AUDIT ENERGI PADA SISTEM PENERANGAN DAN SISTEM TATA UDARA DI GEDUNG E5 UNIVERSITAS MUHAMMADIYAH YOGYAKARTA

Triani Yulianingsih

Program Studi Teknik Elektro Universitas Muhammadiyah Yogyakarta

trianiyulia97@gmail.com

Abstrak-Audit analisis energi adalah terhadap konsumsi energi untuk mengidentifikasi besaran energi pada suatu gedung atau bangunan. Peralatan elektronik pada gedung E5 menggunakan teknologi hemat energi yaitu Air Conditionerl (AC), lampu TL LED, dan komponen lainnya. Beban-beban tersebut adalah beban jenis nonlinear vang dapat menimbulkan harmonisa pada sistem tenaga listrik. Pada sistem pencahayaan disetiap ruangan dilakukan pengukuran terhadap kuat pencahayaan dengan alat lux meter dan untuk pengukuran harmonisa menggunanakan alat Power Quality Analyzer di Sub Distribution Panel. Dari hasil pengukuran maka dapat diketahui bahwa kuat pencahayaan pada ruangan, THD tegangan, dan THD Arus melebihi standar yang berlaku. Penghematan energi pada gedung harus dilakukan usaha-usaha, seperti mengurangi sekecil mungkin pemakaian energi, memperbaiki kinerja peralatan dan penghematan energi pada gedung. Upaya yang dapat dilakukan untuk memperbaiki harmonisa adalah dengan memberikan rekomendasi berupa pemasangan Pasif Filter Single Tuned.

Kata Kunci—Audit Energi, Harmonisa, *Total Harmonic Distortion (THD)*.

I. PENDAHULUAN

Energi listrik merupakan kebutuhan pokok untuk mendukung semua aktivitas

manusia. Setiap tahun kebutuhan akan energi listrik semakin meningkat tidak sebanding dengan ketersediaan tenaga listrik karena keterbatasan *supply*. Pada tahun 2016 sampai dengan 2025 kebutuhan energi listrik diperkirakan akan meningkat dari 216,8 Terra Watt Hour (TWh) menjadi 457,0 TWh pada tahun 2025 (ESDM, 2016).

Pada tanggal 7 April 1982, Pemerintah Republik Indonesia mengeluarkan kebijakan melalui Presiden (Inpres) No. 9 tahun 1982 tentang Penghematan/Konservasi Energi. **Inpres** ini ditujukan untuk sistem pencahayaan gedung, AC, peralatan dan perlengkapan lain yang menggunakan listrik. Untuk menanggulangi krisis energi dan pemborosan pembayaran listrik salah satunya dapat dilakukan dengan menggunakan metode audit dan konservasi energi. Audit energi adalah analisis terhadap konsumsi energi untuk mengidentifikasi besaran energi pada suatu gedung atau bangunan.

Pada Peraturan Pemerintah Republik Indonesia nomor 70 tahun 2009 tentang konservasi energi. Menurut pasal 12 point 3 menyebutkan bahwa pemanfaatan energi oleh pengguna energi wajib melakukan konservasi energi melalui manajemen energi dengan cara melaksanakan audit energi secara berkala, melakukan rekomendasi hasil audit energi, dan melaporkan hasil

pelaksanaan konservasi energi setiap tahun kepada pihak yang berwenang.

II. LANDASAN TEORI

A. Audit Energi

Menurut peraturan No.14 tahun 2012, Menteri Energi dan Sumber Daya Mineral menjelaskan bahwa, audit energi merupakan rangkaian evaluasi akan pemanfaatan energi dan mengidentifikasi peluang penghematan energi serta memberikan rekomendasi untuk peningkatan efisiensi pada penggunaan sumber energi dalam rangka konservasi energi. Monitoring pemakaian energi secara merupakan keharusan mengetahui besarnya energi yang digunakan pada setiap bagian operasi selama selang waktu tertentu. Dengan demikian usahausaha penghematan dapat dilakukan (Abdurarachim, 2002).

B. Jenis-jenis Audit Energi

- Audit Energi Awal (AEA)

Audit energi awal adalah kegiatan pengumpulan data yang sudah tersedia, data energi listrik pada bangunan, dan data yang perlu adanya pengukuran. Audit energi awal menggunakan data-data sekunder sebagai dasar untuk melakukan evaluasi penggunaan energi secara umum dan cepat.

- Audit Energi Rinci (AER)

Audit energi rinci digunakan untuk mengetahui profil penggunaaan energi pada bagunan. Audit energi rinci menggunakan data-data primer, proses identifikasi lebih lanjut untuk menentukan besarnya peluang penghematan yang dapat dilakukan secarak spesifik. Pada audit energi rinci didapat kesimpulan dari besar peluang penghematan dan melakukan rekomendasi tindak lanjut secara spesifik.

C. Indeks Konsumsi Energi (IKE)

Intensitas Konsumsi Energi (IKE) adalah perbandingan konsumsi energi total dengan luas bangunan gedung. Konservasi energi yang dilakukan gedung dapat dilihat dari seberapa besar nilai IKE pada gedung tersebut. Satuan IKE adalah kWh/m² pertahun (Muslimin, 2018).

Untuk menghitung nilai Intensitas Konsumsi Energi (IKE) pada bangunan, dinyatakan dengan rumus yang sesuai dengan SNI 03-6196-2011 yaitu:

 $IKE = \frac{Konsumsi Energi (KW)}{Luas bangunan (m^2)}$

Dimana pemakaian energi listrik (kWh)

$$kWh = \frac{((nLampu \times PLampu) + (nSTU \times PSTU) \times t}{1000}$$

Dimana:

n STU : Jumlah system tata udara terpasang

P. lampu : Daya lampu terpasang (watt)

P. STU: Daya sistem tata udara (watt)

n. lampu : Jumlah lampu

t.: Waktu pemakaian

Terdapat nilai acuan IKE pada suatu gedung berdasarkan SNI-6197-2011, seperti dapat dilihat pada Tabel 1.

Tabel 1. Nilai standar IKE

Kriteria	IKE (kWh/m²/tahun)
Sangat Efisien	50,04 - 95,04
Efisien	95,04 - 144,96
Cukup Efisien	144,96 - 174,96
Sedikit Boros	174,96 - 230,04
Boros	230,04 - 285
Sangat Boros	285 - 450

Sumber: Badan Standardisasi Nasional, 2011.

D. Sistem Pencahayaan

Sistem pencahayaan suatu bangunan terbagi menjadi 2, yaitu :

- Sistem Pencahayaan Alami

Sistem pencahayaan alami berasal dari cahaya matahari dan harus dapat dimanfaatkan sebaik-baiknya untuk mengurangi energi listrik pada bangunan.

- Sistem Pencahayaan Buatan

Sistem pencahayaan buatan dihasilkan oleh sumber cahaya buatan manusia. Dalam sistem penerangan jumlah cahaya dihitung dengan menggunakan metode perhitungan lumen, perhitungan diperoleh dari intensitas kuat pencahayaan pada bidang kerja ruangan secara umum (SNI 03-6575-2001).

Pada SNI 03-6575-2001 tingkat pencahayaan minimal pada ruangan lembaga pendidikan yang direkomendasikan, dapat dilihat pada Tabel 2.

Tabel 2. Tingkat pencahayaan ruangan

Fungsi Ruangan	Tingkat Pencahayaan (Lux)
Ruang kelas	350
Perpustakaan	300
Ruang Laboratorium	500
Ruang guru	300
Ruang gambar	750
Kantin	200
Ruang Komputer	500
Toilet	200

Sumber: SNI 03-6575-2001

Pada SNI-03-6575-2001, nilai acuan daya pencahayaan maksimal pada ruangan, seperti dapat dilihat pada Tabel 3.

Tabel 3. daya pencahayaan maksimum

Fungsi Ruangan	Daya pencahyaan maksimum (W/m²)
Ruang kelas	15
Perpustakaan	11
Ruang Komputer	12
Ruang guru	12
Ruang gambar	20
Kantin	8

Sumber: SNI 03-6575-2001.

Perhitungan untuk mengetahui jumlah lampu yang dibutuhkan adalah sebagai berikut:

$$N = \frac{E \, x \, A}{Kp \, x \, Kd \, x \, F}$$

Dimana:

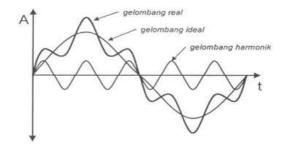
N = Jumlah lampu yang akan digunakan

E = Nilai acuan intensitas pencahayaan (*Lux*)

 $A = Luas ruangan (m^2)$

Kp = Koefisien Penggunaan dengan nilai(0,7)

Kd = Koefisien Defresiasi dengan nilai (0,8)


F = Nilai lumen

E. Sistem Tata Udara

Sistem tata udara adalah keseluruhan sistem yang mengkondisikan udara di dalam gedung, mengkondisikan gedung dengan mengatur kondisi temperature, kelembaban, dan kebersihan sehingga diperoleh kondisi ruangan yang nyaman.

F. Harmonisa

Harmonisa adalah gangguan frekuensi. Gangguan pada harmonisa karena adanya perubahan bentuk gelombang, dari gelombang tegangan dan gelombang arus sehingga akan mengganggu sistem distribusi listrik bahkan kualitas daya.

Gambar 1. Bentuk Gelombang Harmonisa

Total Distorsi Harmonik (THD) adalah rasio nilai rms dari komponen harmonisa dengan nilai rms dari komponen dasar. Nilai THD dijadikan acuan untuk batasan arus atau tegangan harmonik pada sistem tenaga listrik yang masih dapat ditoleransi oleh sistem. Penyebab THD adalah beban non-linier, besarnya arus tak seimbang dengan besarnya tegangan.

Pada standar IEEE 519-1992 terdapat acuan nilai standar THD untuk tegangan, seperti dapat dilihat pada Tabel 4.

Tabel 4. Standar THD Tegangan

	Individual	Total
Voltage	Component	Voltage
at PCC	Voltage	Distortion
	Distortion	$(THDV_f)$
V ≤ 69 KV	3.00 %	5.00 %
69 KV ≤ V ≤ 161 KV	1.50 %	2.50 %
V ≤ 161 KV	1.00 %	1.50 %

Sumber: Duffey,1989.

Pada standar IEEE 519-1992 terdapat acuan nilai standar THD untuk arus, seperti dapat dilihat pada Tabel 5.

Tabel 5. Standar THD Arus

MAXIMUM HARMONIC CURRENT DISTORTION IN % OF FUNDAMENTAL						
Harmonic Order (Odd Harmonic)						
I_{SC}/I_{L1}	$ \begin{array}{ c c c c c c } \hline & 11 & 17 & 23 & 35 \\ \leq h & \leq h & \leq h & \leq \\ \leq & \leq & \leq & h & (\%) \\ \hline \end{array} $					
< 20	4.0	2.0	1.5	0.6	0.3	5.0

20 - 50	7.0	3.5	2.5	1.0	0.5	8.0
50 – 100	10.0	4.5	4.0	1.5	0.7	12.0
100 - 1000	12.0	5.5	5.0	2.0	1.0	15.0
1000	15.0	7.0	6.0	2.5	1.4	20.0

Sumber: Duffey, 1989.

III. METODE PENELITIAN

Penelitian ini dilaksanakan pada gedung E5 Universitas Muhammadiyah Yogyakarta. Pada penelitian akan melakukan pengukuran kuat pencahayaan pada setiap ruangan dengan menggunakan alat *Lux Meter* dan pengukuran harmonisa selama tujuh hari dengan menggunakan alat *Power Quality Analyzer*.

- Audit Energi awal

Audit energi awal menggunakan datadata sekunder sebagai dasar untuk melakukan evaluasi penggunaan energi secara umum dan cepat. Pengumpulan data, berupa:

- a) Dokumentasi bangunan, yaitu denah gedung seluruh lantai dan data luas bangunan gedung.
- b) Data instalasi diagram garis penerangan dan diagram garis tata udara seluruh lantai.

- Audit Energi Rinci

Audit energi rinci menggunakan datadata primer, melakukan proses identifikasi lebih lanjut untuk menentukan besarnya peluang penghematan yang dapat dilakukan secarak spesifik. Pengumpulan data-data pengukuran, berupa :

1. Mengukur kuat pencahayaan dengan menggunakan alat *Lux Meter*

- Penerangan lokal, apabila pada ruangan terdapat meja kerja maka pengukuran dapat dilakukan diatas meja kerja.
- Penerangan umum, titik potong panjang dan lebar ruangan sesuai luas ruangan. Apabila luas ruangan < 10 m² maka titik potong garis horizontal pada jarak setiap 1 m. Apabila luas ruangan 10-100 m² maka titik potong garis horizontal dengan jarak setiap 3 m. Apabila luas ruangan > 100 m² maka titik potong garis horizontal dengan jarak setiap 6 m.

2. Mengukur Harmonisa dengan menggunakan alat *Power Quality Anylizer*.

Pengukuran Harmonisa pada panel SDP (Sub Distribution Panel) menggunakan alat Power Quality Anylizer. Data-data yang diambil adalah Frekuensu, Tegangan, Arus, Daya Aktif, Daya Reaktif, Daya Semu, Faktor Daya, THD Tegangan, dan THD Arus.

IV. HASIL PENELITIAN

A. Audit Energi Awal

• Data Lampu

Terdapat data lampu di setiap ruangan lantai dasar gedung E5 UMY, seperti dapat dilihat pada Tabel 6

Tabel 6 Data lampu E5 lantai dasar

Nama Ruangan	Tipe Lampu	Jumlah Titik Lampu	Daya Lampu	Jumlah Daya Lampu
E.001 Ruang Kuliah	TL LED	8 Titik	2 x 18 Watt	288 Watt
E5.002 Ruang Kuliah	TL LED	12 Titik	2 x 18 Watt	432 Watt
E5.003 Ruang Kuliah	TL LED	12 Titik	2 x 18 Watt	432 Watt
E5.004 Ruang Kuliah	TL LED	8 Titik	2 x 18 Watt	288 Watt
Ruang MMC	TL LED	12 Titik	2 x 18 Watt	432 Watt
Ruang Tata Usaha	TL LED	16 Titik	2 x 18 Watt	576 Watt
Toilet	TL Ring	2 Titik	18 Watt	36 Watt
Tonet	TL	2 Titik	18 Watt	36 Watt
Lorong	Down light	3 Titik	18 Watt	54 Watt
Lorong	TL Ring	2 Titik	18 Watt	36 Watt
Tangga	TL Ring	2 Titik	18 Watt	36 Watt

Terdapat data lampu di setiap ruangan lantai satu gedung E5 UMY, seperti dapat dilihat pada Tabel 7

Tabel 7 Data lampu E5 lantai satu

Nama Ruangan	Tipe Lampu	Jumlah Titik Lampu	Daya Lampu	Jumlah Daya Lampu
E5.101 Ruang Kuliah	TL LED	8 Titik	8 Titik 2 x 18 Watt	
E5.102 Ruang Kuliah	TL LED	8 Titik	2 x 18 Watt	288 Watt
E5.103 Ruang Kuliah	TL LED	8 Titik	2 x 18 Watt	288 Watt
E5.104 Ruang Kuliah	TL LED	8 Titik	2 x 18 Watt	288 Watt
E5.105 Ruang Kuliah	TL LED	8 Titik	2 x 18 Watt	288 Watt
E5.106 Ruang Kuliah	TL LED	8 Titik	2 x 18 Watt	288 Watt
Ruang Peradilan Semu	TL LED	16 Titik	2 x 18 Watt	576 Watt
Toilet	TL Ring	2 Titik	18 Watt	36 Watt
Tonet	TL	2 Titik	18 Watt	36 Watt
Lorong	Down Light	3 Titik	18 Watt	54 Watt
Lorong	TL Ring	2 Titik	18 Watt	36 Watt
Tangga	TL Ring	2 Titik	18 Watt	36 Watt

Terdapat data lampu di setiap ruangan lantai dua gedung E5 UMY, seperti dapat dilihat pada Tabel 8.

Tabel 8. Data lampu E5 lantai dua

Nama Ruangan	Tipe Lampu	Jumlah Titik Lampu	Titik Daya Day	
Ruang Mediasi	TL LED	8 Titik	2 x 18 Watt	288 Watt
Ruang Peradilan Anak	TL LED	8 Titik	2 x 18 Watt	288 Watt
Ruang Peradilan Umum	TL LED	16 Titik	2 x 18 Watt	576 Watt
Ruang Jurnal Media Hukum	TL LED	12 Titik	2 x 18 Watt	432 Watt
Ruang Pusat Kajian	TL LED	12 Titik	2 x 18 Watt	432 Watt
Toilet	TL Ring	2 Titik	18 Watt	36 Watt
Tonet	TL	2 Titik	18 Watt	36 Watt
Lorong	Down Light	3 Titik	18 Watt	54 Watt
Lorong	TL Ring	2 Titik	18 Watt	36 Watt

• Data Sistem Tata Udara

a) Air Conditioner (AC)

Terdapat data AC di setiap ruangan lantai dasar gedung E5 UMY, seperti dapat dilihat pada Tabel 9.

Tabel 9. Data AC E5 lantai dasar

Nama Ruangan	Tipe/Merk AC	Jumla h AC	Daya AC	P K
E.001 Ruang Kuliah	Daikin / FTNE50JE V14	1	1832 W	2
E.002 Ruang Kuliah	Panasonic / CS- YC18MKF	1	1920 W	2
E.003 Ruang Kuliah	Panasonic/ CS- PC12PKP	1	1920 watt	2
E5.004 Ruang Kuliah	Daikin / FTNE50JE V14	1	1832 W	2
Ruang Multime	Panasonic/ CS- PC12PKP	1	1920 watt	2
dia Class (MMC)	Daikin / FTNE50JE V14	1	1832 W	2
Ruang	Panasonic / CS- YC18MKF	1	1920 watt	2
Tata Usaha	Daikin / FTNE50JE V14	1	1832 W	2

Terdapat data AC di setiap ruangan lantai satu gedung E5 UMY, seperti dapat dilihat pada Tabel 10.

Tabel 10. Data AC E5 lantai satu

Nama Ruangan	Tipe/Merk AC	Jumla h AC	Daya AC	P K
E5.101 Ruang Kuliah	Panasonic / CS- YC18MKF	1	1920 watt	2
E5.102 Ruang Kuliah	Panasonic/ CS-PC12PKP	1	1920 watt	2
E5.103 Ruang Kuliah	Panasonic/ CS-PC12PKP	1	1920 watt	2
E5.104 Ruang Kuliah	Panasonic / CS- YC18MKF	1	1920 watt	2
E5.105 Ruang Kuliah	Panasonic / CS- YC18MKF	1	1920 watt	2
E5.106 Ruang Kuliah	Panasonic/ CS-PC12PKP	1	1920 watt	2
Ruang Peradila	Panasonic / CS- YC18MKF	1	1920 watt	2
n Semu	Daikin / FTNE50JEV1 4	1	1832 W	2

Terdapat data AC di setiap ruangan lantai dua gedung E5 UMY, seperti dapat dilihat pada Tabel 11.

Tabel 11. Data AC E5 lantai dua

Nama Ruangan	Tipe/Merk AC	Jumla h AC	Daya AC	P K
Ruang Mediasi	Panasonic/ CS-PC12PKP	1	1920 watt	2
Ruang Peradila n Anak	Daikin / FTNE50JEV1 4	1	1832 W	2

Ruang Peradila	Daikin / FTNE50JEV1 4	1	1832 W	2
n Umum	Panasonic/ CS-PC12PKP	1	1920 watt	2
Ruang	Panasonic / CS- YC18MKF	1	1920 watt	2
Jurnal Media	Daikin / FTNE50JEV1 4	1	1832 W	2
Ruang	Panasonic / CS- YC18MKF	1	1920 watt	2
Pusat Kajian	Daikin / FTNE50JEV1 4	1	1832 W	2

Menghitung jumlah kebutuhan AC untuk menentukan kapasitas AC yang digunakan dengan menyesuaikan luas dan tinggi ruangan. Berikut merupakan perhitungan kapasitas AC pada ruangan :

Data : Luas ruangan = 53.2 m^2 Koefisien ruangan = 200 BTU/hTinggi ruangan = 3 m

Kapsitas AC 1 PK = 9000 BTUH

Perhitungan kebutuhan AC:

 $\label{eq:Kebutuhan AC} Kebutuhan \ AC = \frac{Luas \ ruangan \ x \ tinggi \ ruangan \ x \ 200}{9000}$

 $=\frac{53,2 \text{ m2 x 3 m x 200}}{9000}$

= 3,5 PK

Data hasil perhitungan kebutuhan kapasitas AC di setiap ruangan gedung E5 UMY, dapat dilihat pada Tabel 4.12

Tabel 4.12. Data Kebutuhan Kapasitas AC

Nama Ruangan	Luas Ruangan (m²)	Tinggi Ruangan (m)	Tetapan Pendingin Ruangan (BTU/h)	Kapasitas AC 1 PK (BTUH)	Kebutuhan AC (PK)
E.001 Ruang Kuliah	53,2	3	200	9000	3,5
E.002 Ruang Kuliah	70	3	200	9000	4,7
E.003 Ruang Kuliah	71,2	3	200	9000	4,7
E.004 Ruang Kuliah	53,2	3	200	9000	3,5
Ruang MMC	71,2	3	200	9000	4,7
E5.101 Ruang Kuliah	47,9	3	200	9000	3,2
E5.102 Ruang Kuliah	58,4	3	200	9000	3,9
E5.103 Ruang Kuliah	58,4	3	200	9000	3,9
E5.104 Ruang Kuliah	47,9	3	200	9000	3,2
E5.105 Ruang Kuliah	47,9	3	200	9000	3,2
E5.106 Ruang Kuliah	58,4	3	200	9000	3,9
Ruang Peradilan Semu	106,5	3	200	9000	7,1
Ruang Mediasi	47,9	3	200	9000	3,2
Ruang Peradilan Anak	58,4	3	200	9000	3,9
Ruang Peradilan Umum	106,3	3	200	9000	7,1
Ruang Jurnal Media	71,5	3	200	9000	4,8
Ruang Pusat Kajian	141,5	3	200	9000	9,4

• Konsumsi Energi pada gedung E5

Untuk menghitung nilai IKE pada gedung E5 harus mengetahui nilai dari beban atau kWh total terlebih dahulu. Sistem tata udara pada gedung ini hanya penggunakan Air Conditioner, untuk penerangan gedung ini beberapa sudah menggunakan lampu TL LED.

Contoh perhitungan beban kWh total pada ruangan E5.001 seperti berikut :

Diketahui:

Jumlah Lampu = 16 buah

Jumlah AC = 1 buah

Daya Lampu = 18 Watt

Daya AC = 1524 Watt

Waktu pemakaian = 193,2 jam/bulan

Sehingga:

$$kWh = \frac{(16 \times 18) + (1 \times 1524) \times 193,2}{1000}$$
$$= 294,72 \text{ kWh}$$

Terdapat data konsumsi energi di setiap ruangan gedung E5 UMY, seperti dapat dilihat pada Tabel 4.13

Tabel 4.13. Data konsumsi energi E5

Nama Ruangan	Konsumsi Energi (kWh)
E.001 Ruang Kuliah	356,64
E.002 Ruang Kuliah	476,46
E.003 Ruang Kuliah	404,95
E5.004 Ruang Kuliah	448,94
Ruang MMC	828,92

Ruang Tata	785,28
Usaha	703,20
E5.101 Ruang	582,3
Kuliah	362,3
E5.102 Ruang	536,38
Kuliah	330,38
E5.103 Ruang	527,32
Kuliah	321,32
E5.104 Ruang	565.05
Kuliah	565,05
E5.105 Ruang	426,44
Kuliah	420,44
E5.106 Ruang	427,81
Kuliah	427,01
Ruang Peradilan	798,72
Semu	190,12
Ruang Mediasi	469,02
Ruang Peradilan	205.09
Anak	395,08
Ruang Peradilan	873,6
Umum	673,0
Ruang Jurnal	750,72
Media	730,72
Ruang Pusat	388,99
Kajian	300,77
Toilet	26,2
Lorong	32,76
Tangga	13,1
Total Konsumsi	10114,68
Energi	10117,00

Total konsumsi energi yang dihasilkan oleh sistem pencahayaan dan sistem tata udara gedung E5 dalam rentan kurun waktu 1 bulan adalah 10114,68 kWh.

- Total pemakaian energi listrik sebulan
 - = 10.114,68 kWh/bulan
- Total Pemakaian energi listrik setahun
 - = 121.376,16/tahun

• Intensitas Konsumsi Energi

Perhitungan nilai IKE pada gedung E5 Diketahui:

Konsumsi energi = 121.376,16

kWh/tahun

Luas Bangunan = $1638,36 \text{ m}^2$

Sehingga:

IKE =
$$\frac{121.376,16 \text{ kWh/tahun}}{1.638,36 \text{ m2}}$$

 $= 74,08 \text{ kWh/m}^2/\text{tahun}.$

Dari hasil perhitungan didapat nilai IKE sebesar 74,08 kWh/m²/tahun. Nilai IKE gedung E5 Fakultas Hukum tergolong Sangat Efisien karena lampu pada ruangan E5 sebagian sudah diganti menggunakan lampu TL LED.

B. Audit Energi Rinci

• Pengukuran Kuat Pencahayaan

Terdapat data hasil pengukuran lampu di setiap ruangan lantai dasar gedung E5 UMY, seperti dapat dilihat pada Tabel 4.14

Tabel 4.14. Data pengukuran lampu

Nama	Luas		Hasil		Kor	ndisi
Ruang an	Ruan gan	Titik	Ukur (Lux)	Total	Lamp u	Gord en
E.001 Ruang	53,2	1	143	324	Hidu	Buka
Kuliah	m ²	2	181	324	p	Бика
E.002 Ruang	70 m ²	1	199	<i>A</i> 11	411 Hidu p	Buka
Kuliah	70 III	2	212	411		Duka
E.003 Ruang	71,2	1	170	370	Hidu	Buka
Kuliah	m ²	2	200	370	p	Бика
E.004 Ruang	53,2	1	168	349	Hidu	Buka
Kuliah	m ²	2	181		p	Duka
Ruang	71,2	1	168	355	Hidu	Buka
MMC	m ²	2	187	333	p	Duka

Ruang	71,2	1	145	313	Hidu	Tutup
MMC	m ²	2	168	313	p	Tutup
Toilet		1	77		Hidu p	х
WC 1	17,2 m ²	1	103	289	Hidu p	X
WC 2		1	109		Hidu p	Х

Hasil pengukuran didapat nilai total kuat pencahayaan pada ruangan E.001, E.004 dibawah standar ketentuan SNI 6197-2011. Pada ruangan E.003 dan ruang MMC dengan kondisi lampu hidup dan gorden terbuka didapat nilai total kuat pencahayaan melebihi standar ketentuan SNI 6197-2011 namun masih dalam batas wajar yang tidak terlalu jauh. Kemudian pada ruangan E.002 dan toilet didapat nilai total kuat pencahayaan melebihi standar ketentuan SNI 6197-2011 yang cukup besar.

Terdapat data hasil pengukuran lampu di setiap ruangan lantai satu gedung E5 UMY, seperti dapat dilihat pada Tabel 4.15.

Table 4.15. Data pengukuran lampu

Nama Ruang	Luas Ruan	Titik	Hasil Ukur	Total	Kondisi	
an	gan	THE	(Lux)	10111	Lam pu	Gord en
E5.101		1	175		Hidu	
Ruang Kuliah	47,9	2	187	362	p	Buka
E5.101 Ruang	m ²	1	167	325	Hidu p	Tutup
Kuliah		2	158	323		Tutup
E5.102 Ruang		1	161	336	Hidu p	Buka
Kuliah	58,4	2	175	330		Duka
E5.102 Ruang	m ²	1	136	277	Hidu p	Tutup
Kuliah		2	141			г
E5.103 Ruang	1 58.4 1 -	140	358	Hidu	Buka	
Kuliah	111	2	218		р	

E5.103	58,4	1	168	336	Hidup	Tutup
Ruang Kuliah	m ²	2	168	330		
E5.104		1	198	40.0	Hidup	Buka
Ruang Kuliah		2	208	406		
E5.104	47,9 m ²	1	175	247	Hidup	Tutup
Ruang Kuliah		2	142	317		
E5.105		1	163	242	*** 1	D 1
Ruang Kuliah	47,9	2	149	312	Hidup	Buka
E5.105 Ruang	m ²	1	164	307	Hidup	Tutup
Kuliah		2	143	307	пиир	Tutup
E5.106		1	159	329	TT: 4	Buka
Ruang Kuliah	58,4	2	170	329	Hidup	Вика
E5.106	m ²	1	147		77' 1	T
Ruang Kuliah		2	171	318	Hidup	Tutup
		1	209			
Ruang Peradilan		2	152	681	Hidup	Tutup
Semu	1055	3	156		Tiraup	Tutup
	106,5 m ²	4	164			
		1	315			
Ruang Peradilan		2	708	1500	Hidup	Buka
Semu		3	265	1300	пиир	Бика
		4	212			
Toilet	45.5	1	77		Hidup	X
WC 1	17,2 m ²	1	101	284	Hidup	X
WC 2		1	106		Hidup	X

Pada ruangan E5.102, E5.105, dan E5.106 hasil pengukuran didapat nilai total kuat pencahayaan dibawah standar ketentuan SNI 6197-2011. Pada ruangan E5.101, E5.103, dan E5.104 dan ruang MMC dengan kondisi lampu hidup dan gorden terbuka didapat nilai total kuat pencahayaan melebihi standar ketentuan SNI 6197-2011 namun masih dalam batas wajar yang tidak terlalu jauh. Namun dalam kondisi lampu hidup dan gorden tertutup didapat nilai total

pencahayaan dibawah standar SNI SNI 6197-2011.

Pada ruang peradilan semu dengan dua kondisi yaitu lampu hidup dengan gorden terutup didapat nilai total kuat pencahayaan melebihi standar ketentuan SNI 6197-2011 yang cukup besar, dalam kondisi ini ruangan hanya mengandalkan pencahayaan buatan yaitu 16 titik lampu dengan setiap titik lampu 2 x 18 watt. Dalam kondisi lampu hidup dan gorden terbuka didapat nilai total kuat pencahayaan melebihi standar ketentuan SNI 6197-2011 yang sangat besar, dalam kondisi ini tidak hanya mengandalkan pencahayaan buatan namun juga pencahayaan alami yang didapat dari matahari. Ketika waktu siang lampu ruangan dihidupkan dan gorden jendela dibuka ruangan peradilan semu cukup banyak mendapatkan cahaya dari pencahayaan alami.

Terdapat data hasil pengukuran lampu di setiap ruangan lantai dua gedung E5 UMY, seperti dapat dilihat pada Tabel 4.19

Table 4.19.	Data	pengukuran	lampu

	Luas		Hasil		Ko	ndisi
Nama Ruangan	Rua ngan	Titi k	Ukur (Lux)	Total	Lam pu	Gorde n
Ruang		1	156	320	Hidu	Tutup
Mediasi	47,9	2	164	320	р	Ταταρ
Ruang	m ²	1	153	328	Hidu	Buka
Mediasi		2	175	320	р	Duka
Ruang Peradilan	58,4 m ²	1	173	323	Hidu	Gorde
Anak	m²	2	150		р	n
D.		1	211		Hidu	
Ruang Peradilan		2	154	694		Tutup
Umum		3	155	094	p	Tutup
C 111 d 111	106,	4	174			
	3 m^2	1	325			
Ruang Peradilan		2	712	1511	Hidu	Buka
Umum		3	265	1311	p	Бика
		4	209			

Ruang	71,5	1	168	222		ъ.
Jurnal Media		2	187	355	Hidup	Buka
Ruang Jurnal	m ²	1	145	313	Hidup	Tutup
Media		2	168	313	Thaup	
Ruang		1	199		Hidup	Buka
Pusat Kajian	70 m ²	2	212	411		
Ruang		1	165	244	Hidup	T
Pusat Kajian		2	179	344		Tutup
Toilet	17,2 m ²	1	77		Hidup	X
WC 1		1	104	288	Hidup	X
WC 2	111	1	107		Hidup	X

Pada ruangan Ruang Mediasi dan ruang peradilan anak, hasil pengukuran didapat nilai total kuat pencahayaan dibawah standar ketentuan SNI 6197-2011. Pada ruangan jurnal media dan ruang pusat kajian dengan kondisi lampu hidup dan gorden terbuka didapat nilai total kuat pencahayaan melebihi standar ketentuan SNI 6197-2011 namun masih dalam batas wajar yang tidak terlalu jauh. Namun dalam kondisi lampu hidup dan gorden tertutup didapat nilai total pencahayaan dibawah standar SNI SNI 6197-2011, karena pada saat gorden hanya mengandalkan pencahayaan buatan.

Pada ruang peradilan umum dalam dua kondisi yaitu lampu hidup dengan gorden terutup didapat nilai total kuat pencahayaan melebihi standar ketentuan SNI 6197-2011 yang cukup besar, dalam kondisi ini ruangan hanya mengandalkan pencahayaan buatan yaitu 16 titik lampu dengan setiap titik lampu 2 x 18 watt. Dalam kondisi lampu hidup dan gorden terbuka didapat nilai total kuat pencahayaan melebihi standar ketentuan SNI 6197-2011 yang sangat besar, dalam kondisi ini tidak hanya mengandalkan pencahayaan buatan namun juga pencahayaan alami yang didapat dari matahari. Ketika waktu siang lampu ruangan dihidupkan dan gorden

jendela dibuka maka ruangan cukup banyak mendapatkan cahaya dari pencahayaan alami.

• Hasil Pengukuran Pada Panel SDP

Terdapat data THD Arus maksimum pada fasa R, fasa S, dan fasa T seperti dapat dilihat pada Tabel 4.20.

Tabel 4.20. Data THD Arus Maksimum

Hari	THD Arus					
Han	Fasa R (%)	Fasa S (%)	Fasa T (%)			
Senin	44,61	36,54	45,38			
Selasa	39,08	34,05	33,84			
Rabu	20,93	41,99	45,2			
Kamis	31,97	44,06	67,04			
Jum'at	55,83	18,4	25,54			
Sabtu	53,57	32,77	73,38			
Minggu	7,57	7,59	6,84			

Dari tabel 4.20 dapat diketahui bahwa THD arus pada setiap fasa melebihi standar IEEE 519-1992 untuk $I_{sc}/I_L < 20$ yaitu 5%. THD arus maksimum berada dihari Sabtu yaitu 53,57% pada fasa R, 32,77% pada fasa S, dan 73,38% pada fasa T. Distorsi harmonisa arus tersebut terjadi karena pemakaian beban non linier, beban non linier umumnya peralatan elektronik yang didalamnya banyak terdapat komponen semi konduktor. Pada sistem pencahayaan gedung E5 sendiri terdapat beberapa ruangan yang menggunakan lampu TLatau lampu fluorescent, lampu tersebut sudah dirancang untuk menggunakan arus listrik secara hemat dan efisien karena gelombang arus hanya melalui komponen semi konduktor, namun proses kerja ini akan menyebabkan gangguan gelombang arus yang tidak sinusoidal.

Dari permasalahan diatas perlu dilakukan perbaikan salah satunya dengan menggunakan Filter pada sitsem distribusi listrik. Terdapat dua jenis Filter yaitu filter aktif dan filter pasif. Filter yang digunakan adalah filter pasif, filter pasif dapat mereduksi amplitude dari arus dan tegangan dengan pemasangan berada pada titik penyebab harmonisa. frekuensi yang mengandung harmonik dari beban non-linear yang menuju sumber daya akan dihalangi oleh filter pasif.

Untuk merancang filter pasif, harus diketahui nilai harmonisa tiap orde yang ada pada sistem yang diamati yaitu THD arus maksimum. Rangkaian filter pasif akan mereduksi nilai harmonisa tiap orde untuk orde harmonisa H<11 dengan SCA <20 yaitu 4%.

Terdapat data harmonisa arus setiap orde pada hari Sabtu, seperti dapat dilihat pada Tabel 4.21.

Tabel 4.21. Data Harmonisa Arus Setiap Orde Pada Hari Sabtu

Orde	Fasa R (%)	Fasa S (%)	Fasa T (%)
	` '		` '
3	5,66	6,15	4,95
5	4,77	3,99	4,2
7	1,15	0,77	1,27
9	1,10	0,54	0,94
11	0,67	0,37	1,06
13	0,54	0,26	1,13
15	0,43	0,32	0,70
17	0,29	0,21	0,49
19	0,20	0,16	0,57
21	0,20	0,07	0,22
23	0,14	0,09	0,22
25	0,11	0,09	0,14

Dari tabel 4.21. data harmonisa arus setiap orde pada hari Sabtu dapat diketahui bahwa harmonisa maksimal terjadi pada orde ke-3 pada fasa T yaitu 3,46%.

1. Menghitung Resistor

Diketahui tegangan sistem adalah 380 V, dan arus maksimum orde ke-3 adalah 6,15 A.

Sehingga:

Hambatan : R =
$$\frac{V}{I}$$

= $\frac{380 V}{6,15 A}$ = 61,78 Ω

Daya:
$$P = V \cdot I$$

= 380 V \cdot 61,78 A
= 23.476,4 W

Dari perhitungan diatas didapat nilai resistor sebesar 61,78 Ω dan didapat nilai rating daya sebesar 23.476,8 Watt.

2. Menghitung Q Faktor

Diketahui nilai Q faktor adalah 30 – 100. Maka dipilih nilai Q faktor yg paling rendah yaitu 30 dan nilai R yaitu 109,82 Ω , sehingga:

$$X_{1} = X_{c} = X_{n}$$

$$Q = \frac{Xn}{R}$$

$$X_{n} = Q \cdot R$$

$$= 30 \cdot 61,78 \Omega$$

$$= 1.853.4 \Omega$$

Sehingga dari perhitungan diatas didapat nilai X_n sebesar 1.853,4 Ω . Nilai $X_n = X_1 = X_c$.

3. Menghitung Induktor

Frekuensi pada harmonisa orde ke-3 yaitu 150 Hz. Nilai frekuensi diberi toleransi dengan cara diturunkan menjadi 145 Hz, agar kerja filter mencapai peforma maksimal.

$$X_l = \omega l$$

 $L = \frac{1.853.4}{2.314.145} = 2,03 \text{ H}$

Sehingga dari perhitungan diatas dapat didapat nilai induktor yang digunakan yaitu 2,03 H.

4. Menghitung Kapasitor

Frekuensi pada harmonisa orde ke-3 yaitu 150k Hz. Nilai frekuensi diberi toleransi dengan cara diturunkan menjadi 145 Hz, agar kerja filter mencapai peforma maksimal.

$$Xc = \frac{1}{\omega C}$$

$$C = \frac{1}{\omega Xc} = \frac{1}{(2 \cdot 3.14 \cdot 145) \cdot 1.853.4}$$

$$= 5.92 \times 10^{-7} \text{ F}$$

Sehingga:

Dari perhitungan didapat nilai kapasitor yang digunakan yaitu 5,92x10⁻⁷ F.

Sehingga dari perhitungan diatas diperoleh spesifikasi filter pasif yang akan digunakan untuk mereduksi harmonisa pada orde ke-3 adalah sebagai berikut :

Tabel 4.26. Data Spesifikasi Filter Pasif

Hambatan (R)	61,78 Ω	
Daya (P)	23.476,4 Watt	
$X_l = X_c = X_n$	1.853,4 Ω	

Induktor (L)	2,03 H
Kapasitor (C)	5,92 x 10 ⁻⁷ F

V. KESIMPULAN DAN SARAN

A. Kesimpulan

Berdasarkan hasil penelitian yang telah dilakukan maka didapat kesimpulan berikut ini:

- Nilai Intensitas Konsumsi Energi (IKE)
 pada gedung E5 menunjukan pada
 kriteria "Sangat Efisien" dengan
 jumlah nilai IKE sebesar = 74,08
 kWh/m²/tahun.
- Dari hasil pengukuran pada sistem pencahayaan dan sistem tata udara menunjukkan bahwa nilai kuat pencahyaan dan kebutuhan AC dalam ruangan terdapat beberapa yang belum sesuai dengan standar SNI.
- 3. Nilai harmonisa arus per-orde pada orde ke-3 dan orde ke-5 tidak memenuhi batas standar minimal IEEE 519-1992 pada range < 20 A sebesar 4%.
- 4. Perbaikan harmonisa menggunakan Filter Pasif dengan nilai R adalah 61,78 Ω, nilai L adalah 6,7 H, dan nilai C adalah 1,7 x 10⁻⁷ F. Filter digunakan untuk mereduksi amplitudo frekuensi dari arus dan tegangan. Perbaikan menggunakan filter mampu mengurangi rugi-rugi pada sistem kelistrikan sehingga mampu memberikan peluang penghematan

energi dan meningkatkan efisiensi energi listrik pada gedung E5.

DAFTAR PUSTAKA

- [1] Suhendar, .Ervan .Efendi, H..(2013). Audit Sistem Pencahayaan dan Sistem Pendingin Ruangan di Gedung Rumah Sakit Umum Daerah (RSUD) Cilegon. Setrum, 2(2), 21–27.
- [2] Muslmin,H .t.t. "Audit energi listrik pada pusat perbelanjaan department store matahari a. yani mega mall pontianak".
- [3] Magdalena M (2009). Menekan Konsumsi dengan Audit Energi, 13.
- [4] ESDM,Peraturan Menteri ESDM no.14 Tentang Manajemen Energi, 2012.
- [5] Abdurarachim. Halim Pasek Darmawan Ari, dan Sulaiman. 2002. Audit Energi, Modul 2, Energi Conservation Efficiency And Cost Saving Course, Bandung: PT. Fiqry Jaya Mandiri..
- [6] Handoko, J., Merawat & Memperbaiki AC, Kawan Pustaka., Jakarta, 2007.
- [7] SNI-6197-2011. "Konservasi Energi Pada Sistem Pencahayaan". Jakarta : Badan Standardisasi Nasional (BSN).
- [8] Caffal, C., 1995. Energy Management in Industry. Centre for the Analysis and Dissemination of Demonstrated Energy Technologies, Sittard, the Netherlands.

- [9] Ibrahim Yacob, H. M. (2003). Studi Kelayakan Bisnis, Edisi Revisi. Jakarta. PT. Rineka
- [10] Agus Sartono, Manajemen Keuangan, Edisi Tiga, BPFE, Yogyakarta,1998.
- [11] (Hidayati & Warnana, 2017)Hidayati, N., & Warnana, D. D. (2017). Analisis kelayakan finansial pengembangan kelas alam terbuka kebumian dan lingkungan berkonsep rekreasi dan inspirasi untuk anak di surabaya. 3(Sendi_U 3), 650–656.