BAB III
LANDASAN TEORI

A. Aliran Debris (Debris Flow)

Aliran debris adalah suatu endapan material lepas dan material bahan rombakan vulkanik yang mudah tererosi oleh air. Karena intensitas hujan yang sangat tinggi maka endapan yang jenuh akan meluncur ke bawah sebagai hasil erosi. Pada kasus ini aliran debris terbentuk karena adanya limpahan material gunung Merapi yang mengeluarkan jutaan m³ material dan mengendap di lereng gunung. Karena pemicunya adalah air hujan, lahar dingin akan menuju dan memasuki alur-alur pematus pada lereng gunung api serta menjadi deposit pada dasar alur. Pada proses transportasi selanjutnya material ini akan menimbulkan aliran debris di dalam alur. Aliran dengan kecepatan yang tinggi disebut lahar dingin atau aliran debris (Putro, 2011). Berikut skema terbentuknya endapan material aliran debris akibat tererosi hujan:

![Diagram aliran debris](image-url)
Secara umum aliran debris dapat digolongkan menjadi dua jenis yaitu stony-type debris flow dan mud flow. Stony-type debris flow yaitu aliran debris yang didominasi oleh material sedimen berupa batuan dalam ukuran yang relatif besar. Dari pengambilan sampel yang dilakukan di sungai Nojiri, Jepang diperoleh aliran mud flow merupakan aliran debris yang didominasi material sedimen berukuran halus 0,3 – 1 mm dan butiran dibawah 0,1 mm adalah 10% - 30% (Kusumosubroto, 2013). Faktor – faktor umum yang mempengaruhi aliran debris pada kawasan gunung api adalah kemiringan lereng, jumlah material, faktor topografi, geologi tanah, luas daerah pengaliran sungai dan curah hujan.

B. Model simulasi 2D aliran debris

Dalam hal untuk mengestimasi arah aliran debris secara pasti cukup sulit dan kompleks ada beberapa metode untuk melakukannya salah satunya dengan melakukan pemodelan aliran debris dengan model numerik yang diinterpresasikan hasil keluarannya dengan grafis 2D. Dalam pemodelan aliran debris, ada yang mendekati seperti aliran sedimen dengan adanya sedimen suspensi, sedimen bedload, ada yang mendekati dengan satu jenis fluida campuran air, lumpur, pasir dan batu menjadi satu kesatuan, dan ada pula yang memisahkan antara lumpur dan aliran batu-batu.

Pada penelitian yang diusulkan akan digunakan dengan metode yang pertama namun air lumpur diperhitungkan sebagai satu kesatuan fluida. Simulasi aliran debris tersebut didasarkan pada persamaan diferensial parsial yang mengatur aliran debris sebagai berikut:
Persamaan konservasi massa:
\[
\frac{\partial h}{\partial t} + \frac{\partial M}{\partial x} + \frac{\partial N}{\partial y} = 0
\] 3.1

Persamaan konservasi momentum dan gaya:

Arah x,
\[
\frac{\partial M}{\partial t} + \beta \frac{\partial (uM)}{\partial x} + \beta \frac{\partial (vM)}{\partial y} = -gh \frac{\partial H}{\partial x} - \frac{\tau_{bx}}{\rho_T}
\] 3.2

Arah y,
\[
\frac{\partial N}{\partial t} + \beta \frac{\partial (uN)}{\partial x} + \beta \frac{\partial (vN)}{\partial y} = -gh \frac{\partial H}{\partial y} - \frac{\tau_{by}}{\rho_T}
\] 3.3

dengan,

\(h \): tebal aliran (m);
\(M \): debit aliran debris per unit lebar arah x (m²/d);
\(N \): debit aliran debris per unit lebar arah y (m²/d);
\(H \): kedalaman aliran (m).
\(\tau \): tegangan gesek
\(\rho_T \): rapat massa aliran

Persamaan kekekalan massa pada dasar sungai:
\[
c_\ast \frac{\partial z_h}{\partial t} + \left(\frac{\partial q_{bx}}{\partial x} + \frac{\partial q_{by}}{\partial y} \right) = 0
\] 3.4

Dengan,

\(c_\ast \): konsentrasi sedimen di dasar sungai;
\(q_{bx} \): debit sedimen ke arah x;
\(q_{by} \): debit sedimen ke arah y;

\(q_{bx} + q_{by} \): merupakan jumlah sedimen dasar (bedload).

Erosi tebing dipertimbangkan dengan persamaan Ashida, Egashira, dan Kamamoto berikut ini.

\[
q_p = q_{p*} u_* d
\]

\[
q_{p*} = F_0 \tau_* \left(1 - \frac{1}{e^2} \frac{\tau_{sc}}{\tau_*} \right)^3 \left(\frac{h}{d \sin \theta} \right)
\]

\[
u_* = \sqrt{ghI}
\]

\[
\tau_* = \frac{u_*^2}{gd (\sigma/\rho - 1)}
\]

\[
\tau_{sc} = \tau_{sc} \cos \theta_1 \sqrt{1 - \left(\frac{\tan \theta}{\mu} \right)^2}
\]

dengan,

\(q_p \): erosi tebing per unit lebar \((\text{m}^2/\text{d})\);

\(q_{p*} \): erosi tebing per unit lebar (tak berdimensi);

\(u_* \): kecepatan geser dasar \((\text{m/d})\);

\(I \): kemiringan garis energi aliran;

\(\alpha \): kemiringan tebing, dihitung seperti Gambar 3.2.
Gambar 3.2 Kemiringan tebing yang diperhitungkan

Beberapa rumusan debit yang digunakan dalam program simulasi 2D, yaitu

Meyer-Peter & Muler:

\[q_{*b} = 8(\tau_* - \tau_{*c})^{1.5} \] \hspace{1cm} 3.10

Ashida, Takahashi & Miyuzama:

\[q_{*b} = 12\tau_*^{1.5} \left(1 - 0.85 \left(\frac{\tau_{*c}}{\tau_*}\right)^{1}\right)\left(1 - 0.92 \left(\frac{\tau_{*c}}{\tau_*}\right)^{0.5}\right) \] \hspace{1cm} 3.11

Brown:

\[q_{*b} = 10(\tau_* - \tau_{*c})^{2.5} \] \hspace{1cm} 3.12

Dengan,

- \(q_{*b} \): volum debit per satuan lebar (m³/det);
- \(\tau_{*c} \): nilai rata-rata tegangan gesek kritis;
- \(\tau_* \): Shields’ number.

Penyiapan grid dilakukan dengan menggunakan DEM yang disimpan dengan format ASCII. Format ASCII dapat dibaca dengan perangkat lunak geospatial kota. Bagian pertama dari data adalah bagian *header* yang berisi
informasi tentang koordinat titik sudut kiri bawah jarak horisontal dan vertikal antar titik-titik dalam grid dan catatan-catatan seperti angka tanda jika tidak ada data. Berikut contoh hasil simulasi yang ditunjukkan Gambar 3.3:

![Gambar 3.3 Contoh hasil simulasi 2D aliran debris pada Kali Putih, Jember (Argitalia F.K, 2012)](image)

C. Morfologi Sungai

Morfologi sungai merupakan ilmu yang mempelajari tentang perubahan bentuk sungai, penjelasan lebih spesifik morfologi sungai adalah merupakan hal yang menyangkut tentang geometri (bentuk dan ukuran), jenis, sifat dan prilaku sungai dengan segala aspek perubahannya dalam dimensi ruang dan waktu. Dengan demikian, sifat dinamik sungai dan lingkungan saling berkaitan.

Dalam menentukan morfologi sungai, diperlukan data-data geometri sungai meliputi lebar sungai, kedalaman, penampang sungai dan kemiringan dasar dan semacam hal lainnya ditunjukkan pada Gambar 3.4.
1. Menentukan Morfologi Sungai

a. Entrenchment Ratio

Entrenchment Ratio adalah rasio hubungan antara lebar aliran banjir \(W_{fpa}\) terhadap lebar aliran sungai \(W_{bfl}\). Untuk studi saat ini tidak menggunakan alat waterpass, namun hanya digunakan alat meteran untuk melakukan pengukuran.

Gambar 3.5 Cara pengukuran Entrenchment Ratio (Rosgen 1996).

Cara perhitungan dalam menentukan Entrenchment Ratio adalah...
Entrenchment Ratio = \frac{\text{Lebar aliran banjir}(W_{fpa})}{\text{Lebar aliran sungai}(W_{bkt})} \quad 3.13

Keterangan:

\(W_{fpa} \) = lebar aliran banjir (flood – prone area width).

\(W_{bkt} \) = lebar aliran sungai (bankfull surface width).

Entrenchment Ratio pada sungai dibagi menjadi tiga kriteria, yaitu:

1. Aliran berparit besar 1–1,4 mewakili tipe sungai A, F dan G.
2. Aliran berparit tengah antara 1,4–2,2 mewakili tipe sungai B.
3. Aliran berparit sekitar 2,2 ke atas mewakili tipe sungai C, D, dan E.

Gambar 3.6 Entrenchment Ratio mewakili tipe sungai (Rosgen, 1996).

b. Width/Depth Ratio (W/D Ratio)

Width/Depth Ratio adalah rasio hubungan antara lebar antara sungai \((W_{bkt}) \) terhadap kedalaman sungai \((d_{bkt}) \). Adapun rumus yang digunakan adalah:

\[
\text{Width} / \text{Depth Ratio} = \frac{\text{Lebar aliran sungai}(W_{bkt})}{\text{Kedalaman sungai}(d_{bkt})} \quad 3.14
\]
\(W_{bf} \) = lebar aliran sungai (bankfull surface width).

\(d_{gf} \) = kedalaman sungai (bankfull mean depth).

Width/Depth di sungai dibagi dalam 4 kriteria yaitu:

c. Kemiringan Alur Sungai (slope)

Kemiringan alur sungai merupakan salah satu faktor utama dalam menentukan tipe sungai. Data elevasi saluran dan panjang saluran didapat dengan menggunakan metode Sistem informasi geografi yaitu, dengan menggunakan peta DEM (Digital Elevation Map) dari Lidar yang diperoleh dari Balai Sabo.
Data yang diperoleh dari DEM akan dianalisa dengan menggunakan rumus:

\[\text{Kemiringan sungai} = \frac{\Delta h}{L} \times 100\% \]

3.15

Keterangan:

- \(\Delta h \) = perbedaan elevasi 2 titik yang diamati.
- \(L \) = jarak antara 2 titik yang diamati

d. Material Dasar Sungai

Untuk menentukan material dasar sungai maka diambil material yang paling dominan. Ukuran partikel dominan merupakan jumlah yang terbesar dari ukuran partikel yang diamati. Selain itu, dapat juga ditentukan dengan \(d_{50} \). \(d_{50} \) adalah 50% dari populasi sampel yang diamati sehingga mewakili diameter sampel yang diamati yang diperoleh dari grafik distribusi ukuran butiran.

e. Skema Klasifikasi Morfologi Sungai Dave Rosgen

Menurut Dave Rosgen untuk menentukan tipe morfologi suatu sungai ditentukan dengan mengklasifikasikan dan mencari nilai Entranchment Ratio, Width / Depth Ratio, kemiringan saluran (Slope) dan material dasar sungai ke dalam tabel skema klasifikasi morfologi sungai yang ditunjukkan pada gambar 3.8, dari hasil klasifikasi akan didapatkan tipe morfologi suatu sungai. Berikut skema klasifikasi morfologi sungai Dave Rosgen seperti gambar 3.8 di bawah ini:
Gambar 3.8 Bagan alir klasifikasi tipe morfologi (Rosgen, 1996).

2. Tipe-tipe morfologi sungai

Gambaran utama tipe-tipe morfologi sungai menurut Dave Rosgen (1996) ditunjukkan pada Gambar 3.5 sebagai berikut:
a. Tipe sungai Aa+

Tipe sungai Aa+ memiliki kemiringan yang sangat curam (>10%), saluran berparit yang baik, memiliki rasio lebar/kedalaman (W/D ratio) yang rendah dan sepenuhnya dibatasi oleh saluran kecil. Bentuk dasarnya merupakan cekungan luncur atau aliran terjun (super kritis), tipe sungai Aa+ banyak dijumpai pada dataran dengan timbunan agregat, zona pengendapan seperti aliran sungai bersalju, bentuk lahan yang secara struktural dipengaruhi oleh patahan, dan zona pengendapan yang berbatasan dengan tanah residu. Arus sungai umumnya beraliran deras atau terjun(super kritis), tipe sungai Aa+ disebut sebagai sistem suplai sedimen disebabkan lereng saluran yang curam dan potongan melintang yang sempit serta dalam.

b. Tipe sungai kecil A

Tipe sungai A hampir sama dengan tipe sungai Aa+, yang membedakan adalah kemiringan lereng saluran mencapai 4% sampai 10% dan arus sungai umumnya merupakan cekungan dengan air kantung (scour pool).

c. Tipe sungai kecil B

Tipe sungai B umumnya terdapat pada tanah dengan kemiringan yang curam dan sedikit miring. Dengan bentukan lahan utama sebagai kolom bekerang yang sempit, banyak sungai tipe B adalah hasil dari zona struktural, patahan, sambungan, dan bagian lereng lembah yang terkontrol secara struktural menjadi lembah yang sempit yang membatasi pengembangan dataran banjar. Tipe sungai B mempunyai
saluran berparit rasio lebar per kedalaman (W/D ratio) (< 2), sinusitas saluran rendah dan didominasi oleh saluran deras (super kritis). Morfologi bentuk dasar yang dipengaruhi runtuhan dan perbatasan lokal, umumnya menghasilkan air kantung (scour pool) dan aliran deras serta tingkat erosi pinggir sungai yang relatif rendah.

d. Tipe sungai kecil C

Tipe sungai C terdapat pada lembah yang relatif sempit sampai lembah yang lebar berasal dari endapan alluvial. Saluran tipe C memiliki dataran banjir yang berkembang dengan baik, kemiringan saluran < 2 % dan morfologi dasar yang mengindikasikan konfigurasi cekungan. Potongan dan bentuk dari tipe sungai C dipengaruhi oleh rasio lebar per kedalaman (W/D ratio) yang umumnya (<12) dan sinusitas >1,4. Bentuk morfologi utama dari tipe sungai C adalah saluran dengan relief rendah, kemiringan rendah, sinusitas sedang, saluran berparit rendah, rasio per kedalaman tinggi, serta dataran banjir yang berkembang baik.

e. Tipe sungai kecil D

Tipe sungai D mempunyai konfigurasi yang unik sebagai sistem saluran yang menunjukkan pola berjalan dengan rasio lebar per kedalaman (W/D ratio) yang sangat tinggi (> 40), dan lereng saluran yang umumnya sama dengan lereng lembah. Tingkat erosi yang sangat tinggi dan rasio lebar saluran yang sangat rendah, dengan suplai sedimen yang tidak terbatas. Bentuk saluran merupakan tipe pulau yang bermigrasi. Pada saluran benjalin dapat berkembang pada daerah
bermaterial sangat kasar yang terletak pada lembah dengan lereng yang cukup curam, sampai lembah dengan gradient yang rendah, rata, dan sangat bebas yang berisi material yang sangat halus.

f. Tipe Sungai Kecil DA *(Branastomosis)*

Tipe sungai DA *(Branastomosis)* adalah suatu sistem saluran berjalin dengan gradient yang sangat rendah dan lebar aliran setiap saluran bervariasi. Tipe sungai DA merupakan suatu sistem sungai stabil dan memiliki banyak saluran dan rasio lebar per saluran serta *sinousitas* bervariasi dari sangat rendah sampai sangat tinggi.

g. Tipe Sungai E

Tipe sungai E merupakan perkembangan tipe sungai F, yaitu mulai saluran yang lebar, berparit, dan berkelok mengikuti perkembangan daerah banjir dan pemulihan vegetasi dari bekas saluran F. Tipe sungai kecil E agak berparit, yang menunjukkan rasio lebar per kedalaman *(W/D ratio)* tertinggi dari semua tipe sungai. Tipe sungai E adalah suatu cekungan konsisten yang menghasilkan jumlah cekungan dari setiap unit jarak saluran, sistem sungai E umumnya terjadi di lembah aluvial yang mempunyai elevasi rendah.

h. Tipe Sungai F

Tipe sungai F adalah saluran berkelok yang berparit klasik, mempunyai elevasi yang relatif rendah yang berisi batuan yang sangat lapuk atau mudah terkena erosi. Karakteristik sungai F adalah mempunyai rasio lebar per kedalaman saluran *(W/D ratio)* yang sangat tinggi, baik untuk dasar cekungan sedimen.
i. Tipe sungai G

Tipe sungai G adalah saluran bertingkat, berparit, sempit dan dalam dengan sinusitas tinggi sampai sederhana. Kemiringan saluran umumnya >0,02, meskipun saluran dapat mempunyai lereng yang landai dimana sebagai lereng yang dipotong ke bawah. Tipe sungai G mempunyai laju erosi tepi yang sangat besar, suplai sedimen yang tinggi, lereng saluran yang sederhana sampai curam, rasio lebar per kedalaman \((W/D)\) yang rendah, beban dasar tinggi dan laju transport sedimen terlarut sangat tinggi.

D. Hidrograf

Hidrograf adalah kurva yang menggambarkan hubungan antara parameter aliran dan waktu. Hidrograf yang digunakan dalam penelitian ini hidrograf satuan sintetis metode Nakyashu.

Pada tahun 1932, L.K Sherman mengenalkan konsep hidrograf satuan, yang banyak digunakan untuk melakukan transformasi dari hujan menjadi debit aliran. Hidrograf satuan terkurur basis data yang dibutuhkan adalah data hujan dan data debit terkurur ada sedangkan hidrograf satuan sintetis berupa rumusan empiris dimana data yang dibutuhkan adalah karakteristik DAS dan faktor-faktor lain yang mendukung rumusan empiris tersebut. Ada beberapa macam HSS yang dikembangkan antara lain HSS Snyder, HSS Nakayasu, HSS Gama I dan lain-lain (Triatmodjo, 2010). Pengolahan data hidrograf pada aplikasi Simlar Versi 1.1.2011 menggunakan hidrograf satuan dan hidrograf sintestis metode Nakayashu sebagai basis untuk mengolah data hidrograf basii.
Hidrograf satuan sintetis Nakayashu dikembangkan berdasarkan beberapa sungai yang ada di Jepang (Soemarto, 1987). Berikut persamaannya:

\[
Q_p = \frac{1}{36}\left(\frac{A \ Re}{0.3 T_p + T_{0.3}}\right)
\]

\[
T_p = t_g + 0.8 T_r
\]

\[
T_g = 0.4 + 0.058 L \quad \text{untuk} \ L > 15 \text{ Km} ;
\]

\[
t_g = 0.21 L^{0.7} \quad \text{untuk} \ L < 15 \text{ Km}
\]

\[
T_{0.3} = \alpha t_g
\]

\[
T_{0.3} = 0.5 t_g \ sampai \ t_g
\]

Dengan:

\(Q_p\) : debit puncak banjir

\(A\) : luas DAS (km²)

\(Re\) : curah hujan efektif

\(T_p\) : waktu dari permulaan banjir sampai puncak hidrograf (jam)

\(T_{0.3}\) : waktu dari puncak banjir sampai 0,3 kali debit puncak (jam)

\(t_g\) : waktu konsentrasi (jam)
\[\alpha : \text{koefisien karakteristik DAS biasanya diambil 2} \]

\[L : \text{panjang sungai utama (km)} \]

Dari persamaan di atas parameter yang dihasilkan akan membentuk hidrograf satuan dengan dengan menggunakan persamaan berikut ini:

a. Pada kurva naik \((0 < t < T_p)\)

\[Q_t = Q_p \left(\frac{t}{T_p} \right)^{2.4} \quad 3.21 \]

b. Pada kurva turun \((T_p < t < T_p + T_{0.3})\)

\[Q_r = Q_p \times 0.3^{(t-T_p)/T_{0.3}} \quad 3.22 \]

c. Pada kurva turun \((T_p + T_{0.3} < t < T_p + T_{0.3} + 1.5T_{0.3})\)

\[Q_r = Q_p \times 0.3^{(t-T_p)/(1.5T_{0.3})} \quad 3.23 \]

d. Pada kurva turun \((t < T_p + T_{0.3} + 1.5T_{0.3})\)

\[Q_r = Q_p \times 0.3^{(t-T_p)/(2T_{0.3})} \quad 3.24 \]

Berikut bentuk diagram Hidrograf Satuan Sintetis Nakayasu yang ditemukan pada gambar 3.10 di bawah ini:
Berikut diagram hidrograf Kali Gandol ditunjukkan pada Gambar 5.2.

Hidrograf Banjir

Keterangan:

Akibat hujan:
- *(44,75 mm/jam)*
- *(63,14 mm/jam)*
- *(84,85 mm/jam)*

![Hidrograf Banjir](image)

Gambar 5.2 Ordinat hidrograf Nakayashu Kali Gandol

Seperti yang ditunjukkan oleh Gambar 5.2 diketahui hidrograf banjir Kali Gandol dengan tinggi hujan 44,75 mm diketahui debit puncak banjir sebesar $5,66927m^3$/detik, pada jam ke 2,75 jam, untuk tinggi hujan 63,14 mm diketahui Q puncak banjir sebesar $7,99905m^3$/detik, pada jam ke 2,75 jam dan untuk tinggi hujan 84,85 mm di ketahui Q puncak banjir sebesar $10,74944m^3$/detik, pada jam ke 2,75 jam

Program Simlar memiliki keterbatasan ketika mengolah data input hidrograf, data ordinat hidrograf yang bisa dimasukkan maksimum 15 titik ordinat, jadi pada penelitian ini ordinat hidrograf yang akan dijadikan data input hanya 15 titik ordinat dengan durasi 0,50 jam, hal ini dilakukan untuk
\(R_n \) = Curah hujan masing TPH

F. DEM (Digital Elevation Model)

Digital elevasi model adalah salah satu model untuk menggambarkan bentuk topografi permukaan bumi sehingga dapat divisualisasikan ke dalam tampilan 3D. Untuk mendapatkan data DEM ada beberapa metode yang dilakukan, beberapa contohnya yaitu dengan metode:

1) Interferometri SAR (Synthetic Aperture Radar)

SAR merupakan salah satu alogoritma pembuatan DEM dengan data citra SAR atau citra radar yang digunakan dalam proses interferometri dapat diperoleh dari wahana satelit atau pesawat.

2) SRTM (Shuttle Radar Topographic Mission)

SRTM (Shuttle Radar Topographic Mission) merupakan misi untuk membuat data topografi (DEM) dengan menggunakan system radar dari wahana pesawat ulang alik antariksa. Data DEM dari misi ini sudah tersedia untuk seluruh dunia dengan resolusi spasial 90x90 meter, sedangkan untuk resolusi 30x30 hanya tersedia beberapa wilayah saja.

3) LIDAR (Light Detection And Ranging)

Sistem Lidar merupakan perpaduan antara LRF (Laser Range Finder), POS (Positioning and Orientation System) yang mengintegrasikan DGPS (Differential Global Positioning System), IMU (Inertial Measurement Unit) dan Control Unit. Lidar mengumpulkan data dari pantulan permukaan pada saat sorotan (beam) laser mengenai
Pada penelitian ini data DEM dengan ukuran spasial grid yang diperoleh berupa input data yang bersifat sistem informasi geografis yang diolah untuk mendefinisikan nilai kontur atau topografi pada area sungai yang ditinjau dan keluaran yang dihasilkan yaitu berupa simulasi sebaran aliran banjir dehais dan penambangan pecah debri dalam muka bumi 3D.