BABI

PENDAHULUAN

A. Latar Belakang

Hasil Riset Kesehatan Dasar (Rikesdas) Nasional tahun 2013 menunjukkan prevalensi maloklusi di Indonesia masih sangat tinggi sebesar 80%. Maloklusi dapat menyebabkan rusaknya jaringan periodontal, terganggunya fungsi fonetik, pengunyahan, dan estetik (Devi, 2010). Kondisi tersebut merupakan dasar dilakukannya perawatan orthodontik, yang bertujuan untuk mengubah posisi dan oklusi dari gigi- geligi sehingga diperoleh hubungan harmonis antara posisi gigi, lengkung gigi, bentuk muka dan kepala untuk mencapai hasil yang optimum dari segi fungsional dan estetis (Foster, 1993).

Hal tersebut selaras dengan Hadist dari Ibnu Mas'ud, bahwa Rasulullah bersabda:

"Sesungguhnya Allah tidaklah menurunkan sebuah penyakit melainkan menurunkan pula obatnya. Obat itu diketahui oleh orang yang bias mengetahuinya dan tidak diketahui oleh orang yang tidak bisa mengetahuinya." (HR. Ahmad, Ibnu Majah, dan Al-Hakim).

Alat ortodontik untuk perawatan maloklusi gigi dibagi menjadi tiga yaitu lepasan, fungsional dan cekat. Alat cekat mempunyai tiga komponen penting berupa bracket, kawat busur dan penunjang (Quintao dan Brunharo,

2009). Pemilihan kawat busur orthodontik sangat mempengaruhi keberhasilan perawatan. Kawat ortodontik yang terbuat dari logam seperti *Stainless steel* (SS), *Nickel–Titanium* (Ni Ti), *Nickel–Titanium–Copper* (Ni TiCu) dan *Titanium– Molybdenum* (TMA) memiliki sifat mekanis berbeda untuk aplikasi klinis yang berbeda (Alfonso, *et al.*, 2013).

Nikel-titanium (Ni Ti) mengandung 55% Nikel dan 45% Titanium dengan kualitas mekanikal yang tinggi, superelastis dan kemampuan kembali ke posisi semula (shape memory) banyak digunakan pada tahap awal orthodontik untuk proses *leveling* dan *aligning* (Huang, 2005; Neves, *et al.*, 2016). Perawatan ortodontik tahap awal membutuhkan kawat yang memiliki kemampuan defleksi yang maksimum untuk mendapatkan koreksi awal dari gigi-geligi dengan cara mengurangi penyimpangan posisi gigi dalam bidang horizontal (Srinath, *et al.*, 2012). Defleksi yang maksimum merupakan salah satu sifat mekanik dari kawat Ni-Ti (Srinath, *et al.*, 2012). Defleksi kawat adalah kemampuan kawat untuk mentransmisikan gaya yang berkelanjutan untuk menggerakkan gigi (Higa, *et al.*, 2016).

Penggunaan kawat dalam rongga mulut berkontak langsung dengan saliva dan diaplikasikan dalam waktu yang lama (Huang, 2003). Pergantian kawat Ni Ti dalam rongga mulut dapat dilakukan setiap tiga, empat, atau enam minggu (Proffit, *et al.*, 2007). Hasil penelitian (Barret, *et al.*, 1993) kawat busur dari stainless steel dan nikel titanium yang direndam dalam saliva buatan dalam temperature 37° C selama empat minggu menunjukkan bahwa terjadi pelepasan nikel dan kromium dalam saliva yang meningkat

dalam dua minggu pertama. Pelepasan ion logam yang berperan menentukan kualitas kawat mengakibatkan penurunan gaya defleksi pada kawat seperti besi, nikel, kromium, molibdenum dan titanium (Hasyim, *et al.*, 2016). Interaksi antara ion Cl⁻ dari ion anorganik saliva dan ion oksida pada permukaan kawat menyebabkan kawat mudah melepas ion-ion logam (Brantley, 2001). Pelepasan ion-ion logam dapat terjadi karena aktivitas sehari-hari seperti mengunyah makanan atau menggosok gigi (Mystkowska, *et al.*, 2018).

Lama penggunaan kawat dan besarnya defleksi perlu diperhatikan, sebab pengaplikasian kawat dalam jangka waktu yang lama dengan gaya defleksi yang terlalu besar dapat menimbulkan deformasi permanen (Muraviev, et al., 2001). Perubahan defleksi pada kawat busur Ni Ti dapat diukur dengan uji three point bending menggunakan alat universal testing machine (Aghili, et al., 2015).

B. Rumusan Masalah

Berdasarkan uraian latar belakang di atas maka dapat dirumuskan permasalahan: apakah terdapat perbedaan pengaruh lama perendaman kawat busur Ni Ti dalam saliva artifisial pH normal terhadap perubahan defleksi kawat pada minggu ke tiga, empat, dan enam?

C. Tujuan penelitian

Tujuan dari penelitian ini adalah untuk mengetahui pengaruh lama perendaman kawat busur Ni Ti dalam saliva artifisial pH normal terhadap defleksi kawat pada minggu ke tiga, empat, dan enam.

D. Manfaat penelitian

1. Bagi peneliti

Penelitian ini diharapkan dapat menambah ilmu pengetahuan dan pengalaman yang berkaitan dengan penelitian dan penulisan karya tulis ilmiah terutama yang berkaitan dengan bidang kesehatan.

2. Bagi ilmu pengetahuan

Menjadi dasar dan informasi untuk penelitian selanjutnya mengenai perbedaan defleksi kawat Ni Ti serta menambah khasanah ilmu kedokteran gigi terutama pada bidang *Orthodontic Dentistry*.

3. Bagi masyarakat

Memberikan informasi kawat yang digunakan sebagai alternatif pilihan pada awal penggunaan ortodontik yang memiliki defleksi tinggi sehingga dapat digunakan oleh masyarakat luas.

E. Keaslian Penelitian

No	Judul Penelitian dan Penulis	Variabel	Desain	Perbedaan	Persamaan	Hasil
			Penelitian			
1.	Pengaruh Perendaman Kawat Nikel-	-Nikel	Cross-	-Variabel	-Jenis	Nilai p> 0,05 sehingga
	Titanium Termal Ortodonti dalam	Titanium	Sectional	-Perlakuan	Penelitian	perbedaan hasil uji
	Minuman Teh Kemasan terhadap	termal			-Metode	defleksi antar
	Gaya Defleksi Kawat (The Effect of	-Defleksi			-Alat uji	kelompok kontrol dan
	Immersion Thermal Nickel-Titanium					perlakuan tidak
	Kawat busur in The Bottled Tea					signifikan sehingga
	Drinks to The Kawat busur Force					disimpulkan minuman
	Deflection) (Hasyim dkk., 2016)					teh kemasan dapat
						mempengaruhi gaya
						defleksi kawat Ni Ti
						termal ortodontik

2.	Comparative analysis of	-Rectangular	Cross-	-Jenis Kawat	-Jenis	(P < 0,05% =95%;
	load/deflection ratios of conventional	Ni Ti	Sectional	-Alat Uji	Penelitian	P < 0,01% =99%; P <
	and heat-activated rectangular Ni Ti	-Defleksi		-Merk Kawat		0,001% =99.9%)
	wires					Morelli dan 3M
	(Miguel dkk., 2012)					Unitek memiliki
						0,1% perbedaan
						signifikan pada 1 mm
						- 2 mm deflecksi.
3.	Load deflection characteristics and	-Kawat busur	Cross-	-Jenis Kawat	- Defleksi	Kawat Biostarter
	force level of nickel titanium iNi Tial	Ni Ti	Sectional	- Perlakuan bahan	-Ni Ti	memiliki defleksi
	kawat busurs (Lombardo dkk., 2012)	-Defleksi		uji	Konvensional	paling tinggi