BAB VI

PEMBAHASAN

4.1. Perbandingan Hasil Simulasi dan Eksperimen

Secara umum hasil simulasi memiliki kebeneran yang abstrak. Disebut demikian dikarenakan hasil dari simulasi tidak menggambarkan keadaaan yang sebenarnya pada eksperimen. Maka diperlukan perbandingan hasil simulasi dengan hasil eksperimen untuk mengetahui apakah hasil simulasi sudah sesuai dengan hasil eksperimen. Deviasi menjadi faktor utama yang harus diperhatikan pada simulasi. Besaran yang dijadikan pada validasi adalah temperatur HTF dan PCM, laju penyerapan, pelepasan kalor laju kenaikan temperatur dan penuruanan temperatur.

4.2. Perbandingan Evolusi Temperatur HTF

Hasil evolusi temperatur HTF didapatkan dari 11 titik termokopel yang tersebar didalam tangki dengan posisi termokopel dapat dilihat pada gambar 4.1. kemudian titik termokopel dibagi menjadi empat segmen sesuai dengan arah posisinya seperti yang ditunjukan pada tabel 4.1 Evolusi temperatur pada HTF pada penelitian ini dibagi menjadi dua proses yaitu *charging* dan *discharging*, penyajian data tersebut menggunakan kurva dan *contour*.

Nama	Posisi	Termokopel
T-Air V1	r V1 Baris Vertikal 1 T19, T17, dan	
T-Air V2	Baris Vertikal 2	T20, T18, dan T16
T-Air H	Baris Horizontal	T17, T24, dan T22
T-Air A	Baris Aksial	T17, T24, dan T26

Tabel 4.1. Pembagian Kelompok pada Posisi Termokopel di HTF

Gambar 4.1. Penempatan Posisi Termokopel

62

4.2.1. Proses *Charging*

Evolusi temperatur HTF pada Proses *charging* memiliki dua varisi debit yaitu 0,6 LPM dan 0,9 LPM dengan pemanas fluks kalor 1200 Watt. Kondisi temperatur awal pada kasus ini sebesar 27 ^oC dan temperatur *inlet*-nya menggunakan data hasil eksperimen yang sesuai dengan variasi debitnya. Pada proses *charging*, HTF mempunyai peranan penting sebagai media penyalur panas untuk penyerapan kalor pada PCM.

Pada gambar 4.2 menunjukan perbandingan evolusi temperatur HTF pada simulasi dan eksperimen. Temperatur pada arah vertikal yang ditunjukan oleh T-Air V1 dan T-Air V2 mengalami kenaikan temperatur yang lebih cepat hal ini dikarenakan posisi T-Air V1 dan T-Air V2 berada dekat dengan sisi *inlet*. Sedangkan kenaikan temperatur yang lama terjadi pada arah aksial yang ditunjukan oleh T Air A hal ini disebabkan posisi T-Air A berada paling jauh dari sisi *inlet* sehingga mempengaruhi lamanya kenaikan temperatur.

Pada variasi debit 0,9 LPM memiliki kurva kenaikan temperatur yang lebih tinggi daripada variasi debit 0,6 LPM. Evolusi temperatur HTF pada waktu simulasi lebih lama dibandingan dengan waktu eksperimen hal ini dipengaruhi oleh beberapa faktor yaitu terdapat perbedaan volume pada PCM yang diamana Volume PCM pada simulasi terisi 100 % sedangkan pada ekperimen terisi 70% dari total volume pipa tembaga, terdapat *tubesheet* dan kabel termokopel yang dapat mempengaruhi aliran didalam tangki pada eksperimen. Waktu yang perlukan untuk mencapai suhu 70^oC dapat dilihat pada tabel 4.2. Perbedaan waktu simulasi yang mendekati dengan eksperimen dikarenakan adanya input data eksperimen dilibatkan dalam simulasi. Masih adanya diviasi juga dikarenakan adanya perbedaan jumlah Volume PCM antara simulasi dan ekperimen. Selain itu perdekatan nilai sifat-sifat termal seperti konduktivitas termal dan kalor jenis pada pengujian simulasi berbeda dengan pengujian eksperimen.

Variasi	Wa	Deviasi	
v unusi	Simulasi	Eksperimen	(%)
0,6 LPM	4,05 jam	2,75 jam	32,09
0,9 LPM	3,65 jam	3 jam	17,80

Tabel 4.2. Perbandingan Waktu Simulasi dan Eksperimen pada Proses Charging

Gambar 4.2. Grafik Evolusi Termperatur HTF pada Proses *Charging* (a) Variasi 0,6 LPM (b) Variasi 0,9 LPM

Tabel 4.3. menunjukkan laju kenaikan tempereratur air proses *charging* pada pengujian simulasi dan eksperimen variasi 0,6 LPM dan 0,9 LPM. Nilai laju kenaikan temperatur pengujian simulasi yang tertinggi terjadi pada T-Air V2, lalu diikuti oleh T-Air V1, T-Air H dan T-Air A. Sementara nilai deviasi yang terkecil pada variasi 0,6 LPM yaitu T-Air V2, dan pada variasi 0,9 yaitu T-Air A.

	Laju Kenaikan Temperatur			Laju Kenaikan Temperatur			
Posisi pa Simula	pada 0,6 LPM (°C/jam)			pada 0,9 LPM (°C/jam)			
	Simulasi	Eksperimen	Deviasi	Simulasi	Eksperimen	Deviasi	
	Simulasi		(%)	Simulasi	Ensperimen	(%)	
T-Air V1	10,83	12,75	15,00	12,11	13,15	10,20	
T-Air V2	11,19	12,81	12,61	12,21	13,36	8,59	
T-Air H	10,83	12,73	14,96	11,97	13,10	8,54	
T-Air A	10,63	12,74	16,60	11,77	13,10	7,94	

Tabel 4.3. Perbandingan Laju Kenaikan Temperatur Air pada Proses Charging

Pada gambar 4.3 terlihat bahwa variasi 0,9 LPM mengalami perubahan lebih cepat daripada variasi 0,6 LPM. Hal ini dibuktikan dengan warna *contour* pada detik 10800 yang dimana varisi 0,9 LPM berwarna oren sedangkan variasi 0,6 LPM *contou*r-nya berwarna kuning.

(a)

Gambar 4.3. *Contour* Temperatur HTF pada Proses *Charging* (a) Arah Aksial(b) Arah Radial

4.2.1. Proses discharging secara kontinyu

Proses *discharging* merupakan proses pelepasan kalor yang ditandai dengan penurunan temperatur. Evolusi temperatur HTF pada proses *discharging* secara kontinyu memiliki dua variasi yaitu 1,5 LPM dan 2,5 LPM dengan temperatur *inlet* 27 °C. Kondisi awal pada HTF sebesar 70 °C. Proses *discharging* dilakukan hingga suhu HTF mencapai temperatur mencapai 35 °C.

Pada gambar 4.4 memperlihatkan bahwa kurva pada simulasi mengalami penurunan yang drastis, hal ini dikarenakan letak termokopel berada searah dengan aliran *inlet* sehingga termokopel langsung terkena dengan air dingin. Temperatur pada arah vertikal yang ditunjukan pada T-Air V1 mengalami penurunan suhu yang lebih cepat daripada arah posisi lain, hal ini dipengaruhi oleh posisi *inlet* yang dekat dengan arah vertikal. Sedangkan penurunan temperatur yang lama terjadi pada T-Air A hal tersebut disebabkan posisinya yang jauh dari sisi *inlet*.

Besar aliran debit dapat mempengaruhi waktu penurunan temperatur hal ini dibuktikan pada Grafik (b) yang lebih cepat mengalami penurunan temperatur daripada Grafik (a) Selain itu didapatkan bahwa kurva pada eksperimen lebih cepat mengalami penurunan termperatur dari pada simulasi. Salah satu penyebab eksperimen mengalami penurunan temperatur yang lebih cepat dikarenakan kondisi temperatur *inlet* yang tidak konstan.

Sementara besarnya nilai deviasi yang ditunjukkan pada Tabel 4.4. diduga karena acuan temperatur awal tidak dimulai dari 70 °C dan temperatur akhir 35 °C yang berbeda untuk pengujian eksperimen acuannya di bak penampung, sedangkan pada pengujian simulasi acuannya di tangki, Hal ini mengakibatkan adanya *heatloss* yang terjadi pada pengujian eksperimen. Selain itu pendekatan sifat-sifat termal dan jumlah volume PCM yang berbeda antara simulasi dengan eksperimen juga mempengaruhi.

Variasi	Wa	Deviasi	
	Simulasi	Eksperimen	(%)
1,5 LPM	3,73 Jam	1,44 Jam	61,35
2,5 LPM	2,73 Jam	1,40 Jam	48,79

Tabel 4.4. Hasil Perbandingan Pengujian Discharging Secara Kontinyu

(a)

Gambar 4.4. Grafik Evolusi Termperatur HTF pada Proses *Discharging* (a) Variasi 1.5 LPM (b) Variasi 2.5 LPM

Tabel 4.5. menunjukkan laju penurunan tempereratur air proses *discharging* secara kontinyu pada pengujian simulasi dan eksperimen variasi 1,5 LPM dan 2,5 LPM. Nilai laju penurunan temperatur pada simulasi yang tertinggi terjadi pada T-Air V1, lalu diikuti oleh T-Air H, T-Air V2 dan T-Air A. Sementara nilai deviasi yang terkecil pada variasi 1,5 LPM yaitu T-Air V1, dan pada variasi 2,5 LPM yaitu T-Air V1.

	Laju Penurunan Temperatur			Laju Penurunan Temperatur pada			
Posisi	pada 1,5 LPM (°C/jam)			2,5 LPM (°C/jam)			
	Simulasi	Fksperimen	Deviasi	Simulasi	Fksnerimen	Deviasi	
Simulasi		Eksperimen	(%)	Sintulasi	LKSperimen	(%)	
T-Air V1	10,86	27,46	60,42	14,83	28,08	47,18	
T-Air V2	10,60	27,46	61,36	14,27	28,28	49,85	
T-Air H	10,71	27,58	61,15	14,61	27,94	47,69	
T-Air A	9,97	27,59	63,83	13,71	28,44	51,79	

Tabel 4.5. Perbandingan Laju Penurunan Temperatur Air pada Proses *Discharging* secara Kontinyu

Pada gambar 4.5 penurunan suhu pada variasi 2,5 LPM mengalami lebih cepat daripada 1,5 LPM hal ini dibuktikan pada detik ke 9000 *contour* pada variasi 2,5 LPM di dominasikan pada warna biru tua, sedangkan pada variasi 1,5 LPM di dominasikan berwarna biru muda.

Gambar 4.5. *Contour* Temperatur HTF pada Proses *Discharging* Secara Kontinyu (a) Arah Aksial (b) Arah Radial

4.3. Perbandingan Evolusi Temperatur PCM

Hasil evolusi temperatur PCM didapatkan dari 10 titik termokopel yang tersebar didalam tangki dengan posisi termokopel dapat dilihat pada gambar 3.5. kemudian titik termokopel dibagi menjadi empat segmen sesuai dengan arah posisinya seperti yang ditunjukan pada tabel 4.3. evolusi temperatur pada PCM pada penelitian ini dibagi menjadi dua proses yaitu *charging* dan *discharging*, penyajian data tersebut menggunakan kurva dan *contour*.

Nama	Posisi	Termokopel
T-PCM V1	Baris Vertikal 1	T1, T2, T4 dan T6
T-PCM V2	Baris Vertikal 2	T7, T9, dan T11
Т-РСМ Н	Baris Horizontal	T9 dan T13
T-PCM A	Baris Aksial	T9, T23, dan T25

Tabel 4.6. Pembagian Kelompok pada Termokopel di PCM

4.3.1. Proses charging

Evolusi temperatur PCM pada proses *charging* digunakan untuk mengetahui kecepatan penyerapan PCM dari HTF. Hasil dari evolusi temperatur PCM disajikan dengan kurva dan *contour*.

Pada gambar 4.6 memperlihatkan perbandingan grafik evolusi temperatur PCM, kenaikan ditunjukan pada T-PCM V2, hal ini disebabkan letak termokopel yang dekat dengan sisi *inlet*. Sementara kenaikan kurva temperatur yang paling lama ditunjukan pada T PCM A. Pada grafik (a) debit 0,6 LPM mengalami awal titik leleh pada waktu 2,5 jam, sedangkan pada grafik (b) debit 0,9 LPM awal titik leleh terjadi pada waktu 2 jam. Hal tersebut dipengaruhi karena adanya perbedaan nilai debit air, semakin besar nilai debit air maka semakin cepat waktu titik lelehnya.

Besar aliran debit dapat mempengaruhi waktu kenaikan temperatur hal ini dibuktikan pada Grafik (b) debit 0,9 LPM yang lebih cepat mengalami kenaikan temperatur daripada Grafik (a) debit 0,6 LPM. Selain itu didapatkan bahwa kurva pada waktu eksperimen lebih cepat dari pada simulasi, hal ini dikarenakan temperatur akhir pada eksperimen dan simulasi tidak sama.

Gambar 4.6. Grafik Evolusi Temperatur PCM pada Proses *Charging* (a) 0,6 LPM (b) 0,9 LPM

Tabel 4.7. menunjukkan laju kenaikan tempereratur campuran PCM proses *charging* pada pengujian simulasi dan eksperimen variasi 0,6 LPM dan 0,9 LPM W. Nilai laju kenaikan temperatur pengujian simulasi yang tertinggi terjadi pada T-PCM V2, lalu diikuti oleh T-PCM H, T-PCM V1 dan T-PCM A. Sementara nilai

deviasi yang terkecil pada variasi 0,6 LPM yaitu T-PCM H, dan pada variasi 0,9 LPM yaitu T-PCM A.

Tabel 4.7. Perbandingan Laju Kenaikan Temperatur Campuran PCM pada Proses Charging

Posisi	Laju Kenaikan Temperatur pada			Laju Kenaikan Temperatur pada			
	0,6 LPM (°C/jam)			0,9 LPM (°C/jam)			
	Simulaci	Elenorimon	Deviasi	Simulaci	Elenorimon	Deviasi	
	Simulasi Eksperimer		(%)	Simulasi	Eksperimen	(%)	
T-PCM V1	10,71	12,81	16,40	11,86	13,26	10,55	
T-PCM V2	10,79	12,72	15,21	12,00	13,30	9,82	
Т-РСМ Н	10,74	12,60	14,78	11,89	13,11	9,32	
T-PCM A	10,63	12,50	14,98	11,77	12,87	8,58	

Gambar 4.7. *Contour* Evolusi Temperatur Campuran PCM pada Proses *Charging* (a) Arah Aksial (b) Arah Radial

Pada gambar 4.7 dan 4.8 menunjukan perbandingan *contour* evolusi temperatur antara variasi 0,6 LPM dengan 0,9 LPM. Pada gambar tersebut terlihat bahwa kenaikan temperatur pada 0,9 LPM lebih cepat dibandingkan 0,6 LPM. Hal ini dibuktikan dengan perbedaan warna *contour* pada waktu yang sama. Evolusi temperatur campuran PCM yang tercepat berada di posisi tengah bawah, sedangkan yang terlama berada di bagian atas. Hal tersebut diduga karena aliran HTF-nya menabrak pipa, sehingga PCM yang bagian atas mengalami kenaikan suhu yang lama.

Pada Gambar 4.8 terlihat bahwa evolusi temperatur campuran PCM dimulai dari tengah lalu menyebar ke bagian sampingnya. Hal tersebut terjadi karena terkena aliran *inlet* yang menyebabkan bagian tengahnya mengalami panas terlebih dahulu

Gambar 4.8. *Contour* Evolusi Temperatur PCM di Pipa No. 27 pada Proses *Charging* (a) Arah Aksial (b) Arah Radial

4.3.2. Proses Discharging secara kontinyu

Proses *discharging* diawali dengan *transfer* kalor secara *sensible* pada *liquid*, dimana kalor pada campuran PCM di *transfer* keluar melalui dinding pipa secara konduksi sehingga mengakibatkan temperatur PCM turun dengan cepat sampai pada titik tertentu. Penurunan cepat *sensible liquid* terjadi di semua variasi akibat adanya pengaruh gradien temperatur yang cukup besar antara HTF dan PCM sehingga transfer kalor dari PCM ke HTF tinggi. Proses *sensible liquid* akan terus berlangsung sampai temperatur PCM mendekati daerah *Solidification*. Evolusi temperatur PCM pada proses *discharging* digunakan untuk mengetahui kecepatan pelepasan kalor PCM ke HTF. Hasil dari evolusi temperatur PCM disajikan dengan kurva dan *contour*.

Gambar 4.9 menunjukan grafik evolusi temperatur PCM pada proses discharging secara kontinyu. Pada grafik tersebut dapat dilihat perbedaan waktu antara pengujian simulasi dengan eksperimen. Hal tersebut dipengaruhi oleh perbedaan temperatur air masuk ke tangki. Kecepatan penurunan kurva yang teringgi terjadi pada arah termokopel pisisi vertical (T-PCM V1), sedangkan kecepatan kurva yang terendah terjadi pada arah termokopel posisi aksial (T-PCM A). Waktu proses pembekuan campuran PCM pada simulasi lebih cepat daripada eksperimen. Hal ini dikarenakan nilai konduktivitas termal dan kalor jenis pada simulasi menggunakan perhitungan asumsi.

Gambar 4.9. Grafik Evolusi Temperatur PCM pada Proses *Discharging* Secara Kontinyu (a) 1,5 LPM (b) 2,5 LPM

Tabel 4.8. menunjukkan laju penurunan tempereratur campuran PCM proses *charging* pada pengujian simulasi dan eksperimen variasi 1,5 LPM dan 2,5 LPM. Nilai laju kenaikan temperatur pengujian simulasi yang tertinggi terjadi pada T-PCM V2, lalu diikuti oleh T-PCM H, T-PCM V1 dan T-PCM A. Sementara nilai deviasi yang terkecil pada variasi 1,5 LPM yaitu T-PCM H, dan pada variasi 2,5 LPM yaitu T-PCM H.

	Laju Penurunan Temperatur			Laju Penurunan Temperatur pada		
PosisiSi	pada 1,5 LPM (°C/jam)			2,5 LPM (°C/jam)		
	Simulaci	Eksperimen	Deviasi	Simulaci	Fksnerimen	Deviasi
	Simulasi Eksperimen	(%)	Silluasi		(%)	
T-PCM V1	10,26	27,82	63,11	14,16	28,70	50,64
T-PCM V2	10,50	27,62	61,97	14,39	28,54	49,56
Т-РСМ Н	10,49	27,44	61,75	14,36	28,24	49,14
T-PCM A	9,97	27,19	63,30	13,71	26,85	48,93

Tabel 4.8. Perbandingan Laju Penurunan Temperatur Campuran PCM pada ProsesDischarging secara Kontinyu

Pada gambar 4.10 dan 4.11 menunjukan perbandingan *contour* evolusi termperatur antara variasi 1,5 LPM dengan 2,5 LPM. Pada gambar tersebut terlihat bahwa penurunan temperatur pada variasi 2,5 LPM lebih cepat dibandingkan 1,5 LPM. Hal ini dibuktikan dengan perbedaan warna *contour* pada waktu yang sama.

Gambar 4.10. *Contour* Evolusi Temperatur PCM pada Proses *Discharging* Secara Kontinyu (a) Arah Aksial (b) Arah Radial

Gambar 4.11. *Contour* evolusi termperatur PCM di pipa No. 27 pada proses *discharging* secara kontinyu (a) Arah aksial (b) Arah radial

4.4. Perbandingan Laju Penyerapan dan Pelepasan Kalor

4.4.1. Laju Penyeran Kalor pada Proses Charging

Laju penyerapan kalor pada air dapat menggunakan rumus persamaan 4.1 sedangkan untuk laju penyerapan kalor pada PCM sensibel dan laten dapat menggunakan rumus persamaan 4.2 dam 4.3.

Laju penyerapan kalor air =
$$\frac{Q \text{ Kumulatif air [J]}}{\Delta Waktu air [s]}$$
.....(4.1)
Laju penyerapan kalor air = $\frac{7018757,56 [J]}{12600 [s]}$ = 557,04 [J/s]
Laju penyerapan kalor PCM sensibel = $\frac{Q \text{ Kumulatif PCM Sensibel [J]}}{\Delta Waktu PCM Sensibel [s]}$(4.2)
Laju penyerapan kalor PCM sensibel = $\frac{463309,59 [J]}{8280 [s]}$ = 55,95 [J/s]
Laju penyerapan kalor PCM laten = $\frac{Q \text{ Kumulatif PCM Laten[J]}}{\Delta Waktu PCM Laten [s]}$(4.3)
Laju penyerapan kalor PCM laten = $\frac{1476550,58 [J]}{(12600 - 8460) [s]}$ = 228,71[J/s]

	Q diserap, kumulatif pada 0,6 LPM			Laju penyerapan kalor pada 0,6 LPM		
	Q Kumulatif	Q Kumulatif	Q Kumulatif	A in	PCM	PCM
	Air	PCM Sensibel	PCM laten	Air	Sensibel	Laten
	[J]	[J]	[J]	[]/8]	[J/s]	[J/s]
Simulasi	7018757,56	463309,59	1476550,58	557,04	55,95	228,71
Eksperimen	6327122,07	310707,19	901571,15	639,10	47,94	200,29
Deviasi [%]	9,85	32,94	38,94	12,84	14,32	12,43

Tabel 4.9. Data	Laju Penyerapan	Kalor pada Proses	Charging 0,6 LPM
-----------------	-----------------	-------------------	------------------

Tabel 4.10. Data Laju Penyerapan Kalor pada Proses Charging 0,9 LPM

	Q diserap, kumulatif pada 0,9 LPM				Laju penyerapan kalor pada 0,9 LPM		
	Q Kumulatif	Q Kumulatif	Q Kumulatif	Ain	PCM	PCM	
	Air	PCM Sensibel	PCM Laten		Sensibel	Laten	
	[J]	[J]	[J]	[]/8]	[J/s]	[J/s]	
Simulasi	7128426,63	463802,81	1526464,22	638,74	73,61	216,43	
Eksperimen	7130037,80	337249,26	1064852,78	660,18	48,04	196,28	
Deviasi [%]	0,02	27,29	30,24	3,25	34,74	9,31	

Pada tabel 4.9 dan 4.10 menjelasakan laju penyerapan kalor pada proses charging dengan variasi 0,6 LPM dan 0,9 LPM. Nilai laju penyerapan kalor pada variasi 0,9 LPM lebih besar dibandingkan pada variasi 0,6 LPM. Sedangkan nilai laju penyerapan kalor PCM laten pada pengujian simulasi lebih besar dibandingkan dengan pengujian secara eksperimen, hal ini dikarenakan jumlah volume PCM pada simulasi lebih banyak dibandingkan pengujian secara eksperimen. Dimana jumlah volume PCM pada simulasi terisi 100 % dari jumlah volume total sedangkan jumlah volume pada ekperimen jumlah volume PCM terisi 70 % dari jumlah volume total.

4.4.2. Laju pelepasan kalor pada proses discharging

Laju pelepasan kalor pada air dapat menggunakan rumus persamaan 4.4, sedangkan untuk laju penyerapan kalor pada PCM sensibel dan laten dapat menggunakan rumus persamaan 4.5 dam 4.6.

Laju pelepasan kalor air =
$$\frac{Q \text{ Kumulatif air [J]}}{\Delta Waktu air[s]}$$
.....(4.4)
Laju pelepasan kalor air = $\frac{7107352,96 [J]}{13500 [s]}$ = 526,47 [J/s]
Laju pelepasan kalor PCM sensibel = $\frac{Q \text{ Kumulatif PCM Sensibel[J]}}{\Delta Waktu PCM Sensibel [s]}$(4.5)
Laju pelepasan kalor PCM sensibel = $\frac{1616315,20 [J]}{(13500 - 540) [s]}$ = 28,5 [J/s]
Laju pelepasan PCM laten = $\frac{Q \text{ Kumulatif PCM laten [J]}}{\Delta Waktu PCM [s]}$(4.6)
Laju pelepasan PCM laten = $\frac{1187344,78 [J]}{360 [s]}$ = 3298,18 [J/s]

	Q dilepas,	Laju Pelepasan Kalor pada 1,5 LPM				
	Q Kumulatif	Q Kumulatif	Kumulatif	Air	PCM	PCM
	Air	PCM Sensibel	PCM Laten		Sensibel	Laten
	[J]	[J]	[J]	[3/3]	[J/s]	[J/s]
Simulasi	7107352,96	1616315,20	1187344,78	526,47	28,55	3298,18
Eksperimen	7195167,68	1024004,24	665015,98	1378,38	81,97	615,76
Deviasi [%]	1,22	36,65	43,99	61,81	65,17	81,33

	Q dilepas	, kumulatif pada	Laju Pelepasan Kalor pada 2,5 LPM			
	Q Kumulatif Air [J]	Q Kumulatif PCM Sensibel [J]	Q Kumulatif PCM Laten [J]	Air [J/s]	PCM Sensibel [J/s]	PCM Laten [J/s]
Simulasi	7004867,65	1676255,57	1275299,62	810,75	36,95	7085,00
Eksperimen	7341891,44	1052349,86	685784,74	1406,49	57,40	1269,97
Deviasi [%]	4,59	37,22	46,23	42,36	35,62	82,08

Tabel 4.12. Data Laju Pelepasan Kalor pada Proses Discharging 2.5 LPM

Pada tabel 4.11 dan 4.12 menjelasakan laju pelepasan kalor pada proses *discharging* dengan variasi 1,5 LPM dan 2,5 LPM. Nilai laju pelepasan kalor pada variasi 2,5 LPM lebih besar dibandingkan pada variasi 1,5 LPM. Sedangkan nilai laju pelepasan kalor laten pada pengujian simulasi lebih besar dibandingkan dengan pengujian secara eksperimen, hal ini dikarenakan jumlah volume PCM pada simulasi lebih banyak dibandingkan pengujian secara eksperimen. Dimana jumlah volume PCM pada simulasi terisi 100 % dari jumlah volume total sedangkan jumlah volume pada ekperimen jumlah volume PCM terisi 70 % dari jumlah volume total.

4.5. Perbandingan Laju Kenaikan dan Penurunan Temperatur

4.5.1. Laju Kenaikan Temperatur Pada Proses Charging

Laju kenaikan temperatur pada air dapat menggunakan rumus persamaan 4.7 sedangkan untuk laju kenaikan temperatur pada PCM dapat menggunakan rumus persamaan 4.8.

Laju kenaikan temperatur air =
$$\frac{\Delta \text{ Temperatur Air [°C]}}{\Delta \text{Waktu air [Jam]}}$$
.....(4.7)
Laju kenaikan temperatur air = $\frac{65,93 - 27,00 [°C]}{3,50 [Jam]}$ = 11,12 [°C/jam]
Laju kenaikan temperatur PCM = $\frac{\Delta \text{ Temperatur PCM [°C]}}{\Delta \text{Waktu PCM [Jam]}}$(4.8)
Laju kenaikan temperatur PCM = $\frac{65,09-27,00 [°C]}{2,30 [Jam]}$ = 10,88 [°C/Jam]

Laju Kenaikan Temperatur pada 0,6 LPM								
	T Air [^o C]		T PCM [^o C]		Air [⁰ C/jam]	PCM [^o C/jam]		
	T awal	T akhir	T awal	T akhir				
Simulasi	27,00	65,93	27,00	65,09	11,12	10,88		
Eksperimen	28,25	63,35	28,06	62,89	12,76	12,66		
Deviasi [%]					12,84	14,09		

Tabel 4.13. Data Laju Kenaikan Temperatur pada Proses Charging 0,6 LPM

Tabel 4.14. Data Laju Kenaikan Temperatur pada Proses Charging 0,9 LPM

Laju Kenaikan Temperatur pada 0,9 LPM							
	T Air [^o C]		T PCM [^o C]		Air [⁰ C/jam]	PCM [^o C/jam]	
	T awal	T akhir	T awal	T akhir			
Simulasi	27,00	66,54	27,00	65,77	12,76	12,50	
Eksperimen	27,10	66,54	26,54	65,87	13,18	13,14	
Deviasi [%]					3,25	4,87	

Pada tabel 4.13 dan 4.14 menjelasakan laju kenaikan temperatur pada proses *charging* dengan variasi 0,6 LPM dan 0,9 LPM. Nilai laju kenaikan temperatur pada variasi 0,9 LPM lebih besar dibandingkan pada variasi 0,6 LPM. Nilai kenaikan temperatur pada pengujian eksperimen lebih besar dibandingkan pada pengujian secara simulasi hal ini disebabkan adanya *tubesheet* dan kabel termokopel yang berada didalam tangki, sehingga dapat menghambat arah aliran keseluruh bagian tangki.

4.5.2. Laju Penurunan Temperatur Pada Proses Discharging

Laju penurunan temperatur pada air dapat menggunakan rumus persamaan 4.9 sedangkan untuk laju penurunan temperatur pada PCM dapat menggunakan rumus persamaan 4.10.

Laju penurunan temperatur air =
$$\frac{\Delta \text{ Temperatur Air [°C]}}{\Delta \text{Waktu air [Jam]}}$$
.....(4.9)

Laju penurunan temperatur air =
$$\frac{69,98 - 30,56 [^{\circ}C]}{3,75 [Jam]} = 10,51 [^{\circ}C/jam]$$

Laju penurunan temperatur PCM =
$$\frac{\Delta \text{ Temperatur PCM [}^{\circ}C]}{\Delta \text{Waktu PCM [Jam]}}$$
.....(4.10)
Laju penurunan temperatur PCM =
$$\frac{70,00 - 31,44 [^{\circ}C]}{(3,75) [Jam]} = 10,28 [^{\circ}C/Jam]$$

Laju penurunan Temperatur pada 1,5 LPM							
	T Air [^o C]		T PCM [^o C]		Air [⁰ C/jam]	PCM [^o C/jam]	
	T awal	T akhir	T awal	T akhir			
Simulasi	69,98	30,56	70,00	31,44	10,51	10,28	
Eksperimen	65,87	25,96	65,81	25,91	27,52	27,52	
Deviasi [%]					61,81	62,65	

Tabel 4.15. Data Laju Penurunan Temperatur pada Proses Disharging 1,5 LPM

Tabel 4.16. Data Laju Penurunan Temperatur pada Proses Disharging 2,5 LPM

Laju penurunan Temperatur pada 2,5 LPM							
	T Air [^o C]		T PCM [^O C]		Air [⁰ C/iam]	PCM	
	T awal	T akhir	T awal	T akhir		[C/Julli]	
Simulasi	69,83	30,97	70,00	31,78	16,19	15,92	
Eksperimen	67,26	26,53	67,44	26,57	28,09	28,19	
Deviasi [%]					42,36	43,53	

Pada tabel 4.15 dan 4.16 menjelasakan laju penurunan temperatur pada proses *discharging* dengan variasi 1,5 LPM dan 2,5 LPM. Nilai laju penurunan temperatur pada variasi 2,5 LPM lebih besar dibandingkan pada variasi 1,5 LPM. Nilai penurunan temperatur pada pengujian eksperimen lebih besar dibandingkan pada pengujian secara simulasi hal ini disebabkan temperatur *inlet* pada eksperimen yang tidak konstan, adanya *tubeshee*t dan kabel termokopel yang berada didalam tangki, sehingga dapat menghambat arah aliran keseluruh bagian tangki.

4.6. Pelelahan dan Pembekuan Campuran PCM

Hasil pelelahan dan pembekuan pada Campuran PCM dengan serbuk tembaga disajikan dalam bentuk *contour*. *Contour* yang diambil meliputi *contour* keseluruhan campuran PCM dan *contour* pipa no.27 yang diambil pada arah aksial dan arah radial.

Pada gambar 4.12 menyajikan *contour* pelelehan keseluruhan campuran PCM pada dua variasi debit air (0,6 LPM dan 0,9 LPM). Dari *contour* tersebut terlihat bahwa pelelehan awal terjadi pada campuran PCM yang dekat dengan posisi inlet. Pelelelan awal pada 0,6 LPM terjadi pada waktu 2,16 jam dan variasi 0,9 LPM terjadi pada waktu 1,85 jam. Sedangkan pelelehan sempurna pada variasi 0,6 LPM terjadi pada waktu 2,96 jam.

Gambar 4.12. *Contour Liquid Fraction* pada Proses *Charging* (A) Arah Aksial (B) Arah Radial

Pada gambar 4.13 menunjukan *contour liquid fraction* pada campuran PCM no. 27 pada arah aksial dan arah radial. Saat campuran PCM berada di fase solid terjadi perpindahan panas secara konduksi, namun setelah campuran PCM mulai mencair terjadi perpindahan panas secara konduksi. Hal ini yang mengakibatkan pelehan campuran PCM tidak simetri.

Gambar 4.13. Contour Liquid Fraction Campuran PCM No. 27 pada Proses Charging (a) Arah Aksial (b) Arah Radial

Pada gambar 4.14 menunjukan *contour* pembekuan pada proses *discharging* secara kontinyu. Pada kondisi awal temperatur campuran PCM sebesar 70 °C dan temperatur inlet sebesar 27 °C. Dari *contour* tersebut terlihat pembekuan awal terjadi pada campuran PCM yang berada dengan posisi inlet. Pembekuan awal pada debit 1,5 LPM dan 2,5 LPM terjadi pada detik ke-15. Sedangkan pembekuan sempurna pada variasi debit 1,5 terjadi pada waktu 0,46 jam dan pada variasi debit 2,5 LPM terjadi pembekuan sempurna pada waktu 0,39 jam. Pada variasi debit 2,5 LPM lebih cepat mengalami pembekuan dari variasi debit 1,5 LPM.

Gambar 4.14. Contour Liquid Fraction pada Proses Discharging (a) Arah Aksial(b) Arah Radial

Pada gambar 4.15 menunjukan *contour liquid fraction* pada campuran PCM no. 27 pada arah aksial dan radial. Proses pembekuan lebih cepat dibandingkan proses pelelehan disebabkan oleh kondisi temperatur awal yang dekat dengan titik bekunya. Pada detik ke- 125 pada variasi debit 1,5 LPM nilai *liquid fraction* pada arah radial sebesar 0,889 sedangkan pada variasi debit 2,5 LPM nilai *liquid farction* pada waktu yang sama sebesar 0,555 bagian yang mengalami pembekuan terlebih dahulu berada dibagian bawah. Hal ini disebabkan karena adanya perbedaan densitas yang mengakibatkan *driving force*.

Gambar 4.15. Contour Liquid Fraction Campuran PCM No. 27 pada Proses Discharging (a) Arah Aksial (b) Arah Radial