BAB III

METODE PENELITIAN

3.1 Perancangan Perangkat Keras

3.1.1 Blok Diagram

Diagram blok pengembangan *breastpump* elektrik berbasis mikrokontroler *ATMega8535* dilengkapi dengan pengatur waktu dan tekanan dapat dilihat pada Gambar 3.1.

Gambar 3.1 Blok Diagram.

Tombol *Up/Down* digunakan untuk pemilihan *timer*. Tombol *Enter* digunakan untuk mengeksekusi program yang telah dipilih melalui tombol *up/down*. *Reset* digunakan untuk membalikan program ke awal, mulai dari inisialisasi *LCD*. *LCD* sebagai tampilan dan *buzzer* sebagai indikator. Mikrokontroler akan mengeluarkan logika 0 atau 1 dan mengumpankannya pada *driver* dan *buzzer*. Logika 0 dan 1 dari

mikrokontroler mengatur aktif dan tidaknya *driver*. Ketika *Driver* aktif maka motor bekerja. Ketika motor bekerja, proses *cupping*/penghisapan dimulai.

3.1.2 Diagram Mekanis Sistem

Diagram mekanis sistem dari pengembangan *breastpump* elektrik berbasis mikrokontroler *ATMega8535* dilengkapi dengan pengatur waktu dan tekanan dapat dilihat pada Gambar 3.2.

Gambar 3.2 Diagram Mekanis Sistem.

3.1.3 Rangkaian Power Supply

Rangkaian *power supply* ialah sumber tegangan AC yang akan diubah menjadi tegangan DC kemudian turun menjadi keluaran 9 Volt dan 5 Volt. Skematik rangkaian *power supply* dapat dilihat di Gambar 3.3 dan *layout Power Supply* dapat dilihat di Gambar 3.4.

Gambar 3.3 Skematik Rangkaian Power Supply.

Perhitungan untuk pemilihan nilai resistor :

Vin	$= V_R + V_D$
15 V	= IxR + 1,5
15 V	= 20 mA x R
15 V — 1,5	= 20 mA x R
13,5 V	200 mA x R
R	$=\frac{13,5 V}{200 mA}$
R	= 675 <i>Ohm</i>

Gambar 3.4 Layout Power Supply.

3.1.4 Rangkaian Driver

Rangkaian *driver* sebagai pengontak dari perintah sistem ke motor apabila diberi logika 1 maka *driver* akan bekerja dan *relay* mengontak motor untuk bekerja. Skematik dari rangkaian *driver* dapat dilihat di Gambar 3.5.

Gambar 3.5 Skematik Rangkaian Driver

3.1.5 Rangkaian Minimum Sistem

Minimum sistem digunakan sebagai pengatur atau otak dari alat dan pengatur *driver* motor. Skematik dari rangkaian minimum sistem dapat dilihat di Gambar 3.6 dan *layout* dari minimum sistem dapat dilihat di Gambar 3.7.

Gambar 3.6 Skematik Rangkaian Minimum Sistem.

Gambar 3.7 Layout Minimum Sistem

3.2 Perancangan Perangkat Lunak

3.2.1 Diagram Alir

Diagram alir dari breastpump elektrik dapat dilihat di Gambar 3.8.

Gambar 3.8 Diagram Alir.

Pertama kita memilih waktu yang akan digunakan (1-15 menit), selanjutnya tekan *enter*, kemudian motor akan bekerja/memulai *pemvakuman*, tekanan mulai bekerja. Setelah itu kita dapat secara manual mengatur tekanan yang diinginkan dengan cara memutar knop, jika waktu sudah tercapai tetapi volume belum tercapai maka motor akan berhenti, jika waktu belum tercapai dan volume sudah tercapai motor akan berhenti, jika waktu dan volume sudah tercapai, motor akan berhenti.

3.2.2 Program

Untuk pembuatan program pada modul ini menggunakan aplikasi AVR dengan bahsa C. Program yang digunakan ialah program ADC sebagai pengendali *driver* dan *timer* sebagai pengontrol waktunya.

Berikut langkah-langkah setting timer :

 Memilih *timer* yang digunakan dalam pengaturan *timer* dapat dilihat pada Gambar 3.9.

1	CodeW	izardAVR	- untitle	d.cwp	
	<u>F</u> ile <u>P</u> rog	gram <u>E</u> di	t <u>H</u> elp		
	🖸 👄 🖡	. jej .	<u>i</u>		a 🗈 (
	USART 12C Alphar Bit-Ba Chip Timer0 Clock S Clock V	Analog Co 1 numeric LC nged Ports Timer1 Source:	omparator Wire D Proj. Extern Timer2 System D	ADC Tw Graphi act Inforr al IRQ Watchde	SPI /1 (12C) c LCD mation Timers og
2	Timer V	arflow Interr	upt		

Gambar 3.9 Pengaturan Timer.

2.	Setelah	memilih	timer,	kemudian	atur	timer	sesuai	yang	dipilih.
	Pemiliha	an <i>timer</i> d	apat dil	ihat pada G	amba	r 3.10.			

Gambar 3.10 Pemilihan *Timer*.

3. Kemudian atur *clock value* untuk mengaktifkan *interrupt overflow timer1*. *Setting clock value* dapat dilihat pada Gambar 3.11.

🚯 CodeW	izardAVR	l - unti	tled.co	wp	
<u>F</u> ile <u>P</u> rog	jram <u>E</u> d	lit <u>H</u> el	р		
🖄 🗁 🖥		<u>i</u> 43) E	i Pe	🖹 ?
USART	Analog C	compara	tor 4	ADC	SPI
12C	-	l Wire		TWI (I	2C)
Alphar	numeric L(CD	G	raphic L	.CD
Bit-Ba	nged	Pi	roject l	Informat	tion
Chip	Ports	Exte	rnal IF	RQ	Fimers
Timer0	Timer1	Timer2	Wa	tchdog	
Clock 9	ource:	System	n Clock	<	-
Clock V	/alue:	625,00	10 kHz		-
Mode:	Normal to	Timer1 40000,	Stopp 000 kl	ed Hz	
Out. A:	Discon.	625,00	0 kHz	2	
		156,25 39,063	0 kHz kHz		
Input C	apt. : 🗖	Noise C	Cancel		<u>·</u>
Interrup	ot on: 🔲	Timer1	Overfl	ow	
Value:	0	h In	р. Сар	oture: 0	h
Comp. /	A: 0	h B: ()	n	

Gambar 3.11 Setting Clock Value.

4. Kemudian beri tanda centang pada *interrupt on*, hal ini berfungsi agar ada dua program yang berjalan. *Setting interrupt on* bisa dilihat pada Gambar 3.12.

CodeWizardAVR - untitled.cwp
<u>F</u> ile <u>P</u> rogram <u>E</u> dit <u>H</u> elp
📉 🗁 🕞 🛞 🔯 🍩 🕒 🗎 🚺
USART Analog Comparator ADC SPI
12C 1 Wire TWI (12C)
Alphanumeric LCD Graphic LCD
Bit-Banged Project Information
Chip Ports External IRQ Timers
Timer0 Timer1 Timer2 Watchdog
Clock Source: System Clock -
Clock Value: 625,000 kHz 🔻
Mode: Normal top=0xFFFF
Out. A: Discon. 💌 Out. B: Discon. 💌
Input Capt. : Noise Cancel
Interrupt on: Timer1 Overflow
Value: 0 h Inp. Capture: 0 h
Comp. A: 0 h B: 0 h

Gambar 3.12 Setting Interrupt On.

5.	Kemudian	ubah	value	dengan	setting	0bdc.	Setting	value	dapat	dilihat

di Gambar 3.13.

4	CodeWi	izardAVF	R - untitl	ed.cwp	
F	ile <u>P</u> rog	ram <u>E</u> o	lit <u>H</u> elp	0	
E	¥ 👄 🖡		<u>i</u> 🚳	le e	
	USART I2C Alphar Bit-Ba Chip Timer0 Clock S Clock V Mode: [Out. A:	Analog 0 numeric Li nged Ports Timer1 ource: 'alue: Normal to Discon.	Comparation 1 Wire CD Pro Exter Timer2 System 625,000 op=0xFFF	or ADC TWI Graphic Dject Inform nal IRQ Watchdo Clock) kHz F B: Discor	SPI (I2C) LCD ation Timers
	Input C Interrup Value: Comp. /	apt. : 🔽 t on: 🔽 Obdc A: O	Noise Ca Timer1 C h Inp h B: O	ancel Verflow Capture: h	 0 h

Gambar 3.13 Setting Value.

Listing program timer diperlihatkan pada Listing 3.1.

```
void setting timer()
{
       if(b==0)
       {
       if(PINB.2==0)
       {
       menit++;delay_ms(500);lcd_clear();
       }
       else if(menit>15)
       {
        menit=0;
       }
       if(PINB.3==0)
       {
        menit--;delay ms(500);lcd clear();
       }
       else if(menit<0)</pre>
       {
        menit=0;
       }
}
}
void mulai timer()
{
 if(timer_aktif==1)
  TCCR1B=0x04; PORTD.2=0;
 }else
if(timer aktif==0){TCCR1B=0x00;PORTD.2=1;}}
void stop_timer()
{
 if(menit==0&&detik==0&&c==1)
 {
   timer aktif=0;
   PORTD.1=1;
 }
// Declare your global variables here
void main(void)
```

Listing 3.1 Program Timer.

Listing program *timer* ini digunakan sebagai pengatuan *timer* waktu saat sistem bekeja, waktu yang diatur dalam *listing* program ini yaitu 1 sampai 15 menit dengan metode *counter down*.

Listing Program ADC diperlihatkan pada Listing 3.2.

```
#define ADC_VREF_TYPE 0x40
// Read the AD conversion result
unsigned int read_adc(unsigned char adc_input)
{
    ADMUX=adc_input | (ADC_VREF_TYPE & 0xff);
    // Delay needed for the stabilization of the ADC
    input voltage
    delay_us(10);
    // Start the AD conversion
    ADCSRA|=0x40;
    // Wait for the AD conversion to complete
    while ((ADCSRA & 0x10)==0);
    ADCSRA|=0x10;
    return ADCW;
```

Listing 3.2 Program ADC.

Listing ADC (*Analog To Digital Converter*) adalah perangkat elektronika yang berfungsi untuk mengubah sinyal analog (sinyal kontinyu) menjadi sinyal digital. Perangkat ADC (*Analog To Digital Convertion*) dapat berbentuk suatu modul atau rangkaian elektronika maupun suatu chip IC. ADC (*Analog To Digital Converter*) berfungsi untuk menjembatani pemrosesan sinyal analog oleh sistem digital(*Iswanto, 2008*).

3.3 Perancangan Pengujian

3.3.1 Jenis Pengujian

- 1. Mengukur tegangan menggunakan alat ukur multimeter pada tekanan *breastpump* bertujuan untuk perbandingan.
- 2. Uji tekanan dengan praktek langsung pada ibu menyusui.
- 3. Kalibrasi tekanan breastpump dengan Dpm.
- 4. Mengukur waktu dengan menggunakan stopwatch.

3.3.2 Pengolahan Data

Jenis penelitian ini menggunakan metode *Pre Eksperimental* dengan jenis "*One group Post Test Design*" yaitu alat *breastpump* ini bekerja dengan tekanan dan *timer* yang di atur kemudian motor akan berhenti apabila tekanan tercapai/waktu telah tercapai kemudian proses selesai. Sehingga penulis hanya melihat hasil tanpa mengukur keadaan sebelumnya.

Desain dapat digambarkan sbb :

 $X \longrightarrow 0$

X = *treatment*/perlakuan yang diberikan (varibel independen)

O = Observasi (variabel dependen)

Variabel Penelitian

1. Variabel Bebas

Sebagai variabel bebas yaitu daya vakum/tekanan.

2. Variabel Tergantung

Sebagai variabel tergantung yaitu pengontrol untuk tekanan (knop).

3. Variabel Terkendali

Variabel terkendali terdiri dari tampilan tekanan dan waktu yang dikendalikan oleh Mikrokontroler *ATMega8535*.

3.3.3 Sistematika Pengukuran

1. Rata-Rata Pengukuran

Adalah nilai atau hasil pembagian dari jumlah data yang diambil atau diukur dengan banyaknya pengambilan data atau banyaknya pengukuran. Rata-rata pengukuran dirumuskan sebagai berikut :

$$\overline{x} = \frac{\sum x_n}{n} \tag{3-1}$$

dengan :

 \bar{x} = Rata – rata $\sum x_n$ = Jumlah x sebanyak n n = Banyak data

2. Simpangan (Error)

Adalah selisih dari rata-rata nilai dari harga yang dikehendaki dengan nilai yang diukur. Simpangn (error) dirumuskan sebagai berikut :

$$simpangan = x_n - \bar{x} \tag{3-2}$$

dengan :

simpangan	= Nilai error yang dihasilkan
<i>x</i> _{<i>n</i>}	= Rata – rata data DPM
\bar{x}	= Rata – rata data modul

3. Persentase Error

Adalah nilai persen dari simpangan (*Error*) terhadap nilai yang dikehendaki. *Presentase error* dirumuskan sebagai berikut :

Persentase Error =
$$\frac{simpangan}{x_n} x \, 100\%$$
 (3-3)

dengan :

Persentase Error = Besarnya simpangan/nilai error dalam %

 x_n = Rata-rata data kalibrator

4. Standard Deviasi (SD)

Adalah suatu nilai yang menunjukkan tingkat v(derajat) variasi kelompok data atau ukuran *standard* penyimpanan dari rata-ratanya. Jika *standard* deviasi semakin kecil maka data tersebut semakin presesi. *Standard deviasi* dirumuskan sebagai berikut :

$$SD = \frac{\sqrt{\sum (x_1 - \bar{x})^2 + (x_2 - \bar{x})^2 + \dots + (x_n - \bar{x})^2}}{n - 1}$$
(3-4)

dengan :

SD = Standar deviasi

$$x = \text{Data } x$$

 \bar{x} = Rata-rata

n =Banyak data