TUGAS AKHIR

Sifat Mekanis Bending dan Buckling Komposit Geopolimer

(Serat Gelas - Serbuk Lumpur Lapindo - Poliester)

Disusun oleh:

Nama

: Muhammad Rizky Kurnia Illahi

NIM

: 20040110073

Program Studi

: S-1 Teknik Sipil

JURUSAN TEKNIK SIPIL
FAKULTAS TEKNIK
UNIVERSITAS MUHAMMADIYAH YOGYAKARTA
YOGYAKARTA
2013

TUGAS AKHIR

Sifat Mekanis *Bending* dan *Buckling* Komposit Geopolimer (Serat Gelas – Serbuk Lumpur Lapindo – Poliester)

Diajukan Guna Memenuhi Sebagian Persyaratan untuk Memperoleh

Derajat Strata 1 pada Jurusan Teknik Sipil Fakultas Teknik

Universitas Muhammadiyah Yogyakarta

Disusun Oleh:

Muhammad Rizky Kurnia Illahi
20040110073

Jurusan Teknik Sipil

Fakultas Teknik

Universitas Muhammadiyah Yogyakarta

2013

HALAMAN PENGESAHAN TUGAS AKHIR

SIFAT MEKANIS BENDING - BUCKLING KOMPOSIT GEOPOLIMER (SERAT GELAS – LUMPUR LAPINDO – POLIESTER)

Disusun Oleh :

Muhammad Rizky Kurnia I

20040110073

Tim Dosen Penguji

Ir As'at Pujianto. MT

Dosen Pembimbing I

Prof. Dr. Kuncoro Diharjo. ST., MT

Dosen Pembimbing II

Bagus Soebandono. ST. M.Eng

Dosen Penguji

Tanggal:

2013

Tanggal: 23

: 23 - L - 2013

anggal.

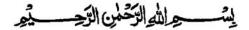
/2013

MOTTO

"Umu pengetabuan tanpa agama= buta, agama tanpa ilmu pengetabuan=lumpub". Albert Einsten

"Wahai anak muda, jika engkau tidak sanggup menahan lelabnya lelajar, engkau barus menanggung pabitnya kebadahan". Prothagaras

"Janzan kecewa afabila basil yang diferoleh tidak seferti yang dibarapkan, Percaya babwa semuanya adalah kesuksesan, bukan kegagalan. Mengapa saya punya banyak kesuksesan? saya tahu banyak usaba yang gagal". Thomas Alfa Edison


ABSTRAK

Seiring dengan perkembangan teknologi dan pertumbuhan penduduk penggunaan material komposit geopolimer mulai banyak dikembangkan dalam dunia industri manufaktur khususnya dalam industri-industri konstruksi teknologi bahan bangunan (beton) yang memiliki sifat mekanik-dinamik tinggi atau tahan terhadap guncangan berat. Penggunaan material komposit yang ramah lingkungan dan bisa didaur ulang kembali,merupakan tuntutan tehnologi saat ini. Salah satu material komposit geopolimer yang diharapkan didunia industri yaitu material komposit dengan material pengisi (filtrasi) baik yang berupa serat alami maupun serat buatan.

Kebutuhan masyarakat akan adanya rumah hunian terus meningkat. Disamping itu adanya tragedi 'Lumpur Lapindo' yang dimulai pada tanggal 27 Mei 2006, menjadi suatu tragedi ketika banjir lumpur panas mulai menggenangi areal persawahan, pemukiman penduduk dan kawasan industri. Namun dibalik itu semua ternyata lumpur lapindo juga dapat memberikan kontribusi positif terhadap perkembangan pembangunan di Indonesia, salah satunya adalah dapat dipergunakan sebagai bahan campuran pembuatan genteng komposit dan profil komposit.

Para ilmuwan mulai mengarah pada pemanfaatan komposit geopolimer sebagai produk unggulan sesuai dengan keistimewaannya sebagai panel sekaligus struktur utama dari suatu komponen tertentu. Pada dasarnya material komposit merupakan gabungan dari dua atau lebih material yang berbeda menjadi suatu bentuk unit mikroskopik, yang terbuat dari bermacam-macam kombinasi sifat atau gabungan antara serat dan matrik. Saat ini bahan komposit yang diperkuat dengan serat merupakan bahan teknik yang banayak digunakan karena kekuatan dan kekakuan spesifik yang jauh diatas bahan teknik pada umumnya,sehingga sifatnya dapat didesain mendekati kebutuhan (Jones,1975).

KATA PENGANTAR

السَّلامُ عَلَيْكُمْ وَرَحْمَةُ اللهِ وَبَرَكَاتُهُ

Puji syukur kehadirat Allah SWT atas karunia dan rahmat-Nya hingga penyusun dapat melaksanakan serta menyusun Tugas Akhir dengan judul "Sifat Mekanis *Bending* dan *Buckling* Komposit Geopolimer" ini dengan baik.

Tugas akhir ini disusun sebagai syarat menempuh jenjang pendidikan Strata (S-1) pada Jurusan Teknik Sipil Fakultas Teknik Universitas Muhammadiyah Yogyakarta. Selama melaksanakan dan menyusun tugas akhir, penyusun mendapatkan bimbingan dan bantuan dari berbagai pihak. Dalam kesempatan ini penyusun menyampaikan terima kasih kepada:

- 1. Bapak Ir. As'at Pujianto. MT selaku dosen pembimbing I
- Bapak Prof. Dr. Kuncoro Diharjo. ST.MT selaku dosen pembimbing II
- 3. Bapak Bagus Soebandono. ST. M.Eng selaku dosen penguji
- Dosen-dosen Jurusan Teknik Sipil Univ Muhammadiyah Yogyakarta, atas semua ilmu yang diberikan.
- Alm kedua orang tua, seluruh keluarga tercinta ku atas dukungan dan doa serta cinta kasihnya.
- Teman-teman yang membantu selama pelaksanaan tugas akhir ini.
 Semoga amal baik mereka mendapat rahmat dari Allah SWT.

Penyusun menyadari pula bahwa isi laporan ini masih jauh dari sempurna. Oleh karena itu semua kritik dan saran yang bersifat membangun dapat kami terima guna penyempurnaan laporan tugas akhir ini.

Akhirnya penyusun berharap semoga tugas akhir ini dapat bermanfaat bagi penyusun sendiri, rekan-rekan mahasiswa dan pembaca lainnya.

وَ السَّالَامُ عَلَيْكُمْ وَرَحْمَةُ اللهِ وَيَرَكَاتُهُ

Yogyakarta, Januari 2013

Penyusun

DAFTAR ISI

HALAMAN JUDUL	i
HALAMAN PENGESAHAN	ii
HALAMAN MOTTO	iii
HALAMAN ABSTRAK	iv
KATA PENGANTAR	v
DAFTAR ISI	vi
DAFTAR GAMBAR	viii
DAFTAR TABEL	ix
DAFTAR LAMPIRAN	x
BAB I. PENDAHULUAN	1
1.1. La 1.1. La 2.2. de la 1.0 1.1.	1
1.2. PEMASALAHAN	2
1.3. TUJUAN PENELITIAN	3
1.4. MANFAAT PENELITIAN	3
BAB II. TINJAUAN PUSTAKA	4
2.1. KAJIAN PUSTAKA	4
2.2. PENGERTIAN KOMPOSIT	5
2.3 KLARIFIKASI BAHAN KOMPOSIT	5
2.4. SERAT	7
2.5 MATRIK	
2.6. KATALIS	
2.7. PENGUJIAN BENDING	
2.7. PENGUJIAN BUCKLING	12
BAB III. METODOLOGI PENELITIAN	14
3.1. BAHAN DAN ALAT	14
3.2 IAI ANNYA PENELITIAN	16

BAB IV. HASIL PENGUJIAN DAN PEMBAHASAN	2:
4.1. PERHITUNGAN SERAN DAN MATRIK	23
4.2. HASIL PENGUJIAN BENDING	26
4.3. HASIL PENGUJIAN BUCKLING	29
BAB V. KESIMPULAN DAN SARAN	3
5.1. KESIMPULAN	31
5.2. SARAN	31
DAFTAR PUSTAKA	32
LAMPIRAN	

DAFTAR GAMBAR

Gambar 2.1.	Spesimen uji bending	11
Gambar 2.2.	Metode pengujian bending	11
Gambar 2.3.	Spesimen uji buckling	12
Gambar 2.4.	Metode pengujian buckling	13
Gambar. 3.1.	Serat E- gelas	16
Gambar. 3.2.	Cetakan	16
Gambar, 3.3.	Siever	17
Gambar 3.4.	Oven	17
Gambar 3.5.	Diagram alir penelitian	19
Gambar. 3.6	Manufaktur komposit	20
Gambar. 3.7.	Lumpur kering	21
Gambar. 3.8.	Lumpur halus	21
Gambar. 3.9.	Serbuk lumpur yang dioven	21
Gambar .3.10	Mesin penggiling kopi	21
Gambar. 3.11	Pengukuran dengan timbangan digital	21
Gambar. 3.12	Proses pengadukan	22
Gambar 3.13.	Penuangan matrik ke cetakan	22
Gambar.3.14.	Pemberat	22
Gambar 4.1.	Kurva kekuatan bending	27
Gambar 4.2.	Kurva modulus bending	37
Gambar 4.3.	Kurva kekuatan buckling	32

DAFTAR TABEL

Tabel 2.1.	Sifat Mekanik dari Beberapa Jenis Serat	10
Tabel 3.1.	Kandungan kimia lumpur lapindo	14
Tabel 3.2.	Komposisi senyawa kimia serat gelas	15
Tabel 4.1.	Perhitungan keseluruan dari volume matrik dan lapisan fiber	25
Tabel 4.2.	Perhitungan keseluruan dari berat resin dan serbuk lumpur	26
Tabel 4.3.	Hasil perhitungan uji bending dengan ukuran butir maksimum 0,075 mm	
	(saringan #200)	28
Tabel 4.4.	Hasil perhitungan uji buckling dengan ukuran butir maksimum 0,075 mm	
	(saringan #200)	29

DAFTAR LAMPIRAN

LAMPIRAN 1	HASIL UJI LAB PENGUJIAN BENDING	33
LAMPIRAN 2	HASIL UJI LAB PENGUJIAN BUCKLING	36
L'AMPIRAN 3	ASTM D 695 – 02a UJI BUCKLING	3
LAMPIRAN 4	ASTM D 790 UJI BENDING	38