Evaluation of Fire Protection System at PKU Muhammadiyah Hospital in Bantul

Henrian Krisnayudha, Muhammad Heri Zulfiar

Program Studi Teknik Sipil, Fakultas Teknik, Universitas Muhammadiyah Yogyakarta

Abstrak. Kebakaran adalah suatu reaksi oksidasi eksotermis yang berlangsung dengan cepat dari suatu bahan bakar yang disertai dengan timbulnya api/penyalaan yang mengakibatkan kerugian berupa harta, manusia, kerusakan lingkungan maupun dapat menimbulkan korban jiwa. Penyebab terjadinya kebakaran yaitu rendahnya kesadaran masyarakat akan bahaya kebakaran, masyarakat tidak siap dalam menghadapi dan menanggulangi bahaya kebakaran, system proteksi kebakaran belum diterapkan, sarana dan pra sarana system proteksi kebakaran bangunan yang kurang memadai. Penelitian ini bertujuan untuk mengetahui Nilai Keandalan Sistem Keselamatan Bangunan di Rumah Sakit PKU Muhammadiyah Bantul yang diharapkan dapat menjadi pedoman system kebakaran bangunan pada bangunan Rumah Sakit lainnya yang ada di Yogyakarta. Metode yang digunakan dalam penelitian ini yaitu dengan cara mengamati dan interview langsung terhadap system proteksi kebakaran berdasarkan Pemeriksaan Keselamatan Kebakaran Bangunan Gedung (SNI Pd-T-11-2005-C) dan melakukan analisis data sekunder berupa denah Apar. Hasil dari penelitian ini diperoleh Nilai Keandalan Sistem Keselamatan Bangunan pada komponen Kelengkapan Tapak sebesar 15,875% (Kurang), Sarana Penyelamatan sebesar 16,6% (Kurang), Sistem Proteksi Aktif sebesar 7,848% (Kurang), dan Sistem Proteksi Pasif sebesar 15,912% (Kurang). Hasil perhitungan parameter KSKB didapat Nilai Keandalan Sistem Keselamatan Bangunan sebesar 56,23% atau dalam kategori Kurang "K". Berdasarkan hasil penelitian di Rumah Sakit PKU Muhammadiyah Bantul belum dapat dijadikan pedoman terhadap penerapan system proteksi kebakaran pada bangunan Gedung.

Kata-kata kunci: Kebakaran, Keandalan Bangunan, Sistem Proteksi Kebakaran.

Abstract. Fire is an exothermic oxidation reaction that takes place quickly from a fuel accompanied by the emergence of fire / ignition which results in losses in the form of assets, humans, environmental damage and can cause casualties. The cause of the fire is the low public awareness of the danger of fire, the community is not ready to deal with and deal with fire hazards, fire protection systems have not been implemented, facilities and pre facilities for building fire protection systems are inadequate. This study aims to determine the Reliability of Building Safety Systems at PKU Muhammadiyah Bantul Hospital which is expected to be a guideline for building fire systems in other Hospital buildings in Yogyakarta. The method used in this study is by observing and interviewing directly the fire protection system based on the Safety Inspection of Building Fire (SNI Pd-T-11-2005-C). The results of this study obtained the Reliability of Building Safety Systems on Site Completion components of 15.875% (Less), Rescue Facilities of 16.6% (Less), Active Protection System of 7.848% (Less), and Passive Protection System of 15.912% (Less). The results of the calculation of KSKB parameters obtained by the Reliability of Building Safety Systems amounted to 56.23% or in the category of Less "K". Based on the results of research at PKU Muhammadiyah Hospital in Bantul, it has not been able to become a guideline for the implementation of fire protection systems in buildings.

Key words: Fire, Building Reliability, Fire Protection System.

1. Pendahuluan

Rumah sakit merupakan suatu tempat atau sarana dimana individu atau kelompok membutuhkan fasilitas kesehatan tingkat tinggi untuk mengatasi masalah kesehatannya baik dalam bentuk kuratif (pengobatan), preventif (pencegahan), ataupun rehabilitatif (rehabilitasi) sehingga harapannya akan didapatkan tingkat kesehatan yang paripurna. Rumah sakit harus selalu menjaga mutu

pelayanan sesuai dengan harapan pasien untuk meningkatkan kepuasan pemakai jasa. Bangunan Rumah Sakit merupakan bangunan yang memiliki resiko terjadinya kebakaran. Hal ini berdasarkan fakta terdapat sumber utama penyebab kebakaran, yaitu sambungan arus listrik, peralatan listrik, penggunaan tabung gas, belum lagi perabotan yang ada didalam yang bisa membuat jalan api menjalar semakin cepat. Ada beberapa macam bahaya kebakaran,

yaitu Bahaya kebakaran ringan, Bahaya kebakaran sedang, Bahaya kebakaran berat. Bahaya kebakaran ringan merupakan bahaya terbakar dimana terdapat bahan-bahan yang mempunyai nilai kemudahan terbakar rendah dan apabila terjadi kebakaran melepaskan panas rendah dan menjalarnya api lambat. Bahaya kebakaran sedang merupakan bahaya terbakar dimana terdapat bahan-bahan yang mempunyai nilai kemudahan terbakar tinggi dan apabila terjadi kebakaran melepaskan panas tinggi dan menjalarnya api cepat. Bahaya kebakaran berat merupakan bahaya terbakar dimana terdapat bahan-bahan yang mempunyai nilai kemudahan terbakar tinggi dan apabila terjadi kebakaran melepaskan panas sangat tinggi dan menjalarnya api sangat cepat. Permasalahan kebakaran biasanya terjadi perlengkapan apabila system pemadam kebakaran sering diabaikan dalam Gedung. perencanaan pembanguan suatu (Solihah, 2018). Salah satu peraturan yang digunakan dalam melakukan pemeriksaan keselamatan kebakaran bangunan gedung adalah Pd-T-11-2005-C yang mengacu juga padaa SNI. Penelitian ini dilakukan dengan cara survei tentang kesiapan sarana dan prasarana penyelamatan terhadap gedung bahaya kebakaran dengan menggunakan Pd-T-11-2005-C, dengan *point-point* yang diteliti berupa : kelengkapan tapak, sarana penyelamatan, sistem proteksi aktif, sistem proteksi pasif dan diharapkan dengan diadakan penelitian ini dapat memberikan manfaat terhadap Rumah Sakit PKU Muhammadiyah Bantul Yogyakarta Karena studi kasus yang dilaksanakan adalah Muhammadiyah gedung PKU Bantul Yogyakarta.

Kebakaran adalah suatu reaksi oksidasi eksotermis yang berlangsung dengan cepat dari suatu bahan bakar yang disertai dengan timbulnya api/penyalaan yang mengakibatkan kerugian berupa harta, manusia, kerusakan lingkungan maupun dapat menimbulkan korban jiwa. Pada penelitian yang dilakukan oleh Ruspianof dkk. (2017) dan Hidayat dkk. (2017) telah melakukan penelitian tentang Sistem Evaluasi Keandalan Proteksi Kebakaran. Penelitian tersebut dilakukan Pada Bangunan Gedung PT. PLN Wilayah Riau Dan Kepulauan Riau dan Gedung Lawang Sewu Semarang. Ruspianof dkk. (2017) menyatakan

bahwa sistem proteksi kebakaran pada gedung PT. PLN Wilayah Riau dan Kepulauan Riau sebagian besar telah tersedia. Dengan nilai keandalan lantai dasar (87,878%), lantai 1 (87,878%), lantai 2 (87,878%), lantai 3 (87,878%), dan lantai 4 (87,878%). Sedangkan nilai keandalan gedung PT. PLN Wilayah Riau dan Kepulauan Riau sebesar 86,47%, hal ini menurut Pd-T-11-2005-C berarti bangunan keandalan terhadap bahaya kebakaran adalah andal. Hasil penelitian Hidayat dkk. (2017) menunjukkan bahwa Fasilitas Penyelamatan Kebakaran berada dalam kondisi baik dengan kategori tingkat kepatuhan 86,06% dari kriteria penilaian, dan Pasif kebakaran sistem proteksi dalam kondisi wajar dengan tingkat kepatuhan kategori 67,96% dari kriteria penilaian. Manajemen Museum Lawang Sewu harus melakukan simulasi tanggap darurat untuk meningkatkan kesiapsiagaan dalam penyelamatan pengunjung dan aset, mengganti tanda-tanda keselamatan seperti tanda-tanda Pemadam Kebakaran dan rambu rute evakuasi, dan pertimbangkan untuk mengatur ulang penempatan alat pemadam api untuk memaksimalkan respons kebakaran langsung.

Karimah dkk. (2016)dalam penggolongan risiko kebakaran, rumah sakit termasuk berpotensinya terjadinya kebakaran pada skala besar mengingat aktivitas rumah sakit menggunakan daya listrik yang besar karena beroperasi 24 jam. Kualitas bangunan dan lingkungan yang kurang baik ditambah sarana proteksi kebakaran yang tidak dapat berfungsi secara optimal dapat menyebabkan terjadinya risiko kebakaran. (Nurmayadi dkk, 2018). Standar dan praktik rekayasa keselamatan kebakaran yang digunakan dalam desain berbasis kinerja untuk menilai tingkat risiko dan gangguan bangunan berdasarkan kondisi tertentu, seperti struktur bangunan, fungsi mudah terbakar internal, dan bahan, karena itu peningkatan keselamatan kebakaran dapat dicapai dan bangunan andal bisa terlindungi. (Umar dkk., 2015). Menurut Kironji (2015) bahwa upaya peningkatan dalam inspeksi pemeliharaan dan system perlindungan kebakaran dianggap untuk mengatasi kekurangan yang di identifikasi sepanjang umur proyek. Oleh karena itu dalam perencanaan memerlukan managemen yang

dapat dijadikan untuk acuan dalam perencanaan, pelaksanaan dan pemanfaatan oleh pengelola bangunan Gedung. (Widowati dkk., 2017). Roslan dkk., (2017) menjelaskan bahwa menejemen dan system keselamatan kebakaran itu sendiri adalah atribut terpenting yang mempengaruhii pengurangan risiko kebakaran.

Tujuan dari penelitian evaluasi sarana penyelamatan Gedung Rumah Sakit terhadap kebakaran adalah untuk mengevaluasi dan memperoleh Nilai Keandalan Sistem Keselamatan Bangunan (NKSKB) terhadap bahaya kebakaran di Gedung Rumah Sakit PKU Muhammadiyah Bantul.

2. Metode Penelitian

Penelitian yang akan dilaksanakan yaitu di Rumah Sakit PKU Muhammadiyah Bantul yang ber lokasi di Jl. Jend. Sudirman No.124, Nyangkringan, Bantul, Kec. Bantul, Bantul, Daerah Istimewa Yogyakarta 55711. Metode yang akan dilakukan dipenelitian ini adalah metode analisis-deskriptif, untuk mendapat gambaran penerapan sistem proteksi kebakaran Gedung Rumah pada Sakit Muhammadiyah Bantul dan diharapkan sesuai dengan standar yang berlaku. Dan cara untuk mengetahui nilai keandalan sistem keselamatan bangunan terhadap bahaya kebakaran dilakukan dengan metode deskriptif kuantitatif, dengan cara mengamati langsung interview berdasarkan Pemeriksaan Keselamatan Kebakaran Bangunan Gedung. Terdapat dua cara untuk pengumpulan data pada penelitian ini yaitu : Data Primer Melakukan pengamatan dan interview dengan menggunakan Form yang terdapat di SNI Pd-T-11-2005-C yang memenuhi standar pemeriksaan keselamatan bangunan gedung. Data sekunder terdapat di dokumen proyek, laporan perawatan gedung dan peraturanperaturan mengenai pemeriksaan keselamatan bangunan gedung. Terdapat tiga tingkat kondisi dalam penilaian suatu komponen proteksi kebakaran, yaitu BAIK = "B", SNEDANG atau CUKUP = "C" dan KURANG = "K". Kondisi baik = B (Ekuivalen nilai B = 100), Kondisi cukup = C (ekuivalen nilai C = 80), Kondisi kurang = K (ekuivalen nilai K = 60).

Tabel 1. Gambaran fokus penelitian nilai keandalan sistem keselamatan bangunan (NKSKB) (Balitbang PU dalam Solihah, 2018)

No	Variabel
	Kelengkapan tapak
1	Sumber air
2	Jalan lingkungan
3	Jarak antar bangunan
4	Hidran Halaman
	Sarana Penyelamatan
1	Jalan keluar
2	Konstruksi jalan keluar
3	Landasan Helikopter
	Sarana Proteksi Aktif
1	Deteksi dan alarm
2	Siammese connection
3	Pemadam api ringan
4	Hidran Gedung
5	Sprinkler
6	Sistem pemadam luapan
7	Pengendali asap
8	Deteksi asap
9	Deteksi dan alarm
10	Lift kebakaran
11	Cahaya darurat
12	Listrik darurat
13	Ruang pengendali operasi
	Sistem proteksi pasif
1	Ketahanan api struktur bangunan
2	Kompertemenisasi ruangan
3	Perlindungan bukaan

Tabel 2. Tingkat penilaian audit kebakaran (Balitbang PU dalam Solihah, 2018)

Nilai	Kesesuaian	Keandalan
>80 – 100	Sesuai Persyaratan	Baik (B)
60 – 80	Terpasang tetapi ada sebagian kecil instalasi yang tidak sesuai dengan persyaratan	Cukup (C)
< 60	Tidak sesuai sama sekali	Kurang (K)

Tabel 3. Hasil pembobotan parameter komponen sistem keselamatan bangunan

No	Parameter KSKB	Bobot KSKB(%)
1	Kelengkapan Tapak	25
2	Sarana Penyelamatan	25
3	Sistem Proteksi Aktif	24
4	Sistem Proteksi Pasif	26

Tabel 4. Contoh penilaian komponen kelengkapan (Pd-T-11-2005-C)

No.	Sub KSKB	Kriteria penilaian	Kriteria penilaian Keterangan Pen	
1	Sumber air	memenuhi persyaratan	Tersedia sumber air Dengan Kapasitas Sesuai Dengan Kebutuhan	Baik "B"
2	Jalan Lingkungan	Tersedia dengan lebar Kurang Dari persyaratan minimal	Lebar Jalan Lingkungn 6 m Dengan diberi Perkerasan berupa Aspal	Baik "B"
3	Jarakantar Bangunan	Sesuai persyaratan Tinggi <8m=3 m Tinggi 8m-14m=6m		Baik "B"
4	Hidran Halaman	Tersedia tetapi tidak Berfungsi Secara Sempurna Atau Supplay Air Dan Tekanannya Kurang Daripada persyaratan Minimal	Hidran tersedia Namun dengan Keadaan kurang Terawatt dan Berkarat	Cukup "C"

Tabel 5. Contoh perhitungan komponen kelengkapan tapak (Pd-T-11-2005-C)

No	KSKB / Sub KSKB	Hasil penilaian (%)	Standar penilaian (%)	Bobot (%)	Nilai Kondisi (%)	Jumlah nilai (%)
1	2	3	4	5	6	7
	I. Kelengkapan	tapak	25			
1	Sumber air	В	100	27	6.8	
	Jalan					
2	Lingkungan	В	100	25	6.3	
	Jarak antar					
3	Bangunan	В	100	23	5.8	
4	Hidran					
	Halaman	C	80	25	5	
					Total	23.9

- a) Kolom 1, berisi nomor penelitian
- b) Kolom 2, berisi berisi variabel komponen keselamatan bangunan yaitu sumber air
- c) Kolom 3, hasil penilaian diperoleh dari hasil pengamatan Tabel 4 yang di sajikan pada huruf "B"
- d) Kolom 4, standar penilaian merupakan hasil pengamatan dengan notasi angka yang disesuaikan dengan Tabel 2.
- e) Kolom 5 menuliskan bobot tiap komponen berdasarkan pada Tabel 3.
- f) Kolom 6, nilai kondisi, dihitung dengan Rumus: Menghitung nilai kondisi, untuk variabel sumber air menghasilkan penilaian sebesar 6.8%

Nilai kondisi = *Nilai standar penilaian* x bobot kskb x bobot sub kskb

Nilai kondisi =
$$100 \times \frac{27}{100} \times \frac{25}{100} = 6.8\%$$

Berikut adalah cara penilaian dan perhitungan sistem proteksi aktif, sistem proteksi pasif dan sarana penyelamatan dapat menggunakan prosedur diatas.

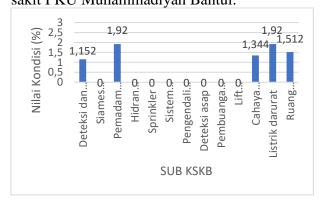
3. Hasil dan Pembahasan *Kelengkapan Tapak*

Berdasarkan Hasil diagram menunjukan bahwa sumber air memiliki nilai sebesar 6,75%, Jalan lingkungan 6,25%, Jarak antar bangunan 2,87% dan Hidran halaman 0%. Jumlah nilai kondisi kelengkapan tapak sebesar 15,875% dalam kategori Kurang "K". Ada beberapa factor yang menyebabkan nilai "K" penilaian Kelengkapan Tapak. Berdasarkan gambar 1. jumlah nilai kondisi bangunan sebesar iarak antar 2.875% dikarenakan jarak tersebut tidak memenuhi aturan pada SNI Pd-T-11-2005-C dan nilai kondisi pada hidran halaman sebesar 0% dikarenakan bangunan Rumah sakit ini tidak tersedia sama sekali hidran halaman.

Gambar 1. Hasil perhitungan kelengkapan tapak

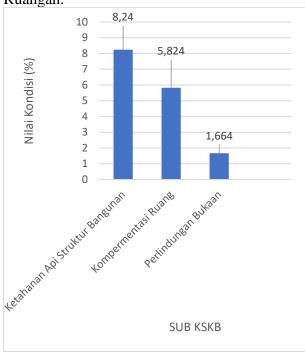
Sarana Penyelamatan

Berdasarkan Hasil diagram menunjukan bahwa Jalan Keluar memiliki nilai sebesar 9,5%, Konstruksi Jalan Keluar 7% dan Landasan Helikopter 0% Jumlah nilai kondisi kelengkapan tapak sebesar 16,5% dalam kategori Kurang "K". Ada beberapa factor yang menyebabkan nilai "K" pada penilaian komponen sarana penyelamatan. Berdasarkan gambar 2 jumlah nilai kondisi pada Landasan Helikopter sebesar 0% dikarenakan tidak


tersedia sama sekali landasan helicopter di Rumah Sakit ini. Untuk landasan helicopter di Gedung Rumah sakit ini tidak diperlukan karena persyaratan tersebut hanya berlaku untuk Gedung dengan ketinggian minimal 60

Gambar 2. Hasil perhitungan sarana penyelamatan

Sistem Proteksi Aktif


Berdasarkan Hasil diagram menunjukan bahwa Deteksi dan alarm memiliki nilai sebesar 1,152%, Siames conection 0%, Pemadam api ringan 1,92%, Hidran Gedung 0%, Sprinkler 0%, Sistem pemadam luapan 0%, Pengendali asap 0%, Deteksi asap 0%, Pembuangan asap 0%, Lift kebakaran 0%, Cahaya darurat 1,344%, Listrik darurat 1,92%, pengendali operasi 1,512%. Jumlah nilai kondisi system proteksi aktif sebesar 7,848% dalam kategori Kurang "K". Ada beberapa factor yang menyebabkan nilai "K" pada Sistem Proteksi Aktif. Berdasarkan gambar 3 dijelaskan bahwa nilai kondisi dari Siames conection, Hidran Gedung, Sprinkler, Sistem pemadam luapan, Pengendali asap, Deteksi asap, Pembuangan asap, dan Lift kebakaran mendapat nilai 0% dikarenakan komponen tersebut tidak tersedia sama sekali di Rumah sakit PKU Muhammadiyah Bantul.

Gambar 3. Hasil perhitungan sistem proteksi aktif

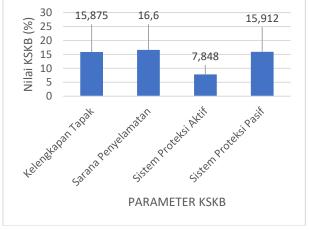
Sistem Proteksi Pasif

Berdasarkan Hasil diagram menunjukan Ketahanan api struktur bangunan memiliki nilai sebesar 8,24%, Kompertemenisasi Ruang 5,824%, Perlindungan Bukaan 1,664%. Jumlah nilai kondisi system proteksi pasif sebesar 15,912% dalam kategori Kurang "K". Ada beberapa factor yang menyebabkan nilai "K" pada penilaian Sistem Proteksi Pasif yaitu pada Kompertemenisasi Ruang tidak ada satupun *Sprinkler* dan pada Perlindungan Bukaan tidak diberi penyetop api dan sulitnya akses mobil Pemadam Kebakaran untuk masuk ke dalam Ruangan.

Gambar 4. Hasil perhitungan sistem proteksi pasif

Evaluasi Nilai Keandalan Sistem Keselamatan Bangunan

Berdasarkan Tabel 6. hasil perhitungan parameter KSKB didapat Nilai Keandalan Sistem Keselamatan Bangunan (NKSKB) sebesar 56,23 %. Menurut pedoman pemeriksaan keselamatan kebakaran bangunan gedung (Pd-T-11-2005- C), nilai KSKB <60% adalah Kurang "K", kesimpulannya menunjukan nilai keandalan bangunan Rumah Sakit PKU Muhammadiyah Bantul dalam kondisi Kurang "K".


Berdasarkan Gambar 5. diketahui bahwa nilai komponen sistem proteksi aktif memiliki nilai yang paling rendah yaitu sebesar 7,848% (Kurang), komponen kelengkapan sebesar 15,875 % (Kurang), sarana penyelamatan 16,6 % (Kurang), dan sistem proteksi pasif 15,912 % (Kurang).

Rekomendasi dengan parameter nilai KSKB Kurang "K" yang dapat dilakukan oleh pihak pengelola adalah perawatan, perbaikan berkala selain itu penyetelan/perbaikan elemen dan penambahan komponen yang belum tersedia seperti *Siames conection*, Deteksi asap, Hidran Gedung, *Sprinkler*, Sistem pemadam luapan, Pengendali asap, Pembuangan asap dan *Lift* kebakaran.

Rekomendasi ini bertujuan untuk mengembalikan kondisi Kurang "K" atau Cukup "C' menjadi Baik "B".

Tabel 6. Hasil perhitungan keandalan sistem keselamatan bangunan

No.	Parameter	Bobot	Nilai
	KSKB	KSKB	KSKB
		(%)	
1	Kelengkapan	25	15,875
	Tapak		
2	Sarana	25	16,6
	Penyelamatan		
3	Sistem Proteksi	24	7,848
	Aktif		
4	Sistem Proteksi	26	15,912
	Pasif		
	Nilai NKSKB	100	56,235

Gambar 5. Hasil perhitungan nilai keandalan sistem keselamatan bangunan

4. Kesimpulan

1. Hasil perhitungan nilai komponen utilitas di Rumah Sakit PKU Muhammadiyah Bantul menghasilkan Nilai Keandalan Sistem Keselamatan Bangunan (NKSKB) sebesar 56,23 % hal ini menunjukan bahwa nilai

- keandalan bangunan dalam keadaan kategori Kurang.
- 2. Berdasarkan hasil penilaian, Rumah Sakit PKU Muhammadiyah Bantul belum dapat dijadikan sebagai pedoman penerapan sistem proteksi kebakaran pada bangunan komersil khususnya bangunan Rumah Sakit di Yogyakarta karena ada banyak sekali komponen yang tidak terpasang.

Ucapan Terima Kasih

Terima Kasih disampaikan kepada Rumah Sakit PKU Muhammadiyah Bantul yang telah mengijinkan saya untuk penelitian disini dan telah memberikan data APAR yang lengkap.

5. Daftar Pustaka

- Balitbang PU, 2005, Pd-T-11-2005-C:
 Pedoman Pemeriksaan Keselamatan
 Kebakaran Bangunan Gedung, Badan
 Penelitian dan Pengembangan,
 Departemen Pekerjaan Umum.
- Hidayat, D.A., Suroto., Kurniawan, B., 2017, Evaluasi Keandalan Sistem Proteksi Kebakaran Ditinjau Dari Sarana Penyelamatan Dan Sistem Proteksi Pasif Kebakaran Di Gedung Lawang Sewu Semarang. *Jurnal Kesehatan Masyarakat*, 5(5), 134-146.
- Karimah, M., Kurniawan, B., Suroto., 2016, Analisis Upaya Penanggulangan Kebakaran Di Gedung Bougenville Rumah Sakit Telogorejo Semarang. *Jurnal Kesehatan Masyarakat*, 4(4), 698-706.
- Kironji, M., 2015, Evaluation of Fire Protection System in Commercial Highrise Buildings For Fire Safety Optimization A Case of Nairobi Central Business District.

- International Journal of Scientific and Research Publications, 5(10), 1-8.
- Nurmayadi, D., Al Huseiny, M.S., 2018, Peningkatan Kualitas Keandalan Sarana Dan Pra Sarana Sistim Proteksi Kebakaran Pasar Tradisional Di Kota Tasikmalaya. *Jurnal Arsitektur*, 2(3), 163-169.
- Ruspianof, A.D.C., Retno, D.P., Mildawati, R., 2017, Evaluasi Keandalan Sistem Proteksi Kebakaran Pada Bangunan Gedung PT PLN Wilayah Riau Dan Kepulauan Riau Dan Kepulauan Riau. *Jurnal Saintis*, 17(2), 39-45.
- Roslan, R., Said, S.Y., 2017, Fire Safety Management System for Heritage Buildings in Malaysia. *Environment Behaviour Procedings Journal*, 2(6), 221-226.
- Solihah, S., 2018, Evaluasi Sistem Proteksi Kebakaran Pada Bangunan Gedung Hotel Forriz Yogyakarta, Tugas Akhir, Universitas Muhammadiyah Yogyakarta, Yogyakarta.
- Umar, A., Embi, M.R., Yatim, Y.M., Alkali, I.A., 2015, Experts Influence On Fire Safety Criteria Ranking For Factory Buildings In Nigeria. *Jurnal Teknologi*, 77(14), 95-98.
- Widowati, E., Koesyanto, H., Wahyuningsih, A.S., dan Sugiharto., 2017, Analisis Keselamatan Gedung Baru F5 Universitas Negeri Semarang Sebagai Upaya Tanggap Terhadap Keadaan Darurat. *Unnes Journal Of Public Health*, 6(2), 102-106.

Lampiran 1. Hasil pengamatan kelengkapan tapak

No.	Sub KSKB	Kriteria Penelitian	Keterangan	Hasil Pengamatan
1.	Sumber Air	Tersedia dengan kapasitas yang memenuhi persyaratan fungsi bangunan	Sumber air terdiri dari PDAM dan air sumur	Baik "B"
2.	Jalan Lingkungan	Jalan dengan lebar minimal 6m, Diberi pengerasan dan lebar jalan masuk minimal 4m	Terdapat jalan lingkungan yang memiliki lebar >6m dan diberi perkerasan	Baik "B"
3.	Jarak Antar Bangunan	Tidak ada jarak dengan bangunan sekitarnya	Jarak antar bangunan hanya 1m	Kurang "K"
4.	Hidran Halaman	Tidak tersedia sama sekali	Tidak tersedia hidran halaman sama sekali	Kurang "K"

Lampiran 2. Hasil perhitungan kelengkapan tapak

No.	KSKB / SUB KSKB	Hasil Penilaian	Stan. Penilaian	Bobot	Nilai Kondisi	Jumlah Nilai
1	2	3	4	5	6	7
I. Kel	engkapan Tapak			25		
1	Sumber Air	В	100	27	6,75	
2	Jalan Lingkungan	В	100	25	6,25	
3	Jarak Antar Bangunan	K	50	23	2,875	
4	Hidran Halaman	K	0	25	0	
					Total	15,875

Lampiran 3. Hasil pengamatan sarana penyelamatan

No.	Sub KSKB	Kriteria Penelitian	Keterangan	Hasil Pengamatan	
1. Jalan Keluar		1) Tinggi exit 2,5m 2) Setiap exit harus terlindungi bahaya kebakaran 3) Jarak tempuh max 20m dari pintu exit 4) Ukuran min 200cm 5) Jarak dari suatu exit tidak >6m 6) Penggunaan pintu ayun tidak menggagu 7) Exit tidak terhalang 8) Exit menuju ke ruang terbuka	1) Tinggi exit 3,5m 2) Terdapat 2 apar dan 1 alarm 3) Ukuran exit 3,6 m	Baik "B"	
2.	Konstruksi Jalan Keluar	1) Konstruksi tahan minimal 2 jam 2) Harus bebas halangan 3) Lebar minimal 200cm 4) Bahan tidak mudah terbakar 5) Pada tingkat tertentu elemen bangunan bisa mempertahankan struktur bila terjadi kebakaran 6) Cukup waktu untuk evakuasi penghuni	1) Lantai Jalan keluar dilapisi oleh keramik 2) Dinding terbuat dari batu bata 3) Lebar 3,6m 4) Tidak ada akses untuk pemadam kebakaran	Baik "B"	
3,	Landasan Helikopter	Tidak memenuhi standar atau persyaratan yang berlaku	Tidak disediakan Landasan Helikopter	Kurang "K"	

Lampiran 4. Hasil perhitungan sarana penyelamatan

No.	KSKB / SUB KSKB	Hasil Penilaian	Stan. Penilaian	Bobot	Nilai Kondisi	Jumlah Nilai
1	2	3	4	5	6	7
I. Sara	na Penyelamatan			25		
1	Jalan Keluar	В	100	38	9,5	
2	Konstruksi Jalan Keluar	В	82	35	7,1	
3	Landasan Helikopter	K	0	27	0	
					Total	16,6

Lampiran 5. Hasil pengamatan sistem proteksi aktif

No.	Sub KSKB	Kriteria Penelitian	Keterangan	Hasil Pengamatan
1	Deteksi dan Alarm	Tidak sesuai dengan perancangan	Hanya tersedia alarm manual saja	Kurang "K"
2	Siames Conection	Tidak tersedia sebagaimana yang disyaratkan	Tidak tersedia siames conection	Kurang "K"
3	Pemadam api ringan	 Jenis APAR sesuai SNI Jumlah sesuai dengan luasan bangunan Jarak penempatan alat max 25m 	1) Jumlah APAR 48 2) Jarak penempatan apar 20 m	Baik "B"
4	Hidran Gedung	Tidak tersedia	Tidak tersedia	Kurang "K"
5	Sprinkler	Tidak tersedia	Tidak tersedia	Kurang "K"
6	Sistem pemadam luapan	Tidak tersedia	Tidak tersedia	Kurang "K"
7	Pengendali asap	Tidak tersedia	Tidak tersedia	Kurang "K"
8	Deteksi asap	Tidak tersedia	Tidak tersedia	Kurang "K"
)	Pembuangan asap	Tidak tersedia	Tidak tersedia	Kurang "K"
10	Lift Kebakaran	Tidak tersedia	Tidak tersedia	Kurang "K"
11	Cahaya Darurat	Cahaya darurat dan petunjuk arah telah dipasang sesuai persyaratan namun tingkat elluminasinya telah berkurang karena kotor permukaan atau daya	Tersedia cahaya darurat namun tingkat pancaran cahayanya sudah menurun	Cukup "C"
12	Listrik Darurat	1) Daya yang disuplai sekurang-kurangnya dari 2 sumber 2) Semua instalasi kabel harus tahan api selama 60' 3) Memenuhi cara pemasangan kabel berdasarkan PUIL	1) Kebutuhan listrik sebesar 240 Kva 2) Terdapat 2 buah generator berukuran 250 Kva dan 500 Kva	Baik "B"
13	Ruang Pengendali Operasi	Tersedia peralatan yang lengkap dan dapat memonitor terjadinya kebakaran	Tersedia ruangan pengendali operasi yang dapat memonitor terjadinya kebakaran	Baik "B"

Lampiran 6. Hasil perhitungan sistem proteksi aktif

No.	KSKB / SUB KSKB	Hasil Penilaian	Stan. Penilaian	Bobot	Nilai Kondisi	Jumlah Nilai
1	2	3	4	5	6	7
I. Sis	tem Proteksi Aktif			24		
1	Deteksi dan Alarm	K	60	8	1,152	
2	Siames Conection	K	0	8	0	
3	Pemadam Api Ringan	В	100	8	1,92	
4	Hidran Gedung	K	0	8	0	
5	Sprinkler	K	0	8	0	
6	Sistem pemadam luapan	K	0	7	0	
7	Pengendali Asap	K	0	8	0	
8	Deteksi Asap	K	0	8	0	
9	Pembuangan Asap	K	0	7	0	
10	Lift kebakaran	K	0	7	0	
11	Cahaya darurat	C	70	8	1,344	
12	Listrik darurat	В	100	8	1,92	
13	Ruang pengendali operasi	В	90	7	1,512	
					Total	7,848

Lampiran 7. Hasil pengamatan Sistem Proteksi Pasif

No.	Sub KSKB	Kriteria Penelitian	Keterangan	Hasil
	V-t-1	Vatalanan ani	Decreals and the	Pengamatan
1	Ketahanan api struktur bangunan	Ketahanan api	Rumah sakit masuk dalam	Baik "B"
		komponen struktur		
		bangunan sesuai	kategori tipe A	
		dengan yang	yang tahan api	
		disyaratkan (tipe A, B, C) yang sesuai dengan	sekurang- kurangnya 2 jam	
		fungsi dan	Kurangnya 2 Jam	
		klasifikasinya		
2	Kompertemenisasi	Semua kriteria dalam	1) Luas bangunan	Cukup "C"
	Ruang	punt "B" namun tidak	sebesar 5700 m ²	1
	C	terdapat satupun	2) Tidak ada	
		jumlah <i>sprinkler</i>	satupun <i>Sprinkler</i>	
3	Perlindungan Bukaan	Tidak memenuhi	Perlindungan	Kurang "K"
	-	semua kriteria tersebut	bukaan tidak diberi	-
		diatas	penyetop api	

Lampiran 8. Hasil perhitungan sistem proteksi pasif

No.	KSKB / SUB KSKB	Hasil Penilaian	Stan. Penilaian	Bobot	Nilai Kondisi	Jumlah Nilai
1	2	3	4	5	6	7
I. Sist	em Proteksi Pasif			26		
1	Ketahanan api struktur bangunan	В	90	36	8,424	
2	Kompertemenisasi Ruang	С	70	32	5,824	
3	Perlindungan Bukaan	K	20	32	1,664	
					Total	15,912