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Abstract—Anatomic pathology errors often occur around 

1% to 43% in diagnosis (depending on the disease). This error 

resulted in delayed treatment and an incorrect diagnosis. This 

study aims to detect the prostate cancer cells by using pretrained 

models of deep learning based on the value of performance 

metrics using a confusion matrix. Image data was taken from a 

light microscope at the Universitas Indonesia (UI) Hospital. In 

this study, 10-fold cross-validation was used as a validation of 

performance metrics on the model. In addition to the accuracy 

assessment, there is an assessment of precision, recall 

(sensitivity), specificity and F-score, as well as running time in 

the process. In this study, the accuracy value in each iteration 

has a relationship with other performance metric values, if the 

accuracy value decreases, the other performance metric values 

will also decrease, and vice versa. In training, ResNet-50 has an 

average accuracy value of 99.83%, 0.2% higher than 

GoogLeNet. Testing performances show that ResNet-50 has an 

average accuracy value of 98.02%, slightly higher (0.28%) than 

GoogLeNet. In F-score as well, GoogLeNet has a slightly smaller 

0.54% difference than ResNet-50. It can be concluded that the 

pretrained models has good performances in prostate images 

classification. 

Keywords—prostate cells, anatomic pathology, artificial 

intelligence, deep learning, classification.  

I. INTRODUCTION 

According to Cancer Statistics 2020, prostate cancer has 
been the most common cancer in men. In 2020, there was a 
1% rise in cancer cases in the US (up 17,230 people) from the 
previous year. In the same year, 191,930 (21%) people 
possessed prostate cancer, and 701,730 (79%) for men had 
other cancers. The total number of deaths also rose by 1,710 
people (31,620 people in 2019 and 33,330 in 2020). In 2020, 
this cancer remained in the second rank as the previous year 
(33,330 people (10%) out of 321,160 total cancer deaths)[1], 
[2]. 

Until now, the cause of this cancer remains unknown 
compared to other cancers. Factors influencing cancer include 
advanced age, ethnicity, genetic factors, and family history. In 
addition, other factors triggering cancer cover diet, obesity, 
lack of exercise, inflammation, hyperglycemia, infection, and 
exposure to chemicals or ionizing radiation [3]. 

A biopsy is one method used to detect cancer cells in the 
patient’s organs [4]. This method takes organ tissue to 
examine whether it is cancerous or not [5]. In a study directed 
by Stephen S. Raab, MD, errors often occurred in diagnosing 
cancer. In diagnosis, all specimens had an anatomic pathology 
error of about 1% to 43% (depending on the disease). 
Accordingly, this error resulted in delayed treatment and 
incorrect diagnosis [6]. 

Artificial intelligence (AI) helps to detect cancer cells with 
more accurate results [7]. A team of researchers from 
Germany, the United States, and France studied AI to 
distinguish abnormally growing skin tissue in more than 100 
thousand images. The system has been built based on CNN’s 
deep learning designed to fight 58 dermatologists from 17 
countries. The dermatologists consisted of 30 experts with 
more than five years of experience, 11 skilled with two to five 
years of experience, and seventeen beginners with less than 
two years of experience. In dermoscopic image reading only, 
AI gained 95% sensitivity, better than the average 
dermatologist, reaching 86.6% [8]. 

In addition to cancer, AI can also identify Covid-19 
infections through coughing and vocal cords. The research has 
carried out by a team of researchers from MIT who developed 
AI. The study has utilized the extractor feature of the 
biomarker as a pre-screening for Covid-19. The research team 
took 5,320 respondents consisting of coughs and vocal cords 
from April to May 2020. The study obtained a sensitivity of 
98.4% of respondents positive for Covid-19 in official tests 
[9]. 

Several kinds of research about computer-assisted prostate 
cancer have explored the methods used and the results. There 
is a study conducted by Geert Litjens et al. in detecting 
prostate cancer using 347 MRI images (165 cancer and 182 
normal) with computer assistance. This study consisted of two 
stages, namely, initial candidate detection using prostate 
segmentation (multi-atlas based, voxel feature extraction, 
classification and detection of local maxima) and then 
segmenting the region so that the classification of each 
candidate was obtained. This system compares the prospective 
clinical performance of radiologists with sensitivities of 0.42, 
0.075, and 0.89 at 0.1, 1, and 10 false positives per case [10]. 

In addition, there are other studies that use MRI images 
used by Shijun Wang et al. The techniques used are image 
segmentation, registration, feature extraction, and 
classification. The system compares 15 computer-aided-
diagnosis (CADx)-based systems that have been carried out 
and published. As a result, the system noted that the AUC 
performance of the CADx system was still below 0.90. This 
shows that there are still improvements in this area in the 
future [11]. 

In addition to detecting the presence of prostate cancer, 
there are studies to provide the right dose of radiotherapy. A 
classification method for individual doses in three dimensions 
is developed. The method identified prostate cancer patients 
who are at risk for rectal bleeding. The results obtained 87 
patients (in two years of treatment) who used radiotherapy 
obtained high sensitivity and specificity of performance [12].  
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In addition to using the semi-non-negative ICA algorithm, 
there is another classification using Deterministic Multi-
directional Analysis (DMA). A total of 99 patients who were 
treated for prostate cancer were tested and analyzed for a 
model called CP-DMA using cross validation. The results of 
the study were then compared with the supervised (linear 
discriminant analysis, supporting vector machine, K-means, 
K-nearest neighbor), the unsupervised approach (the latest 
principal component analysis-based algorithms, and 
multidimensional classification methods) and the Normal 
Tissue Complication Probability (NTCP) model. The results 
show that this method shows as a good classification because 
it has good sensitivity and specificity values beating the 
classical approach [13]. 

ResNet-50 is a pretrained models which is used for several 
literature reviews. Research conducted by Qasem at all. using 
ResNet-50 in diagnosing breast cancer. The results obtained 
an accuracy of 99% compared to other models using the same 
dataset [14]. In the case of the same cancer, there are studies 
that use this model in its classification. The results obtained 
are very good results with an overall accuracy of 95.74% [15]. 
In addition to breast cancer, this model is also used in the 
classification of tissue types in colorectal cancer histology 
images. As a result of the study, this model achieved a 
classification accuracy of 94.4% for eight classes of CRC 
tissue separation [16]. In addition to the accuracy assessment, 
this model also obtained a good F-score of 94.11% for Yusuf 
at all. in the detection of invasive ductal carcinoma [17]. 

In previous studies, an assessment of prostate cell image 
classification has been carried out using AlexNet and 
GoogLeNet. Previous research concluded that GoogLeNet is 
superior in terms of performance metrics [18], so it is 
necessary to test using other pre-workout models. Another test 
using the pretrained model is to find out which model is the 
most suitable. Just like the tests that have been done, good 
performance metrics are used to measure the feasibility of the 
system [19]. This research is expected to assist in the selection 
of cancer detection models for researchers (pathologists, 
physician assistants, etc.). 

II. METHODS 

The methods used in this study include pre-processing 
data, 10-fold cross-validation, training from pretrained 
models, prediction, and image classification. Pre-processing is 
required to prepare the data before processing. Image data is 
cropped, labeled, and reduced in size according to model 
requirements. The data were divided into five classes: normal, 
IIA, IIC, III, and IV. The pre-training model uses GoogLeNet 
and ResNet-50, which are trained to classify and predict 
images into five classes. The flow chart is shown in Figure 1.  

A. Tools and Materials 

The tools used encompassed software and hardware. The 
software was MATLAB R2019a with deep learning (DL) 
toolbox as a framework provider for implementing CNN [20]. 
In addition, the hardware used is exhibited in Table I. 

TABLE I.  HARDWARE SPECIFICATIONS 

Hardware Specification 

Ram 16 Gb 

Processor Intel Core i5-9400 CPU @ 2.90 GHz 

Graphics GeForce GTX 970 4Gb 

 

 

Fig. 1. The flowchart in Prostate Image Classification using Pretrained 

Model: GoogLeNet and ResNet-50 

 
 The images used are images that have been diagnosed and 
classified by the medical team to be used as research data. The 
image consisted of 57 prostate cells with five grades (normal, 
IIA, IIC, III, and IV). Images collected from a light 
microscope at the University of Indonesia (UI) Hospital, with 
copyright and code of ethics. The image is then divided into 
four parts to reproduce the sample data, the process of which 
can be seen in Figure 2.  

 From the cropping results, 268 images were produced 
consisting of five classification classes (one normal class and 
four cancer classes), of which the number of images is 
depicted in Table II.  

For data input, all images must be reduced to 224x224 
pixels. The reduced data was then processed using a 10-fold 
cross-validation technique. This technique was applied to 
assess and validate the accuracy of the model [21]. This 
technique divides the overall data into two parts, of which 
90% is training data, and the remaining 10% is test data [22]. 

 

TABLE II.  THE CROPPED PROSTATE CELL IMAGES 

Class Number of Images 

Normal 44 

IIA 48 

IIC 76 

III 52 

IV 48 

 

Prostate cells 

Images 

10-Fold Cross 

Validation 

Training & 

Testing 

Training & 

Testing 

GoogLeNet ResNet-50 

Compare & 

Analysis 

End 
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B. Training of Pretrained Model 

The pre-training model used is a model that has been 
trained for more than one million images and can classify 
1000 object categories. The models used are GoogLeNet and 
ResNet-50. GoogLeNet is a model developed by Szegedy et 
al. [23], who won the 2014 ImageNet Large-Scale Visual 
Award (ILSVRC) [24]. The next model is ResNet-50 which is 
a model developed by He et al., which in 2015 was ranked in 
the top 5 with an error of 3.57% [25].  

In this study, the same configuration was used so that it 
could be compared with previous studies of prostate cell 
classification [18]. The epoch used is 15, with a learning rate 
of 0.0001 (constant). Adam's optimization with a batch size of 
ten was implemented in the algorithm. The model uses fine-
tuning—a concept that uses transfer learning, replacing the 
output layer of a pre-trained model with a prostate cell data 
set. Three layers were replaced consisting of fully connected 
output, softmax, and classification [26].  

 

C. Analysis 

After training, analysis was performed on the output of the 
model in the form of image classification for each class. In this 
process, the model’s performance metrics could be 
determined, whether it was feasible or not. In assessing 
performance metrics, accuracy was considered insufficient; 
thus, more assessment using a confusion matrix was highly 
required. The confusion matrix has been known as the error 
matrix, containing a specific table about the visualization of 
the performance model usually used in supervised learning. 
Each row of the matrix represented an instance of the actual 
class, while each column represented an instance of the 
predicted class [27]. 

The confusion matrix contained the information required 
to analyze a model. The assessment in the confusion matrix 
did not only contain measurements of the accuracy value but 
also values of precision, sensitivity, specificity, and F-score 
[26]. There were terms in the confusion matrix representing 
the classification results: True Positive (TP), True Negative 
(TN), False Positive (FP), and False Negative (FN). In this 
study, we assessed the performance of the model using a 
confusion matrix of which the calculation formula is 
demonstrated in [28]. 

 

III. RESULTS AND DISCUSSIONS 

In this study, there are two assessments both on training 
and testing. In this assessment, a 10-fold cross-validation 
method was used to compare the classification performance of 
the previously trained models. Calculations for each model 
use standard performance metrics. The standard performance 
metrics used are accuracy, precision, sensitivity, specificity, 
and F-score. 

 

(a). Accuracy 

 

(b). Precision 

 

(c). Sensitivity 

 

(d). Specificity 

 

(e). F-score 

Fig. 2. Comparison of the performance of different classification methods 

at each fold in training 
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(a). Accuracy 

 

(b). Precision 

 

(c). Sensitivity 

 

(d). Specificity 

 

(e). F-score 

Fig. 3. Comparison of the performance of different classification methods 

at each fold in testing 

The training performance of each model is shown in 
Figure 2. In Figure 2, it can be seen that each accuracy value 
in each iteration has a relationship with other performance 
metrics values. The better the accuracy value in the iteration, 
the better the other performance metrics will be. Figure 2(a) 
shows that GoogLeNet has decreased accuracy to 98.32% in 
the sixth iteration (k = 6) so that all performance metrics 
values also experience a decrease (you can see the same 
process of increasing and decreasing each performance 
metrics value in Figure 2(a) to 2(e)). Then, GoogLeNet 
increased sharply in the seventh iteration (k = 7) so that all 
performance metrics also increased. In Figure 2, the 
performance metrics of ResNet-50 are quite stable compared 
to GoogLeNet. The worst accuracy of ResNet-50 is in the fifth 
iteration (k = 5) which is 99.50% better than the worst 
accuracy of GoogLeNet in the sixth iteration (k = 6). Although 
GoogLeNet has a lower accuracy value, both pretrained 
models get 100% accuracy in the third, seventh and tenth 
iterations. In terms of accuracy, ResNet-50 has an average 
value of 99.83%, slightly higher by 0.2% than GoogLeNet. In 
addition to the accuracy assessment, GoogLeNet has lower 
performance metrics than ResNet-50. This can be seen from 
the average value of performance metrics for each training 
which can be seen in Figure 2. 

As in training, in testing the accuracy value of each 
iteration is closely related to the value of other performance 
metrics. It can be seen in Figure 3(a), GoogLeNet in the tenth 
iteration (k = 10) decreased accuracy to 93.9%, so that the 
entire value of performance metrics decreased. In testing, 
ResNet-50 also got an average accuracy value of 98.02%, 
greater than GoogLeNet which only got 97.74%. In Figure 3, 
it can be concluded that the better the accuracy value for each 
iteration, the better the other performance metrics. 

Although the assessment of each iteration has been carried 
out, it is also necessary to assess the classification of each 
class. The classification of assessments has been carried out in 
Table III. This assessment consists of an assessment of each 
class along with its average. This assessment uses a confusion 
matrix in each class. It can be seen that ResNet-50 has an 
average accuracy value of 0.9802, slightly higher than 0.0028 
from GoogLeNet. In addition to accuracy, precision and recall 
(also known as sensitivity) can be used to measure the 
accuracy and quality of the model. As with accuracy, ResNet-
50 also has slightly higher average precision and sensitivity 
values. ResNet-50 got a precision and sensitivity of 0.9539 
and 0.9655 slightly higher than GoogLeNet which got 0.9452 
and 0.9601, respectively. High precision values indicate that 
the model can return more related than unrelated results, while 
recall focuses only on true positive sensitivity. In this study, 
assessment of performance metrics is also required to 
calculate the true negative rate. Calculations use ideal 
specificity to calculate negative case accuracy. In calculating 
the average specificity, ResNet-50 also has a slight difference 
with GoogLeNet, which is only 0.0019. Furthermore, to 
measure the level of model performance, the F-score is also 
used. The F-score uses precision and sensitivity values for 
each class with the best value of 1 and the worst of 0. It can be 
seen in Table III that, GoogLeNet has a difference of 0.0054 
which is slightly smaller than ResNet-50. Finally, it is seen 
that GoogLeNet has a very small difference in performance 
metric values with ResNet-50, so the performance of the two 
is not much different. 
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TABLE III.  COMPARISON OF TESTING MODELS TAKEN THROUGH 

AVERAGE OF EACH PERFORMANCE METRIC 

Performance 

Metrics 
Classes 

Test 

GoogLeNet ResNet-50 

Accuracy 

Normal 1.0000 0.9963 

Stadium IIA 0.9627 0.9695 

Stadium IIC 0.9702 0.9736 

Stadium III 0.9731 0.9806 

Stadium IV 0.9809 0.9807 

Average 0.9774 0.9802 

Precision 

Normal 1.0000 1.0000 

Stadium IIA 0.9000 0.9150 

Stadium IIC 0.9625 0.9446 

Stadium III 0.9233 0.9500 

Stadium IV 0.9400 0.9600 

Average 0.9452 0.9539 

Sensitivity 

Normal 1.0000 0.9800 

Stadium IIA 0.9292 0.9348 

Stadium IIC 0.9413 0.9653 

Stadium III 0.9490 0.9667 

Stadium IV 0.9809 0.9807 

Average 0.9601 0.9655 

Specificity 

Normal 1.0000 1.0000 

Stadium IIA 0.9782 0.9822 

Stadium IIC 0.9847 0.9814 

Stadium III 0.9818 0.9864 

Stadium IV 0.9865 0.9911 

Average 0.9863 0.9882 

F-score 

Normal 1.0000 0.9889 

Stadium IIA 0.9004 0.9177 

Stadium IIC 0.9491 0.9476 

Stadium III 0.9291 0.9527 

Stadium IV 0.9500 0.9485 

Average 0.9457 0.9511 

 

 

IV. CONCLUSIONS 

This study uses pretrained models using fine-tuning as a 
classification of prostate cancer. This study aims to assess the 
performance of the pretrained model based on the value of 
performance metrics using a confusion matrix. In this study, 
the accuracy value in each iteration has a relationship with 
other performance metric values, if the accuracy value 
decreases, the other performance metric values will also 
decrease, and vice versa. In training, ResNet-50 has an 
average accuracy value of 99.83% (0.2% higher than 
GoogLeNet). In addition to training, there is an assessment of 
performance metrics in testing. Tests show that ResNet-50 has 
an average accuracy value of 98.02%, slightly higher by 
0.28% than GoogLeNet. In F-score as well, GoogLeNet has a 
slightly smaller 0.54% difference than ResNet-50. Higher 
accuracy values cause ResNet-50 to excel in all performance 
metrics values. Finally, it can be concluded that GoogLeNet 
has a very small difference in the value of performance 
metrics with ResNet-50, so the performance of the two is not 
much different. 
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