BAB IV

HASIL PENELITIAN DAN PEMBAHASAN

A. Gambaran Umum Objek/subjek Penelitian

1. Gambaran Objek Penelitian

Starbucks adalah kedai kopi, keberadaannya di Indonesia sendiri dibuka pertama kali pada tanggal 17 Mei 2002 di Plaza Indonesia, Jakarta. Starbucks Coffee di Indonesia dikelola oleh PT. Sari Coffe Indonesia.

Di Indonesia *green marketing* mulai banyak diterapkan oleh banyak perusahaan, salah satunya Starbucks. Starbucks dalam menjalankan bisnisnya menggunakan strategi hijau. Tumblers atau gelas mug digunakan sebagai pengganti gelas plastik untuk mengurangi proses daur ulang limbah, selain itu starbucks juga memodifikasi bahan penutup cup dengan bahan yang ramah lingkungan agar cepat terurai.

Kebijakan berikutnya adalah mengurangi limbah dengan tumblers. Tumblers adalah komponen penting dari strategi pengurangan sampah secara keseluruhan. Sejak tahun 1985 starbucks telah menghargai pelanggan dengan memberikan diskon 10% bagi konsumen yang datang ke kedai starbucks dengan membawa tumblers.

Secara internasional Starbucks Coffee telah dikenal dan diakui sebagai salah satu *green company* yang peduli akan kesejahteraan petani kopi di negara- negara berkembang, perusahaan yang mempedulikan pegawai, komunitas dan konsumen serta sebuah perusahaan yang kegiatan

operasional bisnisnya selalu mengedepankan aktivitas yang ramah lingkungan

2. Gambaran Subjek Penelitian

Penelitian ini di lakukan di Universitas Muhammadiyah Yogyakarta, dan responden yang di ambil adalah mahasiswa Universitas Muhammadiyah Yogyakarta seluruh Program Studi yang pernah membeli produk Starbucks.

3. Hasil Pengumpulan Data

Responden dalam penelitian ini adalah mahasiswa Universitas Muhammadiyah Yogyakarta yang menggunakan produk Starbucks. Responden dalam penelitian ini berjumlah 160 orang. Terdapat dua karakteristik responden yang terdapat dalam penelitian ini, yaitu jenis kelamin dan usia. Berikut ini adalah perhitungan tingkat pengembalian kuesioner yang di sajikan dalam tabel dibawah ini :

Tabel 4.1 Hasil Pengumpulan Data

No.	Kuesioner	Jumlah
1.	Kuesioner yang dibagikan langsung	12
2.	Kuesioner yang terkumpul langsung	12
3.	Kuesioner yang terkumpul google	160
	form	
4.	Kuesioner yang rusak	12
4.	Kuesioner yang digunakan	160

Sumber: Lampiran 1

Berdasarkan penjelasan dari tabel 4.1 menunjukkan bahwa dari 172 kuesioner yang disebarkan pada responden, kuesioner yang kembali sebanyak 172 kuesioner, kuesioner yang rusak sebanyak 12, maka kuesioner yang digunakan sebanyak 160.

4. Deskripsi Responden

Berikut ini merupakan karakteristik responden berdasarkan jenis kelamin dapat dilihat pada tabel berikut ini:

Tabel 4.2

Karakteristik Responden Berdasarkan Jenis Kelamin

Kategori	Frekuensi	Persentase
		(%)
Laki-Laki	74	46,25
Perempuan	86	53,75
Total	160	100

Sumber: Lampiran 2

Berdasarkan tabel 4.2 dapat diketahui bahwa jenis kelamin keseluruhan mahasiswa Universitas Muhammadiyah Yogyakarta yang menggunakan produk Starbucks dalam penelitian ini adalah 160 orang. Kuesioner yang disebarkan menghasilkan data bahwa frekuensi responden laki laki berjumlah 74 orang dengan persentase 46,25% sedangkan frekuensi responden perempuan berjumlah 86 orang dengan persentase 53,75%. Dapat disimpulkan bahwa mahasiswa Universitas Muhammadiyah Yogyakarta yang menggunakan produk Starbucks mayoritas didominasi oleh Perempuan.

B. Uji Kualitas Instrumen dan Data

Uji kualitas instrumen dilakukan untuk mengetahui apakah instrumen penelitian sudah memenuhi kriteria valid dan reliabel.dalam penelitian ini terdiri dari 11 daftar pernyataan yang mewakili setiap variabel dengan jumlah responden 160 dengan menggunakan aplikasi AMOS versi 22

Hasil yang diperoleh dari pengujian kualitas instrumen dengan uji validitas dan reliabilitas CFA dengan AMOS versi 22 dapat dilihat pada Tabel 4.3 .

Tabel 4.3 Hasil Uji Validitas & Reliabilitas

Variabel	Butir	Factor Loading	Construct Reliability
Green	GM1	0,735	
Marketing	GM2	0,753	
	GM3	0,724	0.9716
	GM4	0,663	0,8716
	GM5	0,743	
	GM6	0,752	
Nilai yang	ND1	0,807	0,8018
Dipersepsikan	ND2	0,829	0,8018
Keputusan	KP1	0,770	
Pembelian	KP2	0,782	0,8131
	KP3	0,756	

Sumber: Lampiran 3

Untuk uji validitas data formal yang menggunakan AMOS versi 22 dari seluruh daftar pertanyaan yang mewakili setiap variabel yang diujikan. Menurut Ghozali (2014) data dikatakan valid apabila nilai factor loading >0,5. Hasil uji validitas menunjukkan bahwa seluruh indikator pertanyaan yang mewakili 3 variabel dinyatakan valid dengan nilai > 0,5.

Ghozali (2014) menyatakan bahwa hasil pengujian dikatakan reliabel jika memiliki nilai *construct reliability* > 0,7. Hasil pengujian ini menunjukkan bahwa nilai *C.R* pada variabel *Green Marketing* sebesar 0,8716, **Nilai yang Dipersepsikan** 0,8018 dan **Keputusan Pembelian** sebesar 0,8131, yang nilai masing-masing variabel lebih besar dari 0,7. Berdasarkan hasil tersebut maka dapat disumpulkan bahwa keseluruhan instrumen penelitian tersebut reliable sehingga dapat digunakan dalam penelitian ini.

C. Statistik Deskriptif

Hasil statistik deskriptif terhadap variablel penelitian untuk mengetahui rata-rata dari masing-masing indikator yang diujikan dalam penelitian, hasil tersebut dapat dilihat dari table berikut:

Tabel 4.4 Statistik Deskriptif Variabel Green Marketing

Descriptive Statistics

	N	Minimum	Maximum	Mean
GM1	160	2	5	4.09
GM2	160	2	5	4.01
GM3	160	2	5	3.97
GM4	160	2	5	4.02
GM5	160	2	5	3.97
GM6	160	2	5	3.93
Rata-rata				3.99

Sumber: Data Primer Diolah, 2019 (Lampiran 3)

Pada table 4.4 diatas dapat diketahui bahwa statistic deskriptif responden dalam memberikan penilaian setiap item variabel-variabel menunjukkan tingkat penilaian responden terhadap variable *Green Marketing*. Rata-rata penelitian responden dalam penilaian ini ialah 3.99 dengan skor maksimal 5 dan minimum 2. Hal ini menunjukkan bahwa jawaban responden pada variabel *Green Marketing* kategori ini adalah tinggi.

Tabel 4.5 Statistik Deskriptif Variabel Nilai yang Dipersepsikan

Variabel N		Minimum	Maximum	Mean
ND1	160	2	5	3.88
ND2	160	2	5	3.92
Rata-rata				3.90

Sumber: Data Primer Diolah, 2019 (Lampiran 3)

Pada table 4.5 diatas dapat diketahui bahwa statistic deskriptif responden dalam memberikan penilaian setiap item variabel-variabel menunjukkan tingkat penilaian responden terhadap variable Nilai yang Dipersepsikan. Rata-rata penelitian responden dalam penilaian ini ialah 3.90 dengan skor maksimal 5 dan minimum 2. Hal ini menunjukkan bahwa jawaban responden pada variabel Nilai yang Dipersepsikan dalam kategori ini adalah tinggi.

Tabel 4.6 Statistik Deskriptif Variabel Keputusan Pembelian

Variabel	N	Minimum	Maximum	Mean
KP1	160	2	5	3.81
KP2	160	2	5	3.85
KP3	160	2	5	3.87
Rata-rata				3.84

Sumber: Data Primer Diolah, 2019 (Lampiran 3)

Pada tabel 4.6 diatas dapat diketahui bahwa statistic deskriptif responden dalam memberikan penilaian setiap item variabel-variabel menunjukkan tingkat penilaian responden terhadap variable Keputusan Pembelian. Rata-rata penelitian responden dalam penilaian ini ialah 3.84 dengan skor maksimal 5 dan minimum 2. Hal ini menunjukkan bahwa jawaban responden pada variabel Keputusan Pembelian dalam kategori ini adalah tinggi.

D. Hasil Analisis Data

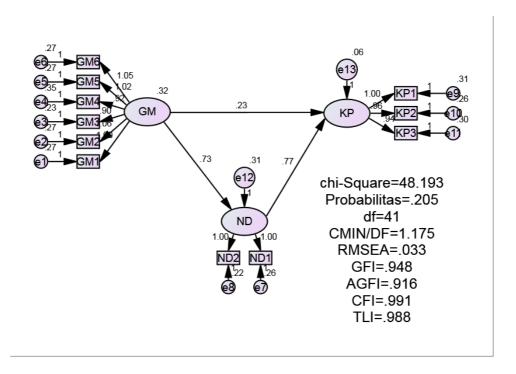
Sesuai dengan model yang dikembangkan pada penelitian ini, maka alat analisis data yang digunakan adalah SEM yang dioperasikan dengan menggunkan aplikasi AMOS. Langkah-langkah tersebut mengacu pada

proses analisis SEM menurut (Hair, et. Al., 1998 dalam Iman Ghozali 2011). Adapun urutan langkah-langkah analisis tersebut meliputi:

1. Pembahasan Model Berdasarkan Teori

Pengambangan model dalam penelitian ini didasarkan atas konsep analisis data yang telah di jelaskan pada Bab II. Secara umum model tersebut terdiri dari dua variabel independen (eksogen) yaitu *green marketing*, satu variabel dependen (endogen) yaitu keputusan pembelian dan variabel intervening yaitu nilai yang dipersepsikan.

2. Menyusun Diagram Alur (Path Diagram)


Setelah pengembangan model berbaris teori, maka dilakukan langkah selanjutnya yaitu menyusun model tersebut dalam bentuk diagram alur yang akan memudahkan untu melihat hubungan-hubungan kasusalitas yang akan diuji. Dalam diagram alur, hubungan antara konstruk akan dinyatakan melalui anak panah. Anak panah yang lurus menunjukkan hubungan kausal yang langsung antara konstruksi dengan konstruksi yang lainnya. Pengukuran hubungan antara variable dalam SEM dinamakan structural model. Berdasarkan landasar teori yang ada maka dibuat diagram jalur untuk SEM sebagai berikut:

Gambar 4.1 Diagram Alur

3. Konversi Diagram Alur ke dalam Persamaan Struktural

Model yang telah dinyatakan dalam diagram alur pada langkah 2 tersebut, selanjutnya dinyatakan ke dalam persamaan *structural* dalam Bab III.

Sumber: Lampiran 3

Gambar 4.2 Persamaan Struktural

4. Input Matriks dan Estimasi Model

Input matriks yang digunakan adalah kovarian dan korelasi. Estimasi model yang digunakan adalah estimasi maksimum likelihood (ML) estimasi ML telah dipenuhi dengan asumsi sebagai berikut:

a. Ukuran Sampel

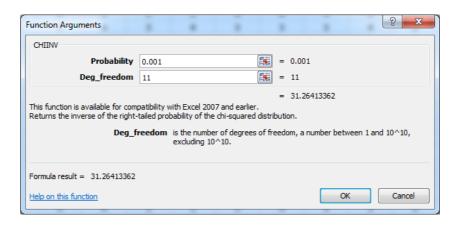
Penelitian ini menggunakan sampel sebanyak 160 responden. Jika mengacu pada ketentuan yang berpendapat bahwa jumlah sampel yang representative adalah sekitar 100-200 (Imam Ghozali, 2011).

Maka, ukuran sampel yang digunakan dalam penelitian ini telah memenuhi asumsi yang di perlukan uji SEM.

b. Uji Normalitas Data

Uji Normalitas dilakukan dengan menggunkan z value (critical ratio atau C.R pada output AMOS 22.0) dari nilai skewness dan kurtosis sebaran data. Nilai kritis sebesar ± 2,58 pada tingkat signifikan 0,01 (Ghozali, 2011). Hasil Uji Normalitas data dapat dilakukan pada Tabel 4.7 berikut:

Tabel 4.7 Hasil Uji Normalitas


			- j · · -	HILLITOUS		
Variable	min	max	skew	c.r.	kurtosis	c.r.
KP3	2.000	5.000	669	-3.455	.125	.324
KP2	2.000	5.000	523	-2.702	096	248
KP1	2.000	5.000	318	-1.644	576	-1.488
ND2	2.000	5.000	442	-2.283	356	919
ND1	2.000	5.000	473	-2.442	345	890
GM6	2.000	5.000	331	-1.710	406	-1.048
GM5	2.000	5.000	424	-2.187	195	503
GM4	2.000	5.000	496	-2.560	161	417
GM3	2.000	5.000	282	-1.456	102	264
GM2	2.000	5.000	609	-3.147	.109	.282
GM1	2.000	5.000	726	-3.751	.459	1.185
Multivariate					-5.285	-1.976

Sumber: Lampiran 3

Berdasarkan tabel 4.7 menunjukkan uji normalitas secara univariate mayoritas berdistribusi normal karena nilai *critical ratio* (c.r) untuk kurtosis (keruncingan) maupun skewness (kemencengan), berada dalam rentang -2,58 sampai +2,58. Sedangkan secara *multivariate* data memenuhi asumsi normal karena nilai -1,976 berada di dalam rentang $\pm 2,58$.

c. Identifikasi Outliers

Identifikasi terhadap outliers multivariate dapat diketahui melalui output AMOS **Mahalanobis Distance**. Kriteria yang digunakan p <0.001. Penelitian ini menggunakan X^2 pada derajat bebas sebesar jumlah variabel terukur. Dalam kasus ini variabel yang digunakan adalah 22, kemudian diolah melalui program excel pada sub-menu **Insert – Function – CHIINV** dengan memasukkan probabilitas dan jumlah variabel terukur sebagai berikut:

Sumber: Lampiran 3

Gambar 4.3 Nilai Batas Mahalonobis Distance

Hasil dari identifikasi outliers adalah 31,264. Artinya semua data yang lebih besar dari 31,264 merupakan outliers multivariate.

Tabel 4.8 Hasil pengujian outliers

Observation number	Mahalanobis d-squared	p1	p2
25	27.529	.004	.458
52	23.521	.015	.691
49	23.190	.017	.498
28	22.500	.021	.426
21	21.214	.031	.562
22	19.119	.059	.915

Observation number	Mahalanobis d-squared	p1	p2
98	18.441	.072	.946
158	17.738	.088	.975
4	17.569	.092	.964
20	17.519	.093	.938
26	17.516	.094	.891
63	17.010	.108	.934
115	17.004	.108	.890
8	16.836	.113	.875
43	16.446	.125	.912
152	16.382	.128	.880
54	16.271	.131	.856
103	15.950	.143	.891
7	15.927	.144	.846
155	15.888	.145	.798
51	15.748	.151	.786
130	15.648	.155	.758
116	15.345	.167	.815
128	15.288	.170	.776
53	15.033	.181	.819
10	14.927	.186	.804
106	14.470	.208	.910
40	14.248	.220	.931
124	14.175	.223	.918
62	14.120	.226	.900
154	14.073	.229	.877
30	13.830	.243	.913
33	13.338	.272	.977
50	13.263	.277	.974
105	13.078	.288	.981
19	12.929	.298	.984
122	12.837	.304	.984
97	12.767	.309	.981
101	12.704	.313	.978
27	12.629	.318	.976
73	12.573	.322	.971
39	12.541	.324	.962
12	12.515	.326	.951
90	12.469	.329	.941
34	12.395	.335	.937
13	12.321	.340	.933

Observation number	Mahalanobis d-squared	p1	p2
37	12.263	.344	.925
145	12.102	.356	.942
120	12.049	.360	.934
108	12.034	.361	.915
48	11.882	.373	.933
16	11.824	.377	.926
31	11.746	.383	.924
41	11.660	.390	.925
133	11.596	.395	.920
107	11.445	.407	.939
129	11.380	.412	.936
144	11.334	.416	.927
44	11.237	.424	.932
119	11.192	.427	.923
77	11.144	.431	.913
118	11.077	.437	.910
150	10.897	.452	.941
140	10.855	.456	.932
148	10.765	.463	.937
60	10.714	.468	.930
88	10.664	.472	.923
76	10.651	.473	.902
15	10.636	.474	.879
71	10.632	.475	.846
123	10.570	.480	.840
109	10.528	.484	.824
146	10.347	.499	.880
100	10.328	.501	.855
64	10.242	.509	.862
94	10.138	.518	.879
2	10.101	.521	.863
160	10.079	.523	.838
121	10.068	.524	.803
139	10.057	.525	.764
159	10.039	.527	.726
151	9.993	.531	.709
92	9.984	.532	.660
81	9.945	.535	.634
87	9.943	.536	.575
61	9.866	.543	.583

Observation number	Mahalanobis d-squared	p1	p2
99	9.837	.545	.546
89	9.833	.545	.486
59	9.816	.547	.439
78	9.786	.550	.404
91	9.786	.550	.344
74	9.775	.551	.296
114	9.762	.552	.253
113	9.745	.553	.216
153	9.726	.555	.184
117	9.673	.560	.174
147	9.635	.563	.156
66	9.571	.569	.153
69	9.570	.569	.119
75	9.508	.575	.115

Sumber: Lampiran 3

Pada tabel 4.8 menunjukan nilai dari Mahalonobis Distance, dari data yang di olah tidak terdeteksi adanya nilai yang lebih besar dari nilai 31,264. Sehingga dapat disimpulkan bahwa data **tidak ada yang** *outliers*.

5. Identifikasi Model Struktural

Analisis SEM hanya dapat dilakukan apabila hasil identifikasi model menunjukan bahwa model termasuk dalam kategori over-identified. Identifikasi ini dilakukan dengan melihat nilai df dari model yang dibuat :

Tabel 4.9
Notes For Model
Notes For Model (Default model)
Computation of degrees of freedom (Default model)

Number of distinct sample moments:	66
Number of distinct parameters to be estimated:	25
Degrees of freedom (66 - 25):	41

Sumber: Lampiran 3

Hasil output AMOS yang menunjukan nilai df model sebesar 41. Hal ini mengindikasikan bahwa model termasuk kategori over confident karena memiliki nilai df positif. Oleh karena itu analisa data bisa di lanjutkan ke tahap selanjutnya.

6. Menilai Kriteria Goodness of Fit

Menilai *goodness of fit* menjadi tujuan utama dalam SEM untuk mengetahui sampai seberapa jauh model yang dihipotesiskan "Fit" atau cocok dengan sampel data. Hasil *goodness of fit* ditampilkan pada data berikut ini:

Tabel 4.10

Menilai goodness of fit

Goodness of fit index	Cut-off value	Model Penelitian	Model
Significant probability	≥ 0.05	0,205	Fit
RMSEA	≤ 0.08	0,033	Fit
GFI	≥ 0.90	0,948	Fit
AGFI	\geq 0.80	0,916	Fit
CMIN/DF	≤ 2.0	1,175	Fit
TLI	≥ 0.90	0,988	Fit
CFI	≥ 0.90	0,991	Fit

Sumber: Lampiran 3

Berdasarkan Hasil pada Tabel 4.10, dapat dilihat bahwa model penelitian mendekati sebagai model good fit.

CMIN/DF merupakan indeks kesesuaian parsiomonious yang mengukur goodness of fit model dengan jumlah koefisien-koefisien estimasi yang diharapkan untuk mencapai kesesuaian. Hasil CMIN/DF pada penelitian ini 1,175 menunjukan bahwa model penelitian fit.

Goodnes of Fit Indeks (GFI) menunjukan tingkat kesesuaian mdel secara keseluruhan yang dihitung dari residual kuadrat dari model yang diprediksi dibandingkan data sebenarnya. Nilai GFI pada model ini adalah 0,948. Nilai mendekati dengan tingkat yang direkomendasikan ≥ 0,90 menunjukkan model penelitian fit.

RMSEA adalah indeks yang digunakan untuk mengkompensasi nilai chi-square dalam sampel yang besar. Nilai RMSEA penelitian ini adalah 0,033 dengan nilai yang direkomendasikan yaitu $\leq 0,08$ hal inimenunjukkan model penelitian fit.

AGFI adalah GFI yang disesuaikan dengan rasio antara degree of freesom yang diusulakan dan degree of freedom dari null model.Nilai AGFI pada model ini adalah 0,916. Nilai mendekati dengan tingkat yang direkomendasikan ≥ 0,80 menunjukkan model penelitian fit.

TLI merupakan imdeks kesesuaian yang kurang dipengarui ukuran sampel. Nilai TLI pada penelitian ini adalah 0,988 dengan nilai yang direkomendasikan yaitu \geq 0,90 hal inimenunjukkan model penelitian fit.

CFI merupakan indeks yang relative tidak sensitive terhadap besarnya sampel dan kerumitan model. Nilai CFI pada penelitian ini adalah 0,991 dengan nilai yang direkomendasikan yaitu \geq 0,90 hal ini menunjukkan model penelitian fit

Berdasarkan keseluruhan pengukuran goodness of fit diatas mengindikasi bahwa model yang diajukan dalam penelitian ini diterima.

7. Interpretasi dan model Modifikasi Model

Apabila model tidak fit dengan data, tindakan tindakan berikut bisa dilakukan :

- 1. Memodifikasi model dengan menambahkan garis hubung
- 2. Menambah variable jika data tersedia
- 3. Mengurangi variable

Modifikasi model yang dilakukan dalam penelitian ini didasari oleh teori yang dijelaskan oleh Arbukle yang membahas mengenai bagaimana melakukan modifikasi model dengan melihat Modification Indices yang dihasilkan AMOS 22.

E. Pengujian Hipotesis

Pengujian hipotesis yang dilakukan adalah untuk menjawab pertanyaan-pertanyaan pada penelitian ini atau menganalisis hubungan-hubungan structural model. Analisis data hipotesis dapat dilihat dari nilai standardized regression weight yang menunjukkan koefisien pengaruh antar variable dalam table berikut:

Tabel 4.11 Hubungan antar variabel

			Estimate	S.E.	C.R.	P	Hipotesis
Nilai yang Dipersepsikan	<	Green Marketing	.729	.122	5.980	0,000	Positif Signifikan
Keputusan Pembelian	<	Green Marketing	.233	.107	2.178	0,029	Positif Signifikan
Keputusan	<	Nilai yang	.767	.109	7.027	0,020	Positif

		Estimate	S.E.	C.R.	P	Hipotesis
Pembelian	Dipersepsik					Signifikan
	an					

Sumber: Lampiran 4

Berdasarkan tabel 4.11 dapat dijelaskan hubungan antar variabel.

1) Hubungan green marketing terhadap nilai yang dipersepsikan

Parameter estimasi nilai koefisien standardized regression weight diperoleh sebesar 0,729 dan nilai C.R 5,980 hal ini menunjukan bahwa hubungan green marketing dengan nilai yang dipersepsikan positif. Artinya semakin baik green marketing maka akan meningkatan nilai yang dipersepsikan. Pengujian hubungan kedua variabel tersebut menunjukkan nilai probabilitas 0,000 (p<0.05)sehingga (H1) yang berbunyi "Green Marketing berpengaruh terhadap Nilai yang Dipersepsikan" terdukung dan dapat dinyatakan jika ada pengaruh secara langsung antara green marketing dengan nilai yang dipersepsikan.

2) Hubungan green marketing terhadap keputusan pembelian

Parameter estimasi nilai koefisien standardized regression weight diperoleh sebesar 0,233 dan nilai C.R 2,178 hal ini menunjukan bahwa hubungan green marketing dengan keputusan pembelian positif. Artinya semakin baik green marketing maka akan meningkatan keputusan pembelian. Pengujian hubungan kedua variabel tersebut menunjukkan nilai probabilitas 0,029 (p<0,05), sehingga (H3) yang berbunyi "Green Marketing berpengaruh terhadap Keputusan Pembelian" terdukung dan dapat dinyatakan jika

ada pengaruh secara langsung antara *green marketing* dengan keputusan pembelian.

3) Hubungan nilai yang dipersepsikan terhadap keputusan pembelian

Parameter estimasi nilai koefisien standardized regression weight diperoleh sebesar 0,767 dan nilai C.R 7,027 hal ini menunjukan bahwa hubungan nilai yang dipersepsikan dengan keputusan pembelian positif. Artinya semakin baik nilai yang dipersepsikan maka akan meningkatan keputusan pembelian. Pengujian hubungan kedua variabel tersebut menunjukkan nilai probabilitas 0,000 (p<0,05), sehingga (H2) yang berbunyi "Nilai yang Dipersepsikan berpengaruh terhadap Keputusan Pembelian" terdukung dan dapat dinyatakan jika ada pengaruh secara langsung antara nilai yang dipersepsikan dengan keputusan pembelian.

Untuk melihat hubungan mediasi antara variable independen terhadap variable dependen melalui variable mediasi yaitu dengan cara membandingkan nilai standardized direct effect dengan standardized indirect effects. Artinya jika nilai standardized direct effects lebih kecil dari nilai standardized indirect effect maka dapat dikatakan bahwa variabel mediasi tersebut mempunyai pengaruh secara tidak langsung dalam dalam hubungan kedua variabel tersebut.

Tabel 4.12 Standardized Direct Effects (Group number 1 - Default model)

21100 21100 21100 (2100 name)						
	Green Marketing	Nilai yang Dipersepsikan	Keputusan Pembelian			
Nilai yang Dipersepsikan	.596	.000	.000			
Keputusan Pembelian	.197	.794	.000			

Sumber: Lampiran 4

Tabel 4.13 Standardized Indirect Effects (Group number 1 - Default model)

	Green Marketing	Nilai yang Dipersepsikan	Keputusan Pembelian
Nilai yang Dipersepsikan	.000	.000	.000
Keputusan Pembelian	.473	.000	.000

Sumber: Lampiran 4

4) Hubungan *green marketing* terhadap keputusan pembelian melalui nilai yang dipersepsikan sebagai variabel intervening

Pengaruh antara *green marketing* terhadap keputusan pembelian dimediasi oleh nilai yang dipersepsikan membandingkan antara nilai direct effect < nilai indirect effect, pengujian hubungan kedua variabel tersebut menunjukkan nilai 0,197<0,473 hal ini menunjukan bahwa nilai yang dipersepsikan memediasi *green marketing* terhadap keputusan pembelian positif. Artinya semakin baik *green marketing* maka akan menciptakan nilai yang dipersepsikan, dan berdampak pada meningkatkan keputusan pembelian. Sehingga (H4) yang berbunyi "*Green Marketing* berpengaruh terhadap Keputusan Pembelian yang Dimediasi oleh Nilai yang Dipersepsikan" terdukung

dan dapat dinyatakan jika ada pengaruh secara tidak langsung antara green marketing dengan keputusan pembelian.