BAB III

METODE PENELITIAN

3.1 Alat Penelitian

Penelitian ini sangat memerlukan beberapa perangkat lunak yaitu hardware dan software.

3.1.1 Hardware (perangkat keras)

Hardware yang digunakan untuk menjalankan software, spesifikasi hardware yang ditunjukan pada tabel 3.1.

No.	Jenis Hardware	Perangkat Komputasi
1	Processor	Intel Core i5-7400T 2.4 GHz
2	Motherboard	Lenovo
3	RAM	4GB DDR4
4.	Graphic Card	Intel HD Graphics
5.	Storage	1 TB HDD SATA 5400 rpm

Tabel 3. 1. Spesifikasi hardware (perangkat keras)

3.1.2 Software (perangkat lunak)

Software yang digunakan adalah software ANSYS Fluent 18.0 untuk simulasi CFD Logo ANSYS 18.0 di tunjukan pada gambar 3.1.

Gambar 3. 1. Logo ANSYS 18.0

3.2 Skema Penelitian Eksperimen

Skema penelitian eksperimen ditunjukan pada Gambar 3.2 Pada proses charging valve yang dibuka yaitu nomor 6 dan 12 dan yang ditutup nomor 1, 13, dan 7 Sedangkan pada proses *discharging* secara kontinyu *valve* yang dibuka yaitu nomor 1, 13 dan 7 dan yang ditutup nomor 6 dan 12.

Gambar 3. 2. Skema Penelitian Eksperimen

Keterangan nomor :

- 1. Keran Air
- 2. Tangki TES
- 3. Lubang pipa masuknya termokopel
- 4. Pipa tembaga berisi campuran PCM
- 5. Lubang pipa masuknya termokopel
- 6. Valve keluarnya air dari tangki ke pompa
- 7. Valve keluarnya air dari tangki ke bak
- 8. Bak penampung air
- 9. Pompa
- 10. Rotameter air 1 LPM untuk charging
- 11. Heater
- 12. Valve keluarnya air dari heater ke tangki
- 13. Valve keluarnya air dari keran air ke tangki
- 14. Rotameter air 3 LPM untuk discharging secara kontinyu

3.3 Prosedur Penelitian

3.3.1. Variasi Penelitian

Variasi penelitian yang digunakan adalah variasi debit air masuk. *Charging* dengan varisi debit air masuk yaitu 0,6 LPM dan 0,9 LPM dengan pemanas *fluks* kalor 227 Volt, sedangkan untuk *discharging* variasi debit air masuk yaitu 1,5 LPM dan 2,5 LPM.

3.3.2. Diagram Alir Penelitian

Pada penelitian ini menggunakan kerangka besar diagram alir sebagai berikut ini yang ditunjukkan pada Gambar 3.3.

Gambar 3.3. Diagram Alir Penelitian

Gambar 3.3. Diagram Alir Penelitian (lanjutan)

Gambar 3. 3. Diagram alir Penelitian (lanjutan)

3.3.3. Langkah Penelitian

Pada penelitian ini diawali dengan studi literatur dengan mencari referensi teori dan jurnal, dilakukan untuk melihat *roadmap* dan perkembangan yang dilakukan oleh penelitian sebelumnya. Selanjutnya melakukan proses simulasi CFD, pada dasarnya dibagi menjadi 3 proses yaitu *Pre-Processing, Processing,* dan *Post-Processing.*

3.3.3.1. Pre-Processing

Pre-Processing merupakan tahapan awal yang dilakukan sebelum memulai simulasi. Berikut beberapa langkah yang ada pada proses *pre-processing* :

A. Pembuatan geometri

Bentuk geometri pada penelitian ini berbentuk silinder yang di dalamnya terdapat 32 pipa tembaga yang berisi PCM. Pada Gambar 3.4 bentuk geometri dan dimensinya dan 3.5 letak posisi termokopel menunjukkan. Aplikasi yang digunakan untuk membuat geometri menggunakan *design modeler* yang disediakan olah *software* ANSYS Fluent 18.0 Hasil pembuatan geometri bisa dilihat gambar 3.6 dan gambar 3.7.

A-A (1:5)

Gambar 3. 4. Dimensi geometri

Gambar 3. 5. Posisi Letak Termokopel

Gambar 3. 6. Hasil Geometri Arah Aksil

Gambar 3. 7. Hasil Geometri Arah Isometric

B. Proses Meshing

Proses meshing yaitu membagi domain fluida menjadi volume-volume kecil agar dapat dianalisis oleh komputer sesuai dengan *metode finite volume methoh* (FVM). Tujuan dari *meshing* agar perhitungan yang akan dilakukan mendapatkan ketelitian dan akurasi yang baik. Semakin kecil ukuran *mesh* maka hasil yang didapatkan semakin baik, akan tetapi jumlah *mesh* juga akan semakin banyak sehingga proses komputasi membutuhkan waktu yang lebih lama. Pembuatan *meshing* dapat dilakukan menggunakan *software* yang disediakan oleh ANSYS Fluent atau menggunakan *software* lain seperti *software* Gamit. Jenis *mesh* yang digunakan pada HTF yaitu *tetrahedran* sedangkan pada pipa tembaga dan PCM yaitu *Hexahedran*. Hasil *meshing* dapat dilihat pada gambar 3.8.

skewness mes	sh metrics spe	ctrum			
Excellent	Very good	Good	Acceptable	Bad	Unacceptable
0-0.25	0.25-0.50	0.50-0.80	0.80-0.94	0.95-0.97	0.98-1.00
Unacceptable	Bad	Acceptable	Good	Very good	Excellent
0-0.001	0.001-0.14	0.15-0.20	0.20-0.69	0.70-0.95	0.95-1.00
	Cohermon 17	2015	1		21222

Gambar 3. 8. Rentang kualitas mesh

Kategori	Nilai
Skewness	Average :0,22065
Orthogonal	Average : 0,87725
Tipe	Tetra dan Heksa
Jumlah Elements	703061
Jumlah Nodes	262730

Tabel 3	2	Kualitas	mesh	nada	simu	lasi
raber 5.	∠.	I Xuamas	mesn	paua	Sinnu	asi

Pada Tabel 3.2. Menunjukan *skewness* yang didapat pada simulasi ini menunjukan angka 0,22065 maka membandingkan dengan Gambar 3.8. Didapat hasil yang *excellent* sedangkan pada *orthogonal quality* menunjukan angka 0,87725 maka didapat hasil *very good*. Setelah pengecekan kualitas *mesh* langkah selanjutnya menamai pada setiap bagian *mesh* untuk mendefinisikan nama pada setiap bagian *mesh* seperti *inlet*, *outlet*, *interface* dan *wall* seperti Gambar 3.9.

Gambar 3. 9. Pemberian nama pada setiap part

3.2.3.2. Processing

Tahap *processing* merupakan tahap kedua dalam proses simulasi ANSYS Fluent. Tahap ini dilakukan *set-up* ANSYS Fluent sesuai skenario eksperimen yang dilakukan. Secara umum konfigurasi Fluent meliputi :

1. Fluent launcher 18.0

Fluent launcher merupakan skema awal penentuan simulasi. Proses ini menggunakan bentuk tiga dimensi, pada kolom *options* menggunakan *double precision* dan *procesing option* menggunakan *paraller*. Pada simulasi ini akan menggunakan empat *core* Gambar 3.10.

Gambar 3. 10. Tampilan Fluent launcher 18.0

2. General

Pada tahap general terdapat dua *type solver* yaitu *pressure-based* dan *density-based* dan dua *time solver* yaitu *steady* dan *transient*. Pada tahap ini *type sorver* yang digunakan *type pressure-bared* dikarnakan dapat digunakan pada aliran yang luas mulai dari aliran dengan kecepatan rendah hingga aliran kecepatan tinggi. Sedangkan untuk *time solver* menggunakan *transient* karna variable pada simulasi tergantung oleh waktu. serta faktor gravitasi juga diaktifkan pada titik kordinat (-y) dapat dilihat pada Gambar 3.11.

Tea	Task Page	×
 Stetus Stetus Modele Status Kateriah Cat Zave Conditions Exandery Conditions Exandery Conditions Mach Interface Dynemic Mesh Roberna Values Solution Mathods Controls Export Definitions Export Definitions Cell Registers 	General Mesh ScaleCheck Report Q Deptys Solver Type Velocity Formula @ Pressure-Baled @ Energy-Based Denety-Based Benety-Benety-Benety-Based Benety-Benety	uality ton
Point Calculation Activities Point Calculation Point Point	Covity Units Gravitational Acceleration # X (m/s2) 0 # Y (m/s2) 0.011 # Z (m/s2) 0 #	

Gambar 3. 11. Panel general

3. Penentuan models

Pada *software* ANSYS Fluent dapat dilakukan simulasi model *charging* dan *discharging* dengan cara mengaktifkan *solidification & melting*. *Viscous* yang dipilih yaitu model *K-epsilon* karena simulasi ini mengasumsikan aliran turbulen dan model *K-epsilon* memliki kesetabilan pada alirannya serta ekonomis dari sisi komputasi dan akurasi yang memadai untuk berbagai jenis aliran turbulen. Pada Gambar 3.12. ditunjukan panel tampilan *models*.

Gambar 3. 12. Panel tampilan models

4. Parameter Material

Penilitian simulasi ini menggunakan air sebagai *heat transfer fluid* (HTF), pipa PCM terbuat dari tembaga dan *paraffin wax* sebagai PCM. Material tersebut perlu didefinisikan sesuai dengan propertinya agar hasil perhitungan pada simulasi menjadi lebih akurat. Properti *material* dapat dilihat pada gambar 3.13.

Gambar 3. 13. Panel properti material

Properti pada material HTF dan pipa tembaga dapat diambil dari property yang disediakan oleh ANSYS Fluent dapat dilihat pada Gambar 3.14. Jika terdapat material yang menggunakan UDF, maka fungsi UDF perlu diinterpretasikan terlebih dahulu. Di dalam penelitian ini fungsi densitas didefinisikan menggunakan UDF dengan persamaan 2.11. Pembuatan UDF sendiri menggunakan *software* ATOM dengan bahas pemrograman C.

Create/Edit Materials		
Name		Material Type
pcm		fluid
Chemical Formula		Fluent Fluid Materials
		pcm
		Mixture
		none
Properties		
Density (kg/m3)	user-defined	▼ Edit
	density_udf	
Cp (Specific Heat) (j/kg-k)	constant	▼ Edit
	1839	
Thermal Conductivity (w/m-k) constant		▼ Edit
	40.28	
Viscosity (kg/m-s)	constant	▼ Edit
	0.100653	
Pure Solvent Melting Heat (j/kg)	constant	▼ Edit
	127660	
Solidus Temperature (k)	constant	▼ Edit
	329.65	
Liquidus Temperature (k)	constant	▼ Edit
	334.52	
Speed of Sound (m/s)	none	▼ Edit

Gambar 3. 14. Properti Phase Change Material (PCM)

Untuk memasukkan parameter PCM perlu merujuk pada properti yang telah diukur. Pada Tabel 3.3. menjelaskan klasifikasi jenis zona pada ANSYS Fluent 18.0 dan pada Tabel 3.4. menunjukkan nilai properti PCM. Data titik beku dan titik leleh diambil dari hasil pengujian DSC dengan material paraffin wax yang dapat dilihat pada gambar 3.15. Setelah mendapatkan data pada Tabel 3.3. dan Tabel 3.4. Maka data tersebut diisi pada panel properti PCM ditunjukan Pada gambar 3.16.

Material	Jenis zona
Copper	Solid
Water-liquid	Fluid
РСМ	Fluid

Tabel 3. 3. Klasifikasi jenis zona

Pententuan nilai sifat-sifat fisik dan termal dari PCM didapatkan dari hasil pengujian dan perhitungan yang telah dilakukan. Nilai properti yang didapatkan dari pengujian adalah sebagai berikut :

a. Densitas fase padat dan cair

Nilai densitas fase padat dan cair menggunakan nilai densitas RT-60. Dipilihnya RT-60 karena pada pengujian DSC didapatkan hasil melting pointnya 60⁰.

b. Viskositas

Pengujian viskositas dilakukan dengan cara, menjatuhkan bola ke dalam gelas ukur yang berisi PCM dalam fase cair. Sebelumnya, bola diberi tali sepanjang tinggi gelas ukur dan diujung tali diberikan batang yang berfungsi sebagai penahan. Saat menjatuhkan bola, catatlah waktu dengan cara merekamnya lewat *handphone*. Kemudian dilakukan perhitungan dengan persamaan 3.1.

- μ = Viskositas (Pa.s)
- ρ_s = Densitas bola (g/cm³)
- ρ_l = Densitas campuran PCM (g/m³)
- g = Percepatan gravitasi (m/s²)
- r = Jari-jari bola (m)
- v = Kecepatan bola (m/s)

Diketahui :

 $\rho_s = 7,46 \text{ g/cm}^3$ r = 0,004 m $\rho_l = 0,77 \text{ g/cm}^3$ v = 1,5 m/s $g = 9,81 \text{ m/s}^2$

Persamaan 3.2 dapat digunakan untuk menghitung nilai viskositas *paraffin wax* yakni :

$$\mu = \frac{2(7,46 \ g/cm^3 - 0,77 \ g/cm^3)9,81 \ m/s^2 \cdot 0,004 \ m}{9 \cdot 1,5 \ m/s}$$
$$= 0,077321844 \ \text{Pa.S}$$

c. Kalor Lebur

Nilai kalor lebur didapatkan dari pengujian *Differential Scanning Calorimetry* (DSC). Hasil pengujian DSC dapat dilihat pada lampiran.

d. Titik Beku dan Titik Leleh

Nilai titik beku dan titik leleh didapatkan dari nilai *onset* pada pengujian DSC. Sedangkan pada titik leleh diperoleh dari nilai *peak* pada pengujian DSC.

Kriteria	Satuan	Nilai
Densitas fase padat *T = 28 °C	kg/m ³	865
Densitas fase cair *T = 68 °C	kg/m ³	810,8
Konduktivitas termal	W/m.K	0,2
Kalor lebur	J/kg	128640
Viskositas	kg/m.s	0,077322
Titik beku	°C	57.08
Titik leleh	°C	62,08
Ср	J/kg.K	2000

Tabel 3. 4. Nilai properti PCM

RDP/5.10.2/LPPT Rev 0

LAMPIRAN HASIL ANALISIS 1. 0%

[File	nformation]	[Temp Program]		
	693 0% 2019-06-21 09-			
File Name:	22 Ch1.tad	Start Temp [°C]	30	
Sample Name:	0%	Temp Rate [°C/min]	10	
Lot No:	693	Hold Temp [°C]	300	
Acquisition Date	2019/06/21	Hold Time [min]	0	
Acquisition Time	09:22:30(+0700)	Gas	Nitrogen	
Detector:	DSC-60			
Serial No:	C30935200137SA			
Operator:	Heri			
Atmosphere:	Nitrogen			
Flow Rate:	30[ml/min]			
Cell:	Aluminum Seal			
Sample Weight	5.400[mg]			
Molecular Weight:	0.00			

[Analysis Res	sult]
[DSC Peak]	1
Peak	
[°C]	62.23
Onset	
[°C]	57.08
Endset	
[°C]	67.10
Heat	
mJ	-694.68
J/g	-128.64
Height	
mW	-16.83
mW/mg	-3.12

Gambar 3. 15. Hasil uji DSC parafin wax

Tree	Task Page	Create/Edit Materials				×
✓ Setup General R [®] Models	Materials Materials	Name		Material Type		
A Materials Gell Zone Conditions	eteriols Fluid Chemical Formula		Fluent Fluid Materials			
J‡ Boundary Conditions J‡ Mesh Interfaces Dynamic Mesh Reference Values	Solid copper aluminum	Properties		Moture none		
Y Colution	1	Density (kg/m3)	user-defined	•	Edit	^
S Methods			density_udf			
Controls Report Definitions		Cp (Specific Heat) (j/kg-k)	constant	•	Edit	
> 🖸 Monitors			1839			1
Cell Registers		Thermal Conductivity (w/m-k)	constant		Edit	
Calculation Activities			40.28			1
🚽 対 Run Calculation		Viscosity (kg/m-s)	constant	•	Edit	
✓			0.100653			1
> C Plots		Pure Solvent Melting Heat (j/kg)	constant		Edit	
> 🛄 Animations			127660			F
Parameters & Customization		Solidus Temperature (k)	constant	•	Edit	
			329.65			1
		Liquidus Temperature (k)	constant	•	Edit	
			334.52			1
		Speed of Sound (m/s)	none	•	Edt	
						~

Gambar 3. 16. Panel properti PCM

5. Penentuan cell zone conditions

Pada tahap ini mendifinisikan bagian-bagian yang akan digunakan pada masing-masing bagian (*zone*) akan disusuaikan berdasarkan jenis *material* yang digunakan. Pada simulasi terdapat 3 jenis *zone* yaitu HTF, PCM dan pipa tembaga, panel tampilan *zona cell* dapat dilihat pada Gambar 3.17.

Gambar 3. 17. Cell zone conditions

6. Penentuan boundary conditions

Boundary conditions berfungsi untuk menentukan kondisi batas pada tiap zona. Pada tahap ini berguna untuk menentukan debit air dan temperatur air pada *inlet*. Pada kondisi inlet menggunakan *mass flow inlet* dan *outlet* menggunakan *pressure outlet* sebesar 1 atm. Pada *inlet* menggunakan debit aliran air yang besarnya dapat dilihat pada tabel 4.4. Penggunaan *profile* dipakai untuk data temperature *inlet* pada proses charging dan debit air pada proses discharging secara bertahap. Temperature *inlet* menggunakan profil yang dibuat menggunakan notepad dengan format PROF lalu di *import* ke dalam ANSYS Fluent sehingga ANSYS Fluent akan mendektesi fungsi dari profil tersebut. Data yang digunakan pada temperature inlet berasal dari pengujian eksperimen Gambar 3.18. menunjukkan panel *boundary condition* pada *inlet*.

one Name									
nlet									
Momentum	Thermal	Radiation	Species	DPM	Multipl	nase	Potential	UDS	
	Re	ference Frame	Absolute						•
Mass	Flow Specifi	cation Method	Mass Flow	Rate					•
	Mass Fl	ow Rate (kg/s) 0.01295			cons	tant		•
Supersonic/Init	ial Gauge Pr	essure (pascal) 0			cons	tant		•
Dire	ction Specifi	cation Method	Normal to	Boundar	у				•
	Turbul	ence							
	Specific	ation Method	Intensity a	nd Viscos	sity Ratio				•
			Turbule	ent Inter	isity (%)	5			P
			Turbule	nt Viscos	sity Ratio	10			P

Gambar 3. 18. Panel boundary condition

Mass Flow Rate Didapat dari persamaan :

1. Proses Charging

$$Q_{aktual} = 0,9211 \times Q_{rotameter} - 51,725.....(3.2)$$

 $Q_{aktual} = 0,9211 \times 900 \ mLPM - 51,725$
 $= 777.265 \ mLPM$

$$\dot{m} = \frac{LPM \times \rho_{air}}{60 \times 1000}....(3.3)$$

$$\dot{m} = \frac{0.777265LPM \times 1000}{60 \times 1000} = 0.01295 \text{ kg/s}$$

2. Proses Discharging

$$Q_{aktual} = 1,1526 \times Q_{rotameter} + 0,0552.....(3.4)$$

$$Q_{aktual} = 1,1526 \times 1,5 LPM + 0,0552$$

$$= 1,7841 LPM$$

$$\dot{m} = \frac{LPM \times \rho_{air}}{60 \times 1000}....(3.5)$$

$$\dot{m} = \frac{1,7841 LPM \times 1000}{60 \times 1000} = 0,029735 \text{ kg/s}$$

$$Q_{aktual} = 1,1526 \times Q_{rotameter} + 0,0552.....(3.6)$$

$$Q_{aktual} = 1,1526 \times 2,5 LPM + 0,0552$$

$$= 2,9367 LPM$$

$$\dot{m} = \frac{LPM \times \rho_{air}}{60 \times 1000}(3.7)$$

$$\dot{m} = \frac{2,9367 LPM \times 1000}{2,9367 LPM \times 1000} = 0.040045 \log 6$$

$$\dot{m} = \frac{2,9367 LPM \times 1000}{60 \times 1000} = 0,048945 \text{ kg/s}$$

Charging								
Laju Aliran	Kondisi Batas			Temperatur				
Massa (LPM)	ṁ (kg/s)	T inlet (K)	T outlet (K)	HTF (K)	Kapsul (K)	PCM (K)		
0,9	0,01295	Profil	Default	300	300	300		
Discharging								
1,5	0,029735	300	Default	343	343	343		
2,5	0,048945	300	Default	343	343	343		

Profile debit aliran *discharging* secara kontinyu dengan jeda waktu 5 menit variasi 1,5 LPM

((massflowinlet transient 140 0)(time 300 301 600 601 900 901 1200 1201 1500 1501 1800 1801 2100 2101 2400 2401 2700 2701 3000 3001 3300 3301 3600 3601 3900 3901 4200 4201 4500 4501 4800 4801 5100 5101 5400 5401 5700 5701 6000 6001 6300 6301 6600 6601 6900 6901 7200 7201 7500 7501 7800 7801 8100 8101 8400 8401 8700 8701 9000 9001 9300 9301 9600 9601 9900 9901 10200 10201 10500 10501 10800 10801 11100 11101 11400 11401 11700 11701 12000 12001 12300 12301 12600 12601 12900 12901 13200 13201 13500 13501 13800 13801 14100 14101 14400 14401 14700 14701 15000 15001 15300 15301 15600 15601 15900 15901 16200 16201 16500 16501 16800 16801 17100 17101 17400 17401 17700 17701 18000 18001 18300 18301 18600 18601 18900 18901 19200 19201 19500 19501 19800 19801 20100 20101 20400 20401 20700 20701 21000 21001)(massflow 0.029735 0 0 0.029735 0.029735 0 0 0.029735 0.029735 0 0 0.029735 0.029735 0 0 0.029735 0.029735 0 0 0.029735 0.029735 0 0 0.029735 0 0.029735 0.029735 0 0 0.029735 0.029735 0 0 0.029735 0.029735 0 0 0.029735 0.029735 0 0 0.029735 0.029735 0 0 0.029735 0.029735 0 0 0.029735 0 0 0.029735 0 0 0.029735 0.029735 0 0 0.029735 0.029735 0 0 0.029735 0.029735 0 0 0.029735 0.029735 0 0 0.029735 0.029735 0 0 0.029735 0.029735 0 0 0.029735 0 0 0.029735 0 0 0.029735 0.029735 0 0 0.029735 0.029735 0 0 0.029735 0.029735 0 0 0.029735 $0.029735\ 0\ 0\ 0.029735\ 0.029735\ 0\ 0\ 0.029735\ 0\ 0\ 0.029735\ 0\ 0\ 0.029735\ 0$ 0 0.029735 0.029735 0 0 0.029735 0.029735 0 0 0.029735 0.029735 0 0 0.029735 0.029735 0 0 0.029735 0.029735 0 0))

Profile dibuat dinotepad dengan *extension* .prof untuk input yang dimasukan *massflowinlet transient* adalah judul dari program bila diganti dengan nama lain tidak akan berefek pada simulasi. Selanjutnya 140 adalah jumlah data waktu yang akan dijalankan. *Time* disini diatur 300 karena setiap 5 menit sekali mati dan selanjutnya. Massflow adalah laju aliran karena setiap 5 menit mati maka laju aliran dituliskan setiap 5 menit sekali sesuai time diatas.

charging		Discharging		
Debit	Massa	Debit	Massa	
(mLPM)	(kg/s)	(LPM)	(kg/s)	
600	0,00835	1,5	0,029735	
900	0,01295	2,5	0,048945	

Tabel 3. 5. Parameter inlet pada mass flow inlet

7. Penentuan mesh interface

Mesh interface yaitu untuk menyambung antar *zone* dengan *zone* lainnya. Penelitian ini menggunakan *interface mapped* dan *coupled* dikarenakan adanya gap dan *overlap* antara *zone*. Panel *interface* dapat dilihat pada Gambar 3.19.

ak raye	Create/Edit Mesh Interfaces								0	5
lesh Interfaces	Mesh Interface	Interface Zone	s Side 1			Interface Zones Side 2				,
lesh Interfaces	interface-pd-1	interface-htf-d	ialam_1			interface-pipa-luar_1				
interface-pd-1		x [1/128]	F	= 🖘	Ŧ	[1/128]	=	₽	₽ ₩	
interface-pd-10	interface-pd-1	interface-htf-d	lalam_1		^	interface-pipa-luar_1			^	
interface-pd-12	interface-pd-10 interface-pd-11	interface-htf-d interface-htf-d	lalam_10 lalam_11		-	interface-pipa-luar_10 interface-pipa-luar_11				
interface-pd-14 interface-pd-15	interface-pd-12 interface-pd-13	v interface-htf-d	lalam_12 lalam_13		~	interface-pipa-luar_12 interface-pipa-luar_13			~	
interface-pd-16	Interface Options	Boundary Zone	is Side 1			Interface Wall Zones Side 1				
interface-pd-17	Periodic Boundary Condition	hterface-pd-1-s	ide1-wall-interfac	e-htf-dalarr	1_1	interface-pd-1-wall1-1-1				
interface-pd-18	Periodic Repeats	Boundary Zone	is Side 2			Interface Wall Zones Side 2				
interface-pd-19	Coupled Wall	interface-pd-1-	-side2-wall-interfa	ce-pipa-lua	<u>r_1</u>	interface-pd-1-wall2-1-1				
interface-pd-2 interface-pd-20	Matching					Interface Interior Zones			_	
interface-pd-22 interface-pd-23	Static									
interface-pd-24	Periodic Boundary Condition									v
interface-pd-25 interface-pd-26 interface-pd-27		Create Dele	te Draw List	Close	Н	eb				
interface-nd-28	1 Consti	an employ much	-		-		-	-		i

Gambar 3. 19. Panel mash interface

8. Methods

Pada penelitian ini menggunakan metode *SIMPLE* yang berada pada menu *methods*. *Metods* berfungsi untuk mentukan berbagai parameter apakah perhitungan pada simulasi berjalan dengan stabil sehingga dapat menghasilkan perhitungan akurat dapat dilihat dari gambar 3.20 panel methods.

Tree	Task Page	×
✓ 🍓 Setup	Solution Methods	
> 🗄 Models	Pressure-velocity Coupling	
> 🐻 Materials	Scheme	_
> Cell Zone Conditions	SIMPLE	•
J Boundary Conditions	Spatial Discretization	
> 🌠 Mesh Interfaces	Gradient	
Dynamic Mesh	Least Squares Cell Based	-
Reference Values	Pressure	
V Solution	PRESTO	•
6 Methods	Momentum	
Controls	OUTCK	-
Report Definitions		-
> 🖪 Monitors	Energy	
Cell Registers	QUICK	•
V _{t=0} Initialization		
> 🖾 Calculation Activities	Transient Formulation	
Run Calculation		
V 💓 Results		
> 😗 Graphics	Non-Iterative Time Advancement	
> C Plots	Frozen Flux Formulation	
> Animations	Pseudo Transient	
> i Reports	Warned Face Gradient Correction	
Parameters & Customization		
	High Order Term Relaxation Options	
	Default	

Gambar 3. 20. Panel methods

9. Report Difinitions

Report difinations digunakan untuk penentuan titik termokopel gambar 3.21, yang direport file dalam bentuk notepad, tetapi sebelum itu harus membuat point yang diisidengan titik kordinat yang telah ditentukan. Tahap ini bertujuan untuk memberikan data yang dibutuhkan seperti *temperature, pressure, velocity,* dan lainnya.

Gambar 3. 21. Panel report definition

10. Solution initialization

Solutions intializaton digunakan untuk inisialisasi bidang pada saat simulasi. Pada simulasi ini initializations methods mengguanakan hibryd initializations gambar 3.22 untuk menentukan nilai variable aliran dan menginisialisasi nilai bidang aliran. Selain itu digunakan untuk mengatur temperatur awal sebelum simulasi seperti gambar 3.23.

Gambar 3. 22. Panel solution initalizion

Potch	×
Reference Frame Value (k) Zo Relative to Cell Zone 300 Image: Constraint of the provided state of the	egisters to Patch
Patch Close Help	

Gambar 3. 23. Temperatur awal simulasi

11. Run calculation

Run calculation merupakan tahap akhir sebelum memulai *iterasi solver*. Pada penelitian ini menggunakan time solver dengan kondisi transient, oleh karna itu penentuan jumlah *time step* akan mempengaruhi kesuksesan dari simulasi numerik. Time step yang digunakan pada penelitian ini mengunakan 1 *time step* dan *number of time step* sebanyak 1000 dan *max iterations/time step* sebanyak 20 gambar 3.24. Proses interasi dilakukan hingga temperatur pada termokopel sudah mencapai 343 K untuk *charging* dan 308 K untuk *discharging*.

Gambar 3. 24. Panel tampilan calculation

3.2.3.3. Post-Processing

Post-Processing merupakan proses menampilkan hasil dari perhitungan yang sudah dilakukan. Pada tahap ini hasil dari simulasi dapat ditampilkan dalam bentuk *contour* dan animasi. Pada penelitian ini variable bebas yang dipakai adalah debit aliran dan *temperature inlet*, sementara variable terikatnya yaitu evolusi *temperature*, *contour* pelelehan dan pembekuan, dan waktu pelelehan dan pembekuan. Pada Gambar 3.25 merupakan hasil dari *contour* pelelehan.

Gambar 3. 25. Hasil contour pelelehan pada PCM.