日本教育工学会
研究报告集

RESEARCH REPORT
OF JSET CONFERENCES

アクティブラーニング・評価方法 / 一般

関西学院大学
2017年12月9日（土）

JSET 日本教育工学会
目次

JSET 17-5

【A会場】
(1) 作業課題を思考のアクティブ化に結び付けるための試み 1
 波多野和彦（早稲田大学）、中村佑里（自由学園）、三尾志男（早稲田大学）
(2) 高校生を対象とした学習プログラム「書事体験学習」の構想 5
 高橋朋子（大阪大学）、福田美智（株式会社ワークアカデミー）
(3) 大学校業における演習課題のライティングプロセスに関する研究 11
 森 芳美（鹿児島大学）、桐島教之（早稲田大学大学院）
 江本省徳（電気通信大学大学院）、尾澤重知（早稲田大学）
(4) 高等学校におけるRESAS（地域経済分析システム）を用いた統計教育プログラムの開発 19
 光水文彦（西学大学関西大学・高等学校/東京理科大学大学院）
 松澤義昭、森幸治（金沢大学）
(5) モンスターペアレント対応ゲームの提案と試遊実験 27
 竹内淳彦（東京福祉大学/教育テスト研究センター）
(6) アクティブ・ラーニングと遊びの経験との関連性に関する教育方法論的研究 31
 小枝康平（早稲田大学）
(7) 児童の自己評価能力を測定する項目の作成の試み（4） 39
 一部リブックの継続使用が「中学年」の児童の評定結果に及ぼす影響についての検討 39
 藤井芳明、宮本昭文（東京学芸大学）
(8) 工学系大学の数学基礎教育に対するオンラインテストの活用について 45
 一教室外のアクティブラーニング
 亀田真澄（山梨県小野市立山口東京理科大学）、宇田川 悠（山口県立大学）
(9) アクティブラーニング導入による学生アセスメント系の学習環境の変革 53
 酒井浩二、藤田忠義、阿部由一、乾 明緒、吉田政子（京都先端女子大学）
(10) 日々の学びの成長を見える化する Web アプリケーションの開発 61
 藤原 悠（東京学芸大学）、富永健斗（株式会社ネットラーニングホールディングス）
 宮本健介、森下謙治（東京学芸大学）
(11) 高等学校インターネットがキャリア形成や学び・受入先の印象に与える影響とその要因 67
 見舘好隆（北九州市立大学）
(12) 特別な教科書における ICT 活用 73
 ～「考え・議論する」指導方法の検討～
 森口智貴（関西大学大学院）、黒上満夫（関西大学）

【B会場】
(1) 授業の構造と学生の学習への影響について 97
 一知識構成型ソマナーを組み込んだ授業設計の提案 97
 笠井俊信（岡山大学）、遠藤貴男（静岡大学）、大崎則（産業技術大学院大学）
 林 理介（広島大学大学院）、益川由、永野和男（新星女子大学）
 平野 宗（広島大学大学院）、溝口孝一郎（北陸先端科学技術大学院大学）
(2) 学習者のパフォーマンスを評価するツールシステムの開発 103
 吉見翔彦、森山康彦、塩谷水月（東京学芸大学）
 早川 優（アサックスエンターショナル株式会社）
(3) 中学校技術科「生物育成」における栽培実習共有システムの開発 111
 小西大介、松本 洋（日本工業大学）
(4) イワノプールの分析と考察 117
 北畠郁
(5) 等中教育におけるICT活用の現状と課題 125
 狭間浩侍（東北大学大学院人間文化研究科）、江川幸生（京都大学）
 小笠原司（奈良先端科学技術大学院大学）
(6) 高等教育におけるアクティブラーニング研究の動向 129
 ～「考える能力・知識・デザイン」評価の新しい観点から～
 福山信樹（東京大学）、大山牧子（大阪大学）、山田寛政（九州大学）
 松田晃士（首都大学東京）
(7) Engaging Students through Project Design (PD) Education at Kanazawa Institute of Technology 137
 Boon Chye Rudy Ang (Kanazawa Institute of Technology / Singapore Polytechnic), Tatsufi Iham Maulina (Kanazawa Institute of Technology / Universitas of Muhammadiyah Yogyakarta), Azlaha Sapar (Kanazawa Institute of Technology / Universiteit Teknologi Mara), Hung Xuan Nguyen, Shigeo Matsumoto (Kanazawa Institute of Technology)
（8）ディベート学習による演説的技術向上の効果の検討
横山真実 木村玲夜 安枝英俊 井関崇博 中原一誠 土川忠治
山村完（兵庫県立大学）

（9）グローバルMOOCにおける修了率と動画再生ログの分析
石井隆隆 本木ユウ 旭田大輔 並木浩 田中哲也

（10）地域活性化に向けた地域団体商標の状況調査と活用提案
世良清 千代 卓哉 大森任佳 小川充和 小野利佳 恒川なつき
原田亮 原島凌 林純彩里（三重県立商業高等学校）

（11）内・外的制約型と大学生のコピーベースの持続性の関係
根植恵佑（青山学院大学） 村松美智子（日本大学）

（12）学術力向上プロジェクトの学習指導に関する一考察
賀田峻子 福島宏典（青山学院大学）

（C会場）

（1）タブレット端末持ち帰りによる家庭学習に関する保護者向け意識調査の分析
山本雄介（鹿児島大学）

（2）プレゼンテーションにおける授業検討会が大学初授業の授業改善に与える影響
—話し言葉の構造と指導方針への反応を考慮して—
香西佳美（京都大学大学院）、田口真奈（京都大学）

（3）大学エクステンション講座受講生の受講動機に関する調査
向後道春 伊藤知恵 町田美希 多喜泉（早稲田大学）

（4）オンライン大学の学生のメンターに対する学業的援助要請態度とつまずき対処処方略
石材谷保子（早稲田大学大学院）、向後道春（早稲田大学）

（5）英語学習者の学習リソース選択傾向の調査
阿部美由美（早稲田大学大学院）、向後道春（早稲田大学）

（6）社会的圧力伝播を示す態度を育む脳仮想ロボット活用の実践事例研究
—特殊支援学校におけるコミュニケーションのルール作りの実践から—
佐藤高子（明治大学）、山本良太（東京大学大学院）

（7）MOOC教材とビデオ授業行動の関連の視覚化に関する検討
武田俊之（関西学院大学）、林 優弘（帝京平成大学）、前田勇介（北海道大学）

（8）Google Appsを用いた技術科教員の指導力向上の検証と考察
伊藤和幸（愛知教育大学大学院）、渡部光司（大阪市立中部中学校）

（9）小学校教員の保護者対応における変容プロセスと世代継承
植木克英（北海道教育大学大学院）、渡部裕一（東北大学大学院）

（10）困難な課題が提出された場合における学習用SNSの学習の調整に関する分析
荒木貴之（武蔵野大学）、江藤由布（近畿大学附属高等学校）

（11）社会人学生向けセルフ・ハンディキャッピング制度の検討
中村真由（早稲田大学大学院）、向後道春（早稲田大学）

（12）マルチメディアアートニングの考え方と学習者の情報発信型学習
菅原野智、二宮真貴、越 聡（三重大学）

（13）マルチメディアアートニングによる養国の人間日本語学習者によるデジタルストーリーテリング実践
—事前事後における音楽学習やARCS（CS）シグナルを与える影響—
川上拓子（早稲田大学大学院）、向後道春（早稲田大学）
Engaging Students through Project Design (PD) Education at Kanazawa Institute of Technology

Boon Chye Rudy Ang 1,2, Taufiq Ilham Maulana 1,2, Azilah Saparon 3,4, Hung Xuan Nguyen 5, Shigeo Matsumoto 1

Faculty of Project Education Center, Kanazawa Institute of Technology 1
School of Architecture & the Built Environment, Singapore Polytechnic 1
Faculty of Engineering, Universitas Muhammadiyah Yogyakarta 2
Faculty of Electrical Engineering, Universiti Teknologi Mara 3

<Abstract> Active learning can be employed in classroom through various educational methods, such as Blended Learning and Flipped Classroom. These methods enable students to learn using online media and technology. However, these learning styles could easily distract them from the learning content to other matters, such as social media, due to the lack of supervision. The Project Design (PD) Education System developed by Kanazawa Institute of Technology (KIT) can be an effective solution to such problems. In PD Courses, the students are encouraged to be actively engaged in their learning activities with job roles rotations to accustom them to future working environment. Students are required to complete individual and group assignments, share their works in a group setting, conduct interviews to obtain data, write reflection reports, and present their results. The results of the PD I Course show the improvement of their presentation scores. Based on the completed self-check questionnaires, students' sense of achievement gained over time.

<Keywords> Active learning Project Design Education Soft-skills

I. Introduction
Effective and active learning in classroom is available through various methods. It is incorporated in the classroom not only to ensure the teachers and students are actively engaged with the content through activities such as small group discussion, posing questions to the class, short written exercise and etc., but also to reinforce soft-skills (Keyes 2000). There are several models of active learning methods and one of them is Process Oriented Guided Inquiry Learning (POGIL) (Douglas et al 2013). In POGIL, the instructor does not give lecture in class but students develop their own understanding of the material through a set of guided questions while the instructors only probe them with questions to check their understanding. On the other hand, the use of active engagement tool, iClicker was introduced, which allows students to respond to polling questions during the class and instructors can quickly gauge the understanding of students (Shyrcke 2015). Class Debates were also introduced in engineering courses with less intense in mathematics (Hamouda and Tarlochan 2015) as an innovative pedagogy approached to enhance students' performance.

The above mentioned methods are considered as blended learning and flipped
classroom and they underpin the active learning. With the technology-based teaching methodologies, students are expected to do online exercises during class or have some knowledge prior to the class so that instructors have more time during the class for interacting and checking on students' progress (Baumberg et al. 2014) or to support distant learners and reduce the seat time in class. The blended learning also prepares students for active face-to-face activities, provide integrated external information and interactive resources and permit inclusive assessments (Pesavento et al. 2015). The online learning is well accepted by engineering students but they are not widely adopted (Mansor and Ismail 2012) due to several reasons. A review of the existing blended learning practices found several challenges in the design of effective blended learning environment (Boeens et al. 2017). It needs more attention in increasing learning control, stimulating social interaction and fostering an effective learning climate since technology is used in carrying out existing activities. Meanwhile, a Flipped Classroom, which is another form of blended learning where students are exposed to materials outside of classroom, requires student to be self-motivated (Rosiene and Rosiene 2015). The materials are usually available in the form of online presentation such as videos prepared by instructor or taking "quceture" (directed quiz-lecture). With these approaches, students may pause video lectures or repeat sections in order to have better understanding but they need high self-motivation to learn material and less motivated student may underperform.

Thus, in any classroom that implements active learning, students constantly engage with each other and with technology. They discuss ideas, take polls, and investigate for problem and solution online but sometimes they get astray from the topic and disregard the lecture when they are constantly engaged in active learning. Other risks of employing active learning are students may not participate, learn sufficient content and use higher order thinking skills. These risks can be overcome through well-planned activities as suggested in Project Design (PD) Courses developed by Kanazawa Institute of Technology (KIT) where they integrate blended learning and flipped classroom with other active learning activities.

Therefore, this paper describes how active engagement tools available in PD courses help students to become active learners, increase interaction with peers and instructors, understand the problem identifying and solving process and motivate further learning.

2. Project Design Education System
KIT has fully developed Project Design Education System (PDDES) since 2012 and it becomes the backbone of KIT curricula (Sato 2012) similar to Engineering Design (ED) in the past. It consists of five courses, including Introduction to Project Design, Project Design I, Project Design II, Project Design Handson, and Project Design III. The objectives of these courses are to acquire problem solving skills and verification process skills. The Figure 1 shows steps or process in PD I and PD II that students can acquire those skills. All of the steps apply hybrid pedagogy which interweaves regular activities, such as lecture, group discussion, presentation, with online method such as online survey, interview and online self-assessment without reducing seat time.

![Figure 1 Steps in PD I and PD II](image)

3. Active Learning in Project Design I
There are seven steps in the workflow of PD I, as shown in Figure 1, that guide students in the process of acquiring problem solving skills, from identifying the problem to proposing the solution concept. The Main Theme (MT) of the course is given and students have to identify their Project Theme (PJ Theme), which is related to the MT.

Students work in a group which has five to six members and there are several groups in each class. There is also a structural organization in each group that consists of a leader, a secretary, a recorder, and presenters. These roles are rotated on weekly basis to ensure everyone can serve different roles during the course. This will also help give them a better understanding by experiencing work as a team.

Furthermore, students are given individual and teamwork assignments during the course.

In this case study, the MT of the course was “How to improve the KIT's brand?” The following are the active learning activities, in which the students were involved while working on a solution to the problem. The results shown in this paper are from two classes of six teams in the PD I intensive course in English, summer 2017.

3.1 PD I Worksheets
The students are expected to complete a suite of worksheets, both individually and as a group. Since this paper is focusing on active learning and interaction with others, only group worksheets are mentioned as follows:

1. **1D-a** – The vote result of brand ranking of KIT
2. **1D-b** – Team organization form
3. **1D-c** – Record of team activity
4. **2D-a** – Present features of the top-brand universities with KIT method
5. **2D-b** – Present features of the top-brand universities with KIT method (Slides of Mini-Presentation (1))
6. **4D-a** – Evaluate individual proposal for the improvement of brand image of KIT by using an evaluation matrix
7. **5D-a** – Present the favorite concept for the improvement of brand image of KIT (Slides of Mini-Presentation (2))
8. **6D-a** – Investigate the favorite concept thoroughly
9. **6D-b** – Expected numerical value for the improvement of brand image of KIT
10. **6D-c** – Explain concrete contents of the favorite concept for the improvement of brand image of KIT (Slides of Mini-Presentation (3))
3.2. Communication of Own Opinions
A typical workflow of a worksheet completed individually is as follows:
1) Students submit the completed worksheets (individual and/or group) in a project binder to the instructor by the given deadline for marking;
2) Instructor marks/comments on the worksheets accordingly;
3) Students receive the marked copies back in the following lesson;
4) Each member shares his/her work results to other members verbally.

The process of sharing individual work results allows each student to communicate his/her ideas and gather feedback from others effectively as the example shown in Figure 2. This simulates a typical workplace environment in real world or OJT (On-The-Job Training), which is one of the key characteristics of PD courses.

![Figure 2 Student sharing his/her own work to other members](image)

3.3. Group Activities
As mentioned in Section 3.1, students are required to complete thirteen (13) group worksheets. Table 1 shows some of the activities involved and the expected skills acquired in the course of working on these worksheets.

<table>
<thead>
<tr>
<th>Table 1. Group Activities in PD I</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.</td>
</tr>
<tr>
<td>1. Describing Method</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>2. Kaizen-Kaze (Kz) Method</td>
</tr>
<tr>
<td>3. Campus Tour</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>4. Evaluation of Propositions</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

3.4. Interview
The students are required to explain the rationale of their proposals and seek opinions/feedback from external parties, e.g., instructors, peers, etc. through an interview. This process allows them to put their "selling" skills to the test as they need to pitch their ideas to others in a convincing manner. In return, they will take note of the comments received and record them on the worksheets, which help further consolidate their proposals.

3.5. Group Presentations
Presentations at different junctures allow the students to highlight their findings of their work throughout the course of PD I. There are four (4) presentations: namely three (3) mini-presentations (3) each by two (2) members rotating each time and a final presentation (10%) by all members. The values in brackets show the weightage of each presentation. Hence, the total weightage of the presentations component constitutes 19% of the final score. Figure 3 below shows the average scores of each presentation for both classes.

![Figure 3 Average presentation scores of both classes for (a) Class A and (b) Class B](image)

The plotted data above shows that there is an increasing trend of the scores for the three (3) mini-presentations. In addition, the quality of the presentation delivery exhibited by the students has seen improvement over the three (3) mini-presentations. One interesting phenomenon to note is the scores of the final presentation have dipped compared to those of the mini-presentations. This could be attributed to the fact that there are more contents to cover and more presenters involved, i.e., two (2) versus five (5). Nonetheless, the final presentation is a good platform for the students to share their journey of problem identifying and solution finding. Figure 4 depicts an example of a student making a presentation.

![Figure 4 Student making presentation](image)
Scores Distribution

<table>
<thead>
<tr>
<th>Stage</th>
<th>Score 1</th>
<th>Score 2</th>
<th>Score 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 5 Scores distribution of self-check questionnaires

In addition, there are open-ended questions to gauge the students' response on the following areas:

a. Ambitions on the attendance of this course (strengths and weaknesses)

b. The current self-evaluation for the ambition of the beginning term and the future effort

c. Summary and future development

Below is an extract of some of the students' responses:

- **My strength is that I like English. I like to talk with people using English. But when I talk, I think the full-sentences and then start speaking. So it takes lots of time. I want to eliminate the weak point.**

- **I improved a communicate skills before. For example, I didn't tell my mind to others before but now through explaining method and joining various activity I'm not afraid to speaking English and not worry to telling my mind in English. Looking back, I didn't talk deeply about other member's suggestion. It was as hard as to understand what everyone saying.**

- "Because I like English when I was a child so I want to improve my English skill. And I'd like to communicate with other department's people in PD and share opinions in English. At first there are few ideas and I didn't know how to continue to discussion. But our team member helped me we could overcome to make a good idea and prototype. I thought that it is important to communicate people and don't be afraid I thought my English is better than before and I got mind that don't be afraid to talk in English. I want to use English after PD class and my future job. I noticed that it is important to plan how to investigate the solving problem method. Until now, I didn't think deeply like PD when I make action. It is so different that think various angles. From now on, I want to use the method that I learned from PD class.**

They are very important things now and in the companies. I want to improve my English and my presentation and communication skills with the aggressiveness in possession."

There are many other similar responses showing the enthusiasm and positive attitudes of the students studying the PD I course.
ディベート学習の効果の検討
Effects of Debate Education on Generic Skills

横山 真衣* 木村 玲央** 安枝 英俊** 井関 崇博**
中嶋 一憲** 土川 忠浩** 山村 充**

Mai Yokoyama* Reo Kimura** Hirotoshi Yasueda** Takahiro Ineki**
Kazunori Nakajima** Tadahiro Tsuichikawa** Mitsuhiro Yamamura**

兵庫県立大学総合教育機構* 兵庫県立大学環境人間学部**

School of General Education, University of Hyogo*

＜あらまし＞本研究では、初年次教育においてディベート学習を取り入れた授業実験を行い、
その効果の検討を目的として、授業75名に対して、自評鑑別式のプロセス調査表を
実施した。因子分析の結果、課題解決力・自己制御力・対人関係力・思考力が見出され
た。pre, postのそれぞれの下位尺度得点を算出し、対応のあるt検定をおこなった結果、思考力
自己制御力因子において有意差が見られた。

＜キーワード＞ディベート学習 汎用的技能 初年次教育

1. はじめに

1.1. 汎用的技能

近年、経済のグローバル化やIT技術の革新などの社会的変化を受け、変化が激しい社会
を生き抜く能力として「汎用的技能（ジェネリック・スキル）」が注目されている。汎用的技能とは
その分野や職種、業種に関わらず、大学卒業者レベルに汎用的に求められる能力、態度、
行動特性のことを指す（尾名 2010）。

2008年の中央教育審議会等の「学士課程教育の構想に向けて」において、大学が授与する学士
課程で保証する能力として、汎用的技能が提示されており、我が国の大学教育で育成することが
求められている。また、答申では「当該大学の教育理念や学生成果に応じて、各項目の具体的な
達成基準などを主体的に考えていく必要があろう（中央教育審議会 2008:11）と示されており、
育成を目指す能力の定義は、各大学の教育理念や学生成果の実態を考慮しながら設定することが
求められている。

このような背景を受け、汎用的技能の要素を自

大学の特性と照らして教育目標として検討した上で、それを学生に身につけさせるカリキュラムを
実施する大学が見られるようになってきている（尾名 2013）。本研究においても、AP（大学教育
再生支援プログラム）の助成を受け、本学のディプロマソシエ（学位授与のための基本的な方
針、以下DPS）に基づき、13項目で汎用的技能を定義している（横山,土川 2017）。

汎用的技能は、論議への参加や授業への理解といった動的学習が重要（小方 2008）とされてい
るが、汎用的技能を養成するための具体的な方法の検討はこれまでほとんどされてこなかった。山
田・森（2010）が「汎用的技能を育成するための具体的な教

育活動・教養法（初年次教育や少人数教育、アクティブ・ラーニング等）に関する詳細な検討も必要であろう」と述べているように、その方

法の具体的な実施が重要である。

1.2. アクティブ・ラーニングとしてのディベート学習

近年多くの大学で、アクティブ・ラーニング法