BAB I

PENDAHULUAN

A. Latar Belakang

Kebakaran adalah suatu fenomena yang terjadi ketika suatu bahan mencapai temperatur kritis dan beraksi kimia dengan oksigen (contohnya) yang menghasilkan panas, nyala api, cahaya, uap air, karbon monoksida, karbon dioksida, atau produk dan efek lainnya.

Salah satu bahaya yang menjadi penyebab utama kematian dalam peristiwa kebakaran, yaitu asap. Mengapa asap bisa menjadi penyebab utama? Hal ini dikarenakan asap mengandung bermacam-macam gas beracun yang dihasilkan dalam proses pembakaran. Salah satunya adalah gas karbon monoksida (CO). Berikut dampak negatif yang dapat ditimbulkan akibat menghirup gas CO:

Tabel 1. Dampak Menghirup Gas Karbon Monoksida

CO ppm	Waktu	Gejala-gejala					
35 ppm	8 jam	Maksimal yang diijinkan oleh OSHA (Occupational Safety and Health Administration) di tempat					
		bekerja lebih dari periode delapan jam.					
200 ppm	2-3 jam	Sakit kepala ringan, kelelahan, mual dan pusing.					
400 ppm	1-2 jam	Sakit kepala serius, gejala yang lain semakin hebat. Nyawa terancam setelah 3 jam.					
800 ppm	45 menit	Pusing, mual dan kejang-kejang. Tidak sadar dalam 2 jam, kematian dalam 2 - 3 jam.					
1.600 ppm	20 menit	Sakit kepala, pusing dan mual.					

		Kematian dalam 1 jam.
3.200 ppm	10 menit	Sakit kepala, pusing dan mual.
		Kematian dalam 1 jam.
6.400 ppm	1-2 menit	Sakit kepala, pusing dan mual.
		Kematian dalam 25 – 30 menit.
12.800 ppm	1-3 menit	1 - 3 menit meninggal.

(Sumber: Integrated Fire And Life Safety Solutions)

Terjadinya kebakaran sangatlah merugikan bagi siapapun yang menjadi korbannya. Untuk mencegah meluasnya kebakaran adalah dengan cara memadamkan api secepat mungkin. Akan tetapi bagaimanakah cara tercepat untuk mengetahui adanya kebakaran? Alarm atau tanda peringatan kebakaran adalah salah satu solusinya. Alarm atau detektor kebakaran adalah alat yang dirancang untuk mendeteksi adanya kebakaran dan tentu saja dapat mengawali suatu tindakan untuk mencegah meluasnya kebakaran yang terjadi.

Pada saat ini banyak detektor yang dijual dipasaran, akan tetapi masih ada kekurangannya yaitu keakuratan. Detektor atau alarm kebakaran dapat mengetahui adanya kebakaran dengan cara mendeteksi timbulnya panas atau asap yang berlebihan. Namun, bagaimana jika panas atau asap tersebut hanya berasal dari pemanggang makanan di dapur? Detektor yang ada saat ini pada umumnya tidak dapat membedakannya sehingga seringkali salah memberikan alarm.

Jika ada sebuah detektor yang dapat memilah antara asap dan

visual menampilkan ruangan sumber dari kebakaran, maka tentu saja kebakaran dapat lebih diantisipasi secara dini serta dapat mengurangi gangguan dan kerugian yang mungkin ditimbulkan dari kejadian tersebut.

Di Inggris, lebih dari setengah pangilan kebakaran pada tahun 2004 disebabkan oleh kesalahan alarm. 285 ribu alarm yang salah ini disebabkan karena detektor suhu dan asap yang kurang baik. Merespon alarm membutuhkan biaya yang cukup banyak. Bahkan di rumah-rumah, kesalahan alarm seringkali mengganggu sehingga penggunanya justru sengaja mematikan fungsinya (Kompas Rabu, 26 Oktober 2005). Hal ini sebenarnya dapat berbahaya karena dengan matinya sistem alarm yang ada, maka tidak ada peringatan dini bila terjadi kebakaran dan pada akhirnya kobaran api bisa saja lebih meluas dan menghancurkan bangunan-bangunan atau benda-benda disekitarnya terutama yang mudah terbakar. Berdasarkan data/statistik kebakaran Provinsi DKI Jakarta tahun 1998 ~ 2008 didapat data sebagai berikut:

Tabel 2. Data Kebakaran Provinsi DKI Jakarta 1998 – 2008

	Frekwensi	Penghuni	Korban		Luas	Kerugian
Tahun		(Jiwa)	(Tewas)	(Luka)	(m²)	(Rupiah)
2008	98	2.999	2	3	14.650	12.470.000.000
2007	855	29.334	15	63	352.192	168.675.120.000
2006	902	14.449	17	8 5	349.181	142.992.500.000
2005	742	22,424	37	35	369.210	144.683.575.000
2004	805	24.553	29	83	335.068	119.767.710.080
2003	888	18.657	39	245	16.157.594	109.838.835.000
2002	860	36 744	23	34	898.936	130.947.140.000

2001	772	33.126	18	38	442.362	191.884.910.000
2000	791	7.380	36	71	358.554	74.344.985.000
1999	725	7.092	31	46	234.410	54.030.165.000
1998	796	29.005	76	54	746.335	105.457.000.000
Total	8.243	225.763	323	757	20.258.492	1.255.091.940.080

Adapun sebagai data-data tambahan kebakaran berdasakan Kliping Bencana WALHI KalSel hari Minggu tanggal 29 Oktober 2006 sebagai berikut:

Tabel 3. Data Kebakaran Kliping Bencana WALHI KalSel

Tanggal & Waktu Kejadian	Lokasi	Jumlah Terbakar	Kerugian	Penyebab
24 Oktober 2006 10.00 Wita	Pasar Baru Belakang Menseng Banjarmasin	8 Kios	± 500 juta	Korsleting arus pendek
24 Oktober 2006 22.00 Wita	Jl. S. Parman, Gg. Sampoerna Rt 7	1 pos Keamanan	±3 juta	Korsleting arus pendek
25 Oktober 2006 02.00 Wita	Jl. Alalak Tengah Rt 1	40 Rumah	Belum diperkirakan	Korsleting arus pendek
25 Oktober 2006 17.00 Wita	Kampung Gadang, Gg. Binjai Rt 9	5 Rumah	± 100 Juta	Korsleting arus pendek
25 Oktober 2006 19.20 Wita	Alalak Selatan Rt 7,Rt 8, dan Rt 9	212 Rumah	± Miliaran Rupiah	Tetesan bensin terkena nyala lilin

Dari data-data diatas, dapat dilihat bahwa mayoritas penyebab terjadinya kebakaran adalah karena adanya korsleting arus pendek yang awalnya tidak diketahui dan tiba-tiba sudah melahap rumah atau bangunan lain disekitarnya. Hal ini terjadi karena tidak ada adanya sensor atau alarm kebakaran yang dipasang, sehingga api terlanjur membesar

Kebanyakan alarm ruangan didesain untuk berbunyi ketika asap di udara mencapai konsentrasi tertentu. Tetapi, selama ini detektor tidak sanggup membedakan sumber-sumber asap, seperti asap yang berasal dari penggorengan di dapur, atau asap dari kasur yang terbakar di kamar misalnya.

Oleh karena itu diperlukan sebuah detektor yang dapat memperingatkan adanya gejala awal dari kebakaran berupa perubahan suhu yang ekstrim maupun kepekatan asap (kandungan gas CO dalam asap) yang tidak sewajarnya, sekaligus memberitahukan informasi mengenai posisi dari ruangan mana yang diperkiraan menjadi sumber adanya kebakaran tersebut.

B. Perumusan Masalah

Pada umumnya detektor kebakaran terdiri dari sensor asap (salah satu kandungan dalam asap adalah gas CO) atau sensor suhu saja, akan tetapi dapat mengalami kendala ketika ada asap yang berasal dari dapur, yang ternyata berasal dari kompor atau alat-alat yang menghasilkan panas. Untuk mengatasi hal tersebut, diperlukan sebuah detektor yang

menggahungkan kadas samaa (----1 (. . .

C. Maksud dan Tujuan

Menciptakan sebuah alat yang menggabungkan antara sensor suhu, sensor gas CO serta kamera pemantau dengan maksud sebagai pengindera kebakaran pada suatu ruangan dalam kondisi normal maupun tidak normal yang dapat mengindikasikan terjadinya kebakaran atau tidak didalam ruangan tersebut. Serta dapat memberikan informasi berupa tampilan gambar/video mengenai ruang yang diperkirakan menjadi sumber indikasi kebakaran.

D. Kontribusi

Hasil dari pembuatan detektor ini diharapkan akan memberikan manfaat:

- Menjadi sebuah alarm peringatan dini yang lebih akurat dan dapat digunakan disetiap ruangan yang diperlukan.
- 2. Menginformasikan ruangan yang diperkirakan terbakar, sehingga titik kebakaran lebih cepat diketahui.