BAB I
PENDAHULUAN

1.1. Latar Belakang Masalah

Back to nature merupakan istilah yang tepat untuk menggambarkan kondisi ilmu pengetahuan saat ini. *Natural Composite (NACO)* merupakan salah satu *smart materials* yang memiliki peluang untuk menggeser penggunaan bahan logam dan komposit sintetis. Ketergantungan pada bahan sintetis impor merupakan kebijakan terbalik dengan kondisi alam Indonesia yang maha kaya akan sumber daya alam. Produksi serat alam penguat NACO cukup berlimpah (Diharjo, 2003). Konsep pemanaftaan bahan serat alam lokal sebagai penguat NACO untuk di aplikasikan pada berbagai produk merupakan pemikiran yang sangat luahir.

Dengan semakin mahalnya harga material logam, tingginya biaya proses pembuatan logam tertentu, penggunaan material komposit mulai banyak dikenal dalam industri manufaktur. Material yang ramah lingkungan, mampu didaur ulang, serta mampu dihancurkan sendiri oleh alam, maka industri mulai beralih pada material non-logam, seperti komposit dengan material pengisi serat alam. Dilihat dari harga bahan baku dan biaya proses pembuatannya, material komposit serat alam relatif lebih murah di bandingkan dengan material logam. (Fajar, 2008). Bahan komposit menggabungkan keunggulan kekuatan dan kekakuan serat dengan massa jenis matriks yang rendah. Hasilnya adalah suatu bahan yang ringan tetapi kuat dan kaku. Disamping itu, material komposit juga memiliki beberapa kelebihan diantaranya mampu menggantikan bahan logam (kekuatan tinggi), rasio antara kekuatan dan densitasnya cukup tinggi (ringan), murah, proses pengerasan sangat sederhana (tidak memerlukan proses permesinan), dan tahan korosi (komposit non logam) (Veindra, 2007).

Indonesia merupakan negara agraris yang kaya akan penghasil kayu. Luas hutan di Indonesia adalah 1.568.415,63 ha dengan potensi 39.416.557 m³ (Ditjen BPK, 2005). Jumlah pohon siap tebang 7.485.993 atau potensi produksi
19.621.480 m³ Tanaman yang sering ditanam antara lain tanaman jati, mahoni, sengon laut dan lainnya.

Menurut data Dinas Kehutanan dan Perkebunan Kabupaten Wonosobo, hasil hutan Non HPH Kabupaten Wonosobo berupa kayu gergajian dari tahun 2006 hingga 2009 mengalami peningkatan, rata-rata pertumbuhannya adalah 27,36%. Pada tahun 2006 hasil kayu gergajian di Wonosobo mencapai 16.482,15 m³, tahun 2007 naik menjadi 63.301,00 m³, tahun 2008 juga naik mencapai 83.897,18 m³ dan pada tahun 2009 kembali mengalami peningkatan menjadi 106.857,737 m³. Hal ini menunjukkan bahwa limbah kayu gergajian mengalami kenaikan pula pada setiap tahunnya. Diketahui industri penggajian kayu menghasilkan limbah yang berupa serbuk gergaji 10,6%, sebetul 25,9% dan potongan 14,3% dengan total limbah sebesar 50,8% dari jumlah bahan baku yang di gunakan. Produksi total kayu gergajian Indonesia mencapai 2,6 juta m³ pertahun. Dengan asumsi, jumlah limbah yang terbentuk 54,24% dari produksi total, maka dihasilkan limbah penggajian kayu sebanyak 1,4 juta m³ per tahun. Angka tersebut cukup besar karena menurut data Forestry Statistics of Indonesia 1997/1998, hasil itu mencapai sekitar separuh dari produksi kayu gergajian. (http://www.kabupatenwonosobo.com/, 2011).

Penelitian yang dilakukan oleh Wahyanto (2004) menyimpulkan bahwa komposit sandwich serat gelas acak 300 g/m² pada Vr = 30% bermatrik polyester dengan core kayu sengon laut setebal 10 mm memiliki kekuatan flexural dan impak adalah 125,44 MPa dan 0,045 MPa.

Komposit hybrid sandwich serat E-glass acak 300 g/m² dan kenaf anyam 810 g/m² pada Vr = 30% bermatrik polyester dengan core kayu sengon laut setebal 10 mm, kekuatan flexural dengan core arah serat kayu horizontal adalah 263,28 MPa, lebih besar 81% di atas komposit sandwich hybrid dengan kayu vertical 97,5 MPa. Kekuatan impak komposit sandwich dengan core vertical 0,0604 J/mm², lebih besar 4,4% di atas kekuatan impak dengan core arah serat kayu horizontal 0,0578 J/mm² (Febrianto dan Diharjo, 2004).

Penguji an yang dilakukan oleh Aminudin (2010) tentang sifat fisik dan mekanis komposit papan partikel serat kulit kacang tanah resin epoxi
menunjukan bahwa pada fraksi volume 20%, 30% dan 40% kekuatan tegangan
flexural rata-rata komposit sebesar 20,67 MPa, 29,61 MPa, dan 43,05 Mpa.
Regangan flexural rata-rata pada $V_f = 20\%$ yaitu 0,0033, pada $V_f = 30\%$ yaitu
0,0038, dan pada $V_f = 40\%$ adalah 0,0048. Kemudian hasil nilai modulus
elastisitas rata-rata fraksi volume 20% yaitu 6,31 GPa, fraksi volume 30% yaitu
7,94 GPa, dan fraksi volume 40% yaitu 9,07 GPa.

Uraian di atas menunjukan bahwa penggunaan serbuk kayu sengon laut
sangat berpotensi untuk dikembangkan sebagai bahan penguat material komposit.
Pada penelitian sebelumnya komposit serbuk gergaji kayu sengon lebih banyak
digunakan sebagai core pada komposit sandwich. Maka dari itu perlu dilakukan
penelitian lebih lanjut mengenai serbuk gergaji kayu sengon, pada penelitian ini
peneliti mencoba menggunakan serbuk gergaji kayu sengon dengan matrik
polyester sebagai bahan penguat komposit supaya serbuk gergaji kayu sengon
dapat lebih bermanfaat, tidak hanya dianggap sebagai limbah. Penelitian ini
dilakukan untuk mendapatkan data berupa kekuatan flexural dari komposit serbuk
ergaji kayu sengon menggunakan matrik polyester. Maka dengan penelitian ini
diharapkan dapat bermanfaat dalam bidang industri manufaktur dan kehidupan
rumah tangga.

1.2. Identifikasi dan Batasan Masalah

Berdasarkan uraian latar belakang masalah di atas, maka permasalahan
yang dapat teridentifikasi adalah:

1. Terdapat banyak serbuk gergaji limbah industry kayu sengon yang belum
termanfaatkan.
2. Limbah tersebut selama ini baru di manfaatkan sebagai bahan bakar
sehingga nilai ekonomisnya masih rendah.
3. Untuk dapat memanfaatkan secara optimal limbah tersebut sebagai pengisi
material komposit, di perlukan karakterisasi produk kompositnya,
sedangkan penelitian tentang karakteristik material komposit serbuk
gergaji kayu sengon yang dikombinasikan dengan resin polyester masih sangat jarang di laporkan.

Dari beberapa permasalahan tersebut, maka dalam penelitian ini masalah yang akan dikaji dibatasi hanya pada masalah yang ketiga saja.

1.3. Rumusan Masalah

Dari pembatasan masalah di atas, dapat di rumuskan permasalahan operasional yakni:

1. Bagaimana pengaruh variasi ukuran butir terhadap kekuatan flexural komposit serbuk gergaji kayu sengon berpengguat polyester.
2. Bagaimana pengaruh variasi kandungan perekat terhadap kekuatan flexural komposit serbuk gergaji kayu sengon berpengguat polyester.
3. Bagaimana karakteristik patahan uji flexural pada material komposit serbuk gergaji kayu sengon berpengguat polyester.

1.4. Asumsi

1. Diasumsikan void yang terdapat pada material komposit sangat kecil dan dapat diabaikan.
2. Diasumsikan distribusi serbuk merata dan kontinu sepanjang spesimen uji.
3. Diasumsikan serbuk yang digunakan homogen.

1.5. Tujuan Penelitian

Tujuan dilakukannya penelitian tentang pemanfaatan limbah serbuk gergaji kayu sengon ini adalah sebagai berikut:

1. Mengetahui pengaruh ukuran butir terhadap kekuatan flexural material komposit dengan matrik polyester berpengguat serbuk gergaji kayu sengon.
2. Mengetahui pengaruh kandungan perekat terhadap kekuatan flexural material komposit dengan matrik polyester berpengguat serbuk gergaji kayu sengon.
3. Mengetahui karakteristik patahan pengujian flexural yang terjadi pada material komposit serbuk gergaji kayu sengon berpenguat polyester.

1.6. Manfaat Penelitian
Manfaat yang diharapkan dari penelitian ini adalah terciptanya sebuah material baru yang tersusun dari serbuk gergaji kayu sengon dan matrik polyester yang diharapkan dapat menjadi sumber material alternatif, yang memiliki keunggulan dalam hal kekuatan, ringan, tahan korosi, dan ekonomis. Manfaat lain apabila dilakukan penelitian lebih lanjut hasil dari penelitian ini dapat digunakan sebagai dasar acuan dan pembanding.

1.7. Sistematika Penulisan
Dalam penulisan tugas akhir ini menggunakan sistematika penulisan sebagai berikut:

BAB I Pendahuluan
Berisi tentang latar belakang, identifikasi dan batasan masalah, rumusan masalah, asumsi, tujuan penelitian, manfaat penelitian, dan sistematika penulisan.

BAB II Dasar Teori
Berisi tinjauan pustaka, pengertian komposit, klasifikasi bahan komposit, serat, matrik, sifat mekanik komposit, kekuatan flexural, karakteristik penampang patahan material komposit.

BAB III Metode Penelitian
Berisi tentang diagram alir penelitian, bahan dan alat penelitian, standar uji yang digunakan, jalannya penelitian, pembuatan spesimen, proses pengujian komposit, dan teknik analisis data yang digunakan.

BAB IV Hasil dan Pembahasan
Berisi tentang hasil pengujian flexural dan grafik hasil pengujian flexural, hasil pengamatan foto makro, serta pembahasannya dengan membandingkannya dengan penelitian sejenis yang terdahulu.

BAB V Penutup
Berisi tentang kesimpulan dan saran.
Daftar Pustaka

Memuat sumber rujukan berisi jurnal, buku, majalah, koran, website, dan wawancara yang benar-benar di rujuk dan di muat dalam naskah skripsi.

Lampiran

Lampiran adalah uraian atau keterangan tambahan yang penting yang di letakkan pada akhir atau bagian belakang dari tulisan yang jika di tempatkan pada bagian utama akan mengganggu kesinambungan dan alur tulisan, yang dapat berupa gambar, foto, grafik, serta dokumen pendukung lainnya.