... i
PERKUATAN STRUKTUR JEMBATAN KERETA API RANGKA BAJA TIPE WARREN BENTANG 42 METER AKIBAT PENURUNAN MUTU BAJA 30% DAN PEMBEBANAN GEMPA SNI 1725:2016 DENGAN METODE PENGGANTIAN BATANG LEMAH ... ii
LEMBAR PENGESAHAN ... Error! Bookmark not defined.
HALAMAN PERNYATAAN .. iii
HALAMAN PERSEMBAHAN ... v
PRAKATA .. vi
DAFTAR ISI .. vii
DAFTAR TABEL ... ix
DAFTAR GAMBAR ... xi
DAFTAR LAMPIRAN .. xiv
DAFTAR SINGKATAN .. xv
DAFTAR ISTILAH ... xvi
ABSTRAK ... xvii
ABSTRACT .. xviii
BAB I. PENDAHULUAN ... 1
1.1. Latar Belakang .. 1
1.2. Rumusan Masalah .. 2
1.3. Lingkup Penelitian .. 2
1.4. Tujuan Penelitian ... 3
1.5. Manfaat Penelitian .. 3

BAB II. TINJAUAN PUSTAKA DAN LANDASAN TEORI ... 4
2.1. Tinjauan Pustaka ... 4
2.2. Dasar Teori ... 7
2.2.1. Baja ... 7
2.2.2. Jembatan .. 7
2.2.3. Jembatan Rangka .. 8
2.2.4. Pembebanan Jembatan ... 9
2.2.5. Penurunan Kapasitas Struktur Jembatan Rangka Baja 14
2.2.6. Perkuatan Jembatan ... 15

BAB III. METODE PENELITIAN ... 16
3.1. Umum ... 16
3.2 Kriteria Desain
 3.2.1. Data Umum Jembatan
 3.2.2. Data Teknis Jembatan
 3.2.3. Data Profil Rangka Baja

3.3 Tahap Pemodelan Desain

3.4 Pemodelan Desain

3.5 Pembebanan

3.6 Kombinasi Pembebanan

3.7 Penggantian Elemen Lemah

BAB IV. HASIL PENELITIAN DAN PEMBAHASAN

4.1. Hasil Mode Shape dan Pembahasan

4.2. Hasil Displacement dan Pembahasan

4.3. Hasil Kontrol Tegangan dan Pembahasan

BAB V. KESIMPULAN DAN SARAN

5.1. Kesimpulan

5.2. Saran

DAFTAR PUSTAKA

LAMPIRAN
DAFTAR TABEL

Tabel 2. 1 Berat Jenis Bahan (PM No.60, 2012) .. 11
Tabel 3. 1 Berat Jenis Bahan (PM No.60, 2012) .. 25
Tabel 3. 2 Perhitungan Beban Mati ... 25
Tabel 3. 3 Perhitungan Luas Bidang Elemen Batang ... 29
Tabel 3. 4 Beban Angin Tekan dan Hisap .. 30
Tabel 3. 5 Faktor Amplifikasi Untuk PGA dan 0,2 Detik (FPGA/Fa) 32
Tabel 3. 6 Besarnya Nilai Faktor Amplifikasi Untuk Periode 1 Detik (Fv) 33
Tabel 4. 1 Nilai Mode Shapes Sebelum Perkuatan ... 36
Tabel 4. 2 Nilai Mode Shapes Setelah Perkuatan ... 37
Tabel 4. 3 Nilai Ratio Mode Shape Maksimum Arah UX, UY, UZ Sebelum Perkuatan .. 40
Tabel 4. 4 Nilai Ratio Mode Shape Maksimum Arah UX, UY, UZ Setelah Perkuatan .. 40
Tabel 4. 5 Nilai Displacement Maksimum arah perpindahan U1, U2, U3 Sebelum Perkuatan .. 43
Tabel 4. 6 Nilai Displacement Maksimum arah perpindahan U1, U2, U3 Setelah Perkuatan .. 43
Tabel 4. 7 Kondisi Run Analysis pada Beban yang Terjadi Sebelum Perkuatan .. 48
Tabel 4. 8 Kondisi Run Analysis pada Beban yang Terjadi Sebelum Perkuatan .. 48
Tabel 4. 9 Kondisi Batang/Frame yang Mengalami Overstressed pada Rangka Utama (IWF 350.250.9.12) Sebelum Perkuatan ... 50
Tabel 4. 10 Kondisi Batang/Frame pada Rangka Utama (IWF 350.250.9.12) Setelah Perkuatan .. 50
Tabel 4. 11 Kondisi Batang/Frame yang Mengalami Overstressed pada Ikatan Angin Atas (IWF 150.150.7.10.) Sebelum Perkuatan ... 52
Tabel 4. 12 Kondisi Batang/Frame pada Ikatan Angin Atas Setelah Perkuatan .. 52
Tabel 4. 13 Kondisi Batang/Frame yang Mengalami Overstressed pada Gelagar Melintang (IWF1100.400.16.28) Sebelum Perkuatan ... 54
Tabel 4. 14 Kondisi Batang/Frame pada Ikatan Angin Atas Setelah Perkuatan .. 55
Tabel 4. 15 Kondisi Batang/Frame yang Mengalami Overstressed pada Gelagar Memanjang (IWF700.350.16.28) Sebelum Perkuatan 56
Tabel 4. 16 Kondisi Batang/Frame pada Rangka Utama (IWF 350.250.9.12) Setelah Perkuatan ... 57
Tabel 4. 17 Nilai Tahanan pada Batang/Frame Overstressed Sebelum Perkuatan .. 59
Tabel 4. 18 Nilai Tahanan pada Batang/Frame Overstressed Setelah Perkuatan. 61
DAFTAR GAMBAR

Gambar 2. 1 Model Jembatan Rangka (Satyarno, 2003) ... 9
Gambar 2. 2 Jumlah berat gandar 168 ton atau 87.5 ton/m (RM, 1921) 9
Gambar 2. 3 Jumlah berat gandar 24 ton atau 5 ton/m (RM, 1921) 10
Gambar 2. 4 Jika ada 6 atau 7 gandar yang dapat tempat perhitungan (RM, 1921) ...
 10
Gambar 2. 5 Jika ada 5 gandar yang dapat tempat perhitungan (RM, 1921)....... 10
Gambar 2. 6 Jika ada 3 gandar yang dapat tempat perhitungan (RM, 1921)....... 10
Gambar 2. 7 Jika ada 2 gandar yang dapat tempat perhitungan (RM, 1921)....... 11
Gambar 2. 8 Jika ada 1 gandar yang dapat tempat perhitungan (RM, 1921)....... 11
Gambar 2. 9 Beban lateral kereta (PM No.60, 2012).. 13
Gambar 3. 1 Dimensi panjang bentang dan tinggi jembatan..............................17
Gambar 3. 2 Dimensi lebar jembatan...17
Gambar 3. 3 Diagram alir pemodelan struktur jembatan................................. 20
Gambar 3. 4 Posisi dan macam profil pada jebatan rangka 21
Gambar 3. 5 Pembuatan grid ... 22
Gambar 3. 6 Tampilan grid yang telah dibuat ... 22
Gambar 3. 7 Penentuan material ... 23
Gambar 3. 8 Input dimensi profil baja .. 23
Gambar 3. 9 Penggambaran rangka jembatan... 24
Gambar 3. 10 Tampilan pemodelan 3D pada SAP2000 V.20 24
Gambar 3. 11 Susunan lokomotif (L), carrier (C) dan gerbong/wagon (W) 26
Gambar 3. 12 Peta lokasi jembatan.. 30
Gambar 3. 14 Peta respon spektra percepatan gempa untuk periode pendek (T = 0,2 detik) (Ss) (Peta Gempa, 2017)... 31
Gambar 3. 15 Peta respon spektra percepatan gempa untuk periode 1 detik (S1) (Peta Gempa, 2017)... 32
Gambar 3. 16 Grafik respon spektra ... 34
Gambar 4. 1. Grafik perbandingan periode sebelum dan setelah perkuatan......38
Gambar 4.2 Grafik perbandingan nilai ratio mode shape arah UX 38
Gambar 4.3 Grafik perbandingan nilai ratio mode shape arah UY 39
Gambar 4.4 Grafik perbandingan nilai ratio mode shape arah UZ 39
Gambar 4.5 Mode shapes 6 arah UX sebelum perkuatan 41
Gambar 4.6 Mode shapes 6 arah UX setelah perkuatan 41
Gambar 4.7 Mode shapes 1 arah UY sebelum perkuatan 41
Gambar 4.8 Mode shapes 2 arah UY setelah perkuatan 41
Gambar 4.9 Mode shapes 4 arah UZ sebelum perkuatan 42
Gambar 4.10 Mode shapes 4 arah UZ setelah perkuatan 42
Gambar 4.11 Grafik perbandingan displacement arah perpindahan U1 44
Gambar 4.12 Grafik perbandingan displacement arah perpindahan U2 44
Gambar 4.13 Grafik perbandingan displacement arah perpindahan U3 45
Gambar 4.14 Posisi joint 51 ... 45
Gambar 4.15 Detail displacement joint 51... 46
Gambar 4.16. Posisi displacement joint 53 ... 46
Gambar 4.17 Detail displacement joint 53... 46
Gambar 4.18 Posisi displacement joint 18.. 47
Gambar 4.19. Detail displacement joint 18.. 47
Gambar 4.20 Hasil Run Analysis dan check structure sebelum dilakukan perkuatan ... 49
Gambar 4.21 Hasil Run Analysis dan check structure setelah dilakukan perkuatan .. 49
Gambar 4.22 Posisi dan kondisi frame 35 sebelum perkuatan 50
Gambar 4.23 Posisi dan kondisi frame 39 sebelum perkuatan 51
Gambar 4.24 Posisi dan kondisi frame 35 setelah perkuatan 51
Gambar 4.25 Posisi dan kondisi frame 39 setelah perkuatan 51
Gambar 4.26 Grafik perbandingan nilai ratio frame 35 dan 36 51
Gambar 4.27 Hasil Run Analysis dan check structure pada ikatan angin atas sebelum dilakukan perkuatan.. 53
Gambar 4.28 Hasil Run Analysis dan check structure pada ikatan angin atas setelah dilakukan perkuatan.. 53
Gambar 4. 29 Grafik perbandingan nilai ratio pada ikatan angin atas sebelum dan setelah dilakukan perkuatan... 54
Gambar 4. 30 Hasil Run Analysis dan check structure pada gelagar melintang sebelum dilakukan perkuatan... 55
Gambar 4. 31 Hasil Run Analysis dan check structure pada gelagar melintang setelah dilakukan perkuatan... 55
Gambar 4. 32 Grafik perbandingan nilai ratio pada gelagar melintang sebelum dan setelah dilakukan perkuatan... 56
Gambar 4. 33 Hasil Run Analysis dan check structure pada gelagar memanjang sebelum dilakukan perkuatan... 58
Gambar 4. 34 Hasil Run Analysis dan check structure pada gelagar memanjang setelah dilakukan perkuatan... 58
Gambar 4. 35 Grafik perbandingan nilai ratio pada gelagar memanjang sebelum dan setelah dilakukan perkuatan... 58
DAFTAR LAMPIRAN

Lampiran 1. Tabel Koefisien Respon Gempa Elastik Untuk $T < T_0$68
Lampiran 2. Tabel Koefisien Respon Gempa Elastik Untuk $T_0 \leq T \leq T_s$69
Lampiran 3. Tabel Koefisien Respon Gempa Elastik Untuk $T > T_s$72
Lampiran 4. *Input* Material Dan Profil-Profil Baja......................................79
Lampiran 5. *Load Patterns, Load Cases* dan *Load Combinations*84
Lampiran 6. Respon Spektrum...85
Lampiran 7. Pembebanan Pada Model Struktur Jembatan...............................86
Lampiran 8. Hasil *Run* Batang/Frame *Overstressed*....................................70
<table>
<thead>
<tr>
<th>Simbol</th>
<th>Dimensi</th>
<th>Keterangan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ab</td>
<td>[M²]</td>
<td>Luas bidang elemen batang</td>
</tr>
<tr>
<td>Ae</td>
<td>[M²]</td>
<td>Luas efektif bidang elemen batang</td>
</tr>
<tr>
<td>A_{maks}</td>
<td>[Ton/M]</td>
<td>Muatan gandar terbesar</td>
</tr>
<tr>
<td>At</td>
<td>[M²]</td>
<td>Luas perimeter bidang elemen batang</td>
</tr>
<tr>
<td>As</td>
<td>[-]</td>
<td>Koefisien percepatan muka tanah</td>
</tr>
<tr>
<td>B</td>
<td>[Ton/M]</td>
<td>Beban rem dan traksi</td>
</tr>
<tr>
<td>C</td>
<td>[Ton/M]</td>
<td>Beban sentrifugal</td>
</tr>
<tr>
<td>Cw</td>
<td>[-]</td>
<td>Koefisien angin</td>
</tr>
<tr>
<td>Fa</td>
<td>[-]</td>
<td>Faktor amplifikasi terkait percepatan yang mewakili getaran periode 0,2 detik</td>
</tr>
<tr>
<td>F_{PGA}</td>
<td>[-]</td>
<td>Faktor amplifikasi terkait percepatan yang mewakili getaran periode 0 detik</td>
</tr>
<tr>
<td>F_{V}</td>
<td>[-]</td>
<td>Faktor amplifikasi terkait percepatan yang mewakili getaran periode 0,1 detik</td>
</tr>
<tr>
<td>Ht</td>
<td>[M]</td>
<td>Tinggi total</td>
</tr>
<tr>
<td>i</td>
<td>[-]</td>
<td>Faktor kejut</td>
</tr>
<tr>
<td>L</td>
<td>[M]</td>
<td>Panjang bentang</td>
</tr>
<tr>
<td>Lf</td>
<td>[Ton/M]</td>
<td>Beban lateral kereta</td>
</tr>
<tr>
<td>Lr</td>
<td>[Ton/M]</td>
<td>Beban rel longitudinal</td>
</tr>
<tr>
<td>PGA</td>
<td>[-]</td>
<td>Percepatan puncak batuan dasar</td>
</tr>
<tr>
<td>Ss</td>
<td>[-]</td>
<td>Parameter respons spektra percepatan gempa untuk periode pendek (T=0,2 detik)</td>
</tr>
<tr>
<td>S₁</td>
<td>[-]</td>
<td>Parameter respons spektra percepatan gempa untuk periode pendek (T=1,0 detik)</td>
</tr>
<tr>
<td>S_{D1}</td>
<td>[-]</td>
<td>Nilai spektra permukaan tanah pada periode 1,0 detik</td>
</tr>
<tr>
<td>S_{DS}</td>
<td>[-]</td>
<td>Nilai spektra permukaan tanah pada periode 0,2 detik</td>
</tr>
<tr>
<td>T₀</td>
<td>[detik]</td>
<td>Periode awal</td>
</tr>
<tr>
<td>Tₚ</td>
<td>[detik]</td>
<td>Periode tertentu</td>
</tr>
<tr>
<td>T_{ew}</td>
<td>[Ton/M²]</td>
<td>Tekanan angin</td>
</tr>
<tr>
<td>V</td>
<td>[Km/jam]</td>
<td>Kecepatan maksimum kereta</td>
</tr>
<tr>
<td>V_{rencana}</td>
<td>[Km/jam]</td>
<td>Kecepatan rencana kereta</td>
</tr>
<tr>
<td>Vw</td>
<td>[Km/jam]</td>
<td>Kecepatan angin</td>
</tr>
<tr>
<td>α</td>
<td>[-]</td>
<td>Koefisien beban sentrifugal</td>
</tr>
<tr>
<td>φ</td>
<td>[-]</td>
<td>Koefisien luas bidang elemen batang</td>
</tr>
</tbody>
</table>
DAFTAR ISTILAH

1. *Mode Shapes*
 Mode Shapes ialah bentuk struktur ketika menerima getaran pada frekuensi alami.

2. *Displacement*
 Displacement merupakan perpindahan posisi material dari posisi awal.

3. Tegangan
 Tegangan ialah intensitas gaya per satuan luas.

4. Lendutan
 Lendutan ialah perubahan bentuk pada arah gravitasi akibat beban pada batang.

5. Respon Spektra
 Spektrum yang disajikan dalam bentuk grafik antara periode getar (T) dan nilai-nilai percepatan puncak yang dihitung melalui koefisien respon gempa elastik (Csm).

6. *Hollow*
 Profil baja yang berbentuk pipa.

7. *IWF (I/Wide Flange)*
 Profil baja yang berbentuk seperti huruf I, memiliki sayap/flange pada penampang atas dan bawah dan memiliki b (lebar) kurang dari h (tinggi).

8. ASTM A36
 Material baja karbon rendah yang memiliki kekuatan yang cukup kuat dan mudah untuk dijadikan fabrikasi.

9. *Overstressed*
 Elemen struktur mengalami kelebihan kapasitas ijin tegangan.