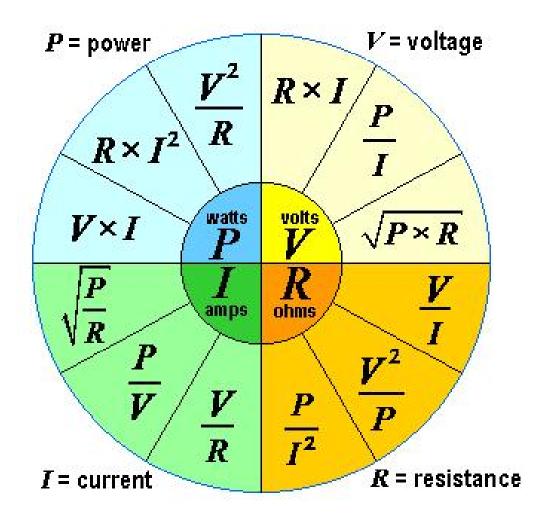
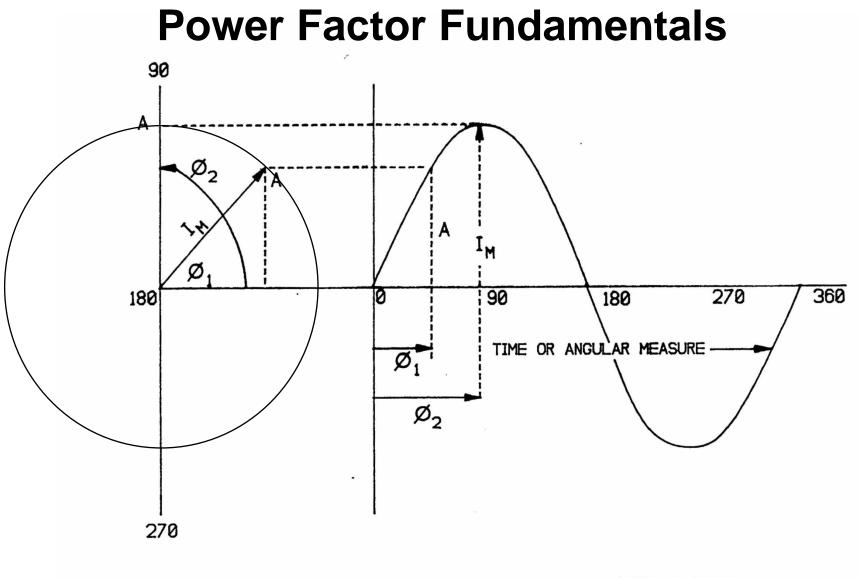


## **Overview of Power Factor Correction**


Presented to Central Vermont Public Service and Efficiency Vermont

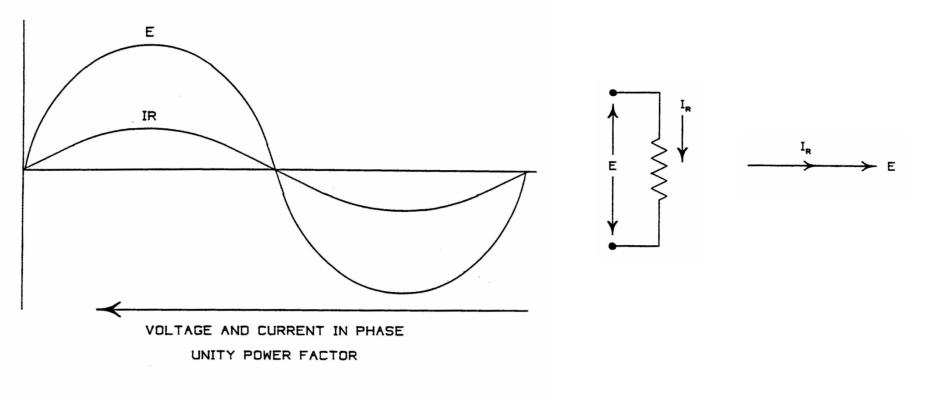
On November 5, 2007

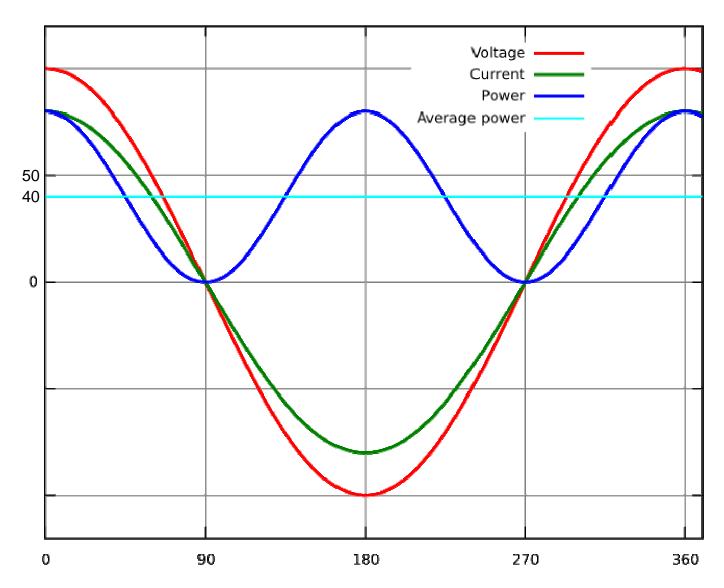
## Topics

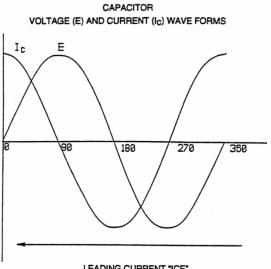

- Basic Formulas (Ohm's Law)
- Power Factor Fundamentals
- Improving Power Factor
- Utility Bill Analysis
- Sizing a Capacitor
- Capacitor Location
- Power Factor Correction Products

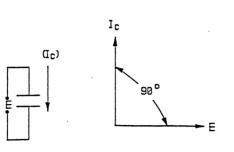
#### **Basic Formulas (Ohm's Law)**




#### Terms to get you started –

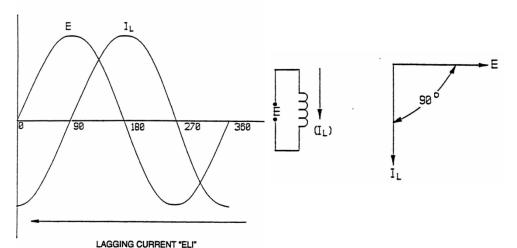

- Active Power
  - Measured in watts (normally shown as kW). Provides the "working" part of the power system. Producing heat, movement...
- Reactive Power
  - Measured in volt-ampere-reactive (normally shown as kVAr). Sustains the electromagnetic field. Provides no "working" part of the power system.
- Apparent Power
  - Measured in Volt-Ampere (normally shown as kVA). Provided both working and nonworking parts of the power system.

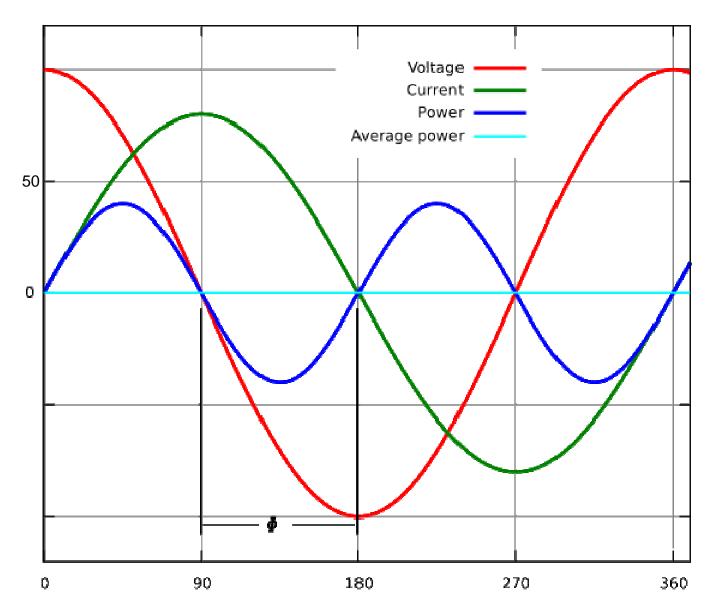


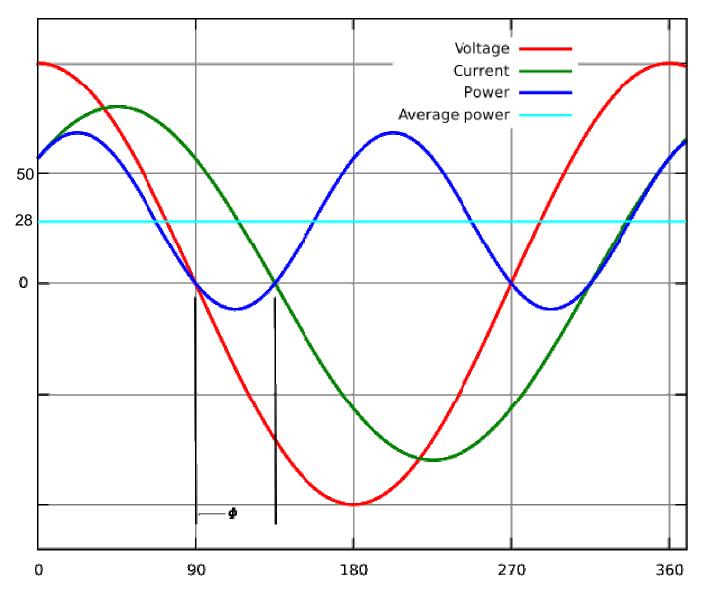


PROJECTION OF A REVOLVING VECTOR REPRESENTS A SINE WAVE

RESISTOR VOLTAGE AND CURRENT WAVEFORMS





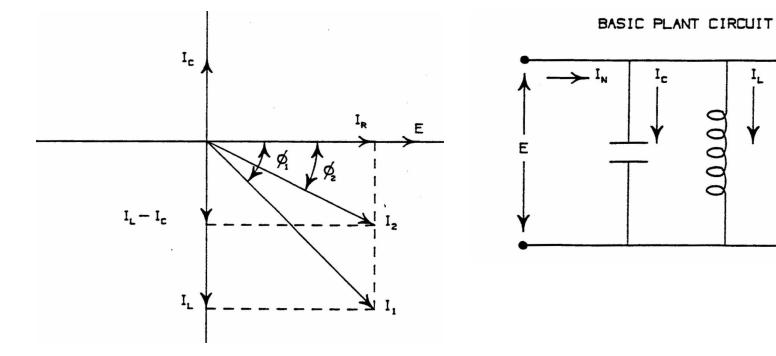




LEADING CURRENT "ICE"

INDUCTOR VOLTAGE (E) AND CURRENT (IL) WAVE FORMS





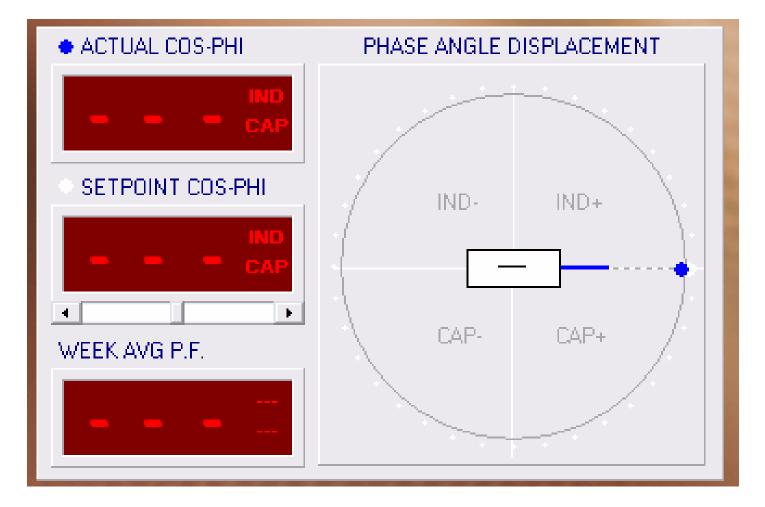



I.

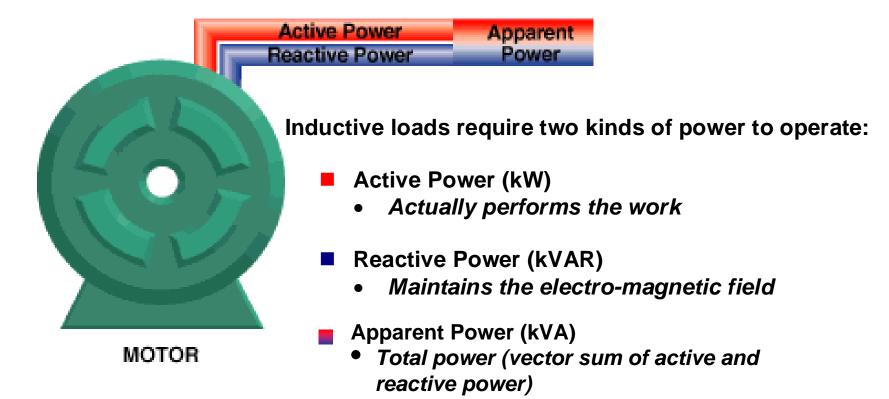
00000

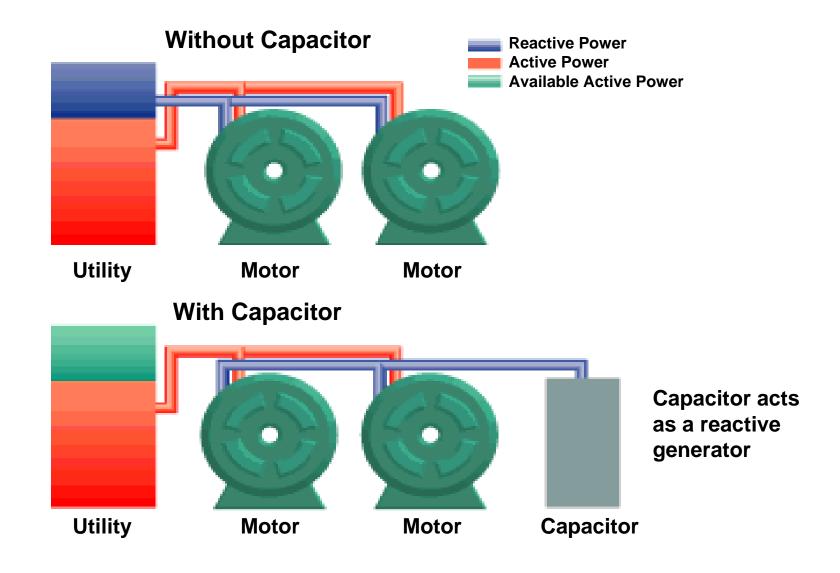
I<sub>R</sub>




#### **Power Factor Triangle**

Power Factor (PF) = Active Power ÷ Apparent Power


PF close to 1.0 means electrical power is being used effectively




Capacitors provide reactive current and as a result reduce kVA and improve power factor



Power Factor is a measure of how effectively power is used





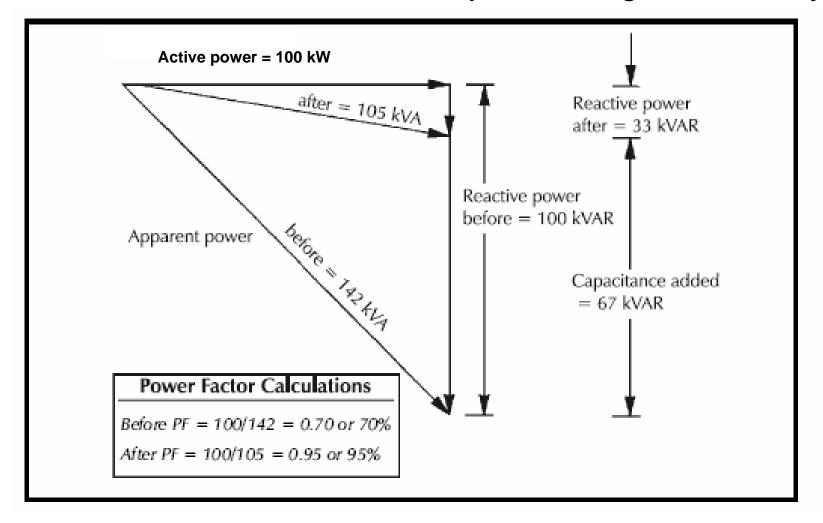


Poor PF 0.70

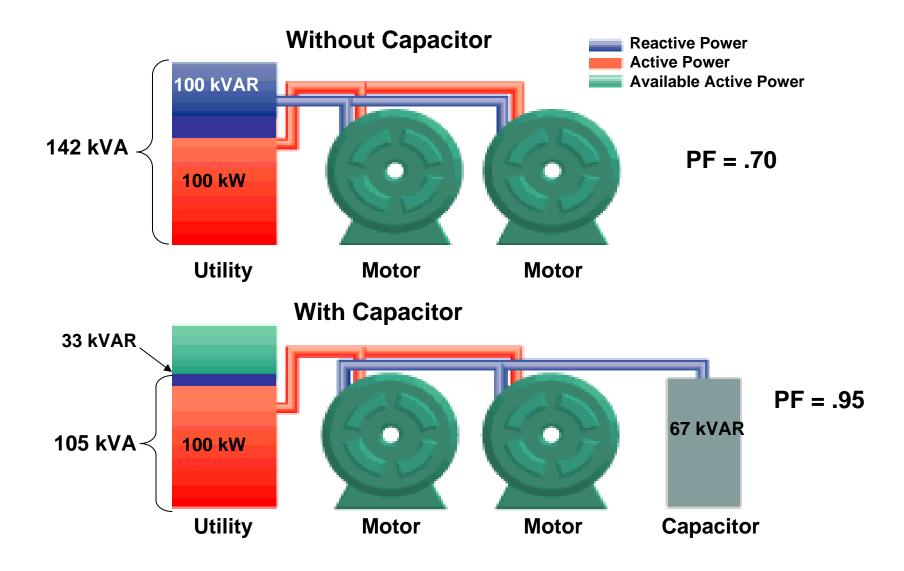


Excellent PF > 0.95

**Power Factor of Typical Electrical Devices** 


| Device              | Power Factor |  |  |  |  |
|---------------------|--------------|--|--|--|--|
| Incandescent Lights | 0.99+        |  |  |  |  |
| Baseboard Heat      | 0.99+        |  |  |  |  |
| Fan Motor           | 0.90         |  |  |  |  |
| Saw Mill Motor      | 0.50         |  |  |  |  |

Low power factor typically results when motors are operated at significantly less than full load. Other examples of motors with low power factor:


- Conveyors
- Compressors
- Grinders
- Punch Presses

#### **Improving Power Factor**

Power Factor (PF) = Active Power ÷ Apparent Power PF close to 1.0 means electrical power is being used effectively



#### **Improving Power Factor**



## **Improving Power Factor**

#### **Benefits of Applying Capacitors**

- Elimination of Penalty Dollars
  - Improves your system power factor, reduces total KVA or KVA-Hours, saving you money on your electric power bill
- Additional Capacity in Electrical System
  - Releases system capacity by reducing KVA on transformers, saving you from making new capital investment to serve new electrical loads
- Reduction of I<sup>2</sup>R Losses
  - Reduces system losses, saving energy costs and allowing your equipment to run cooler and more efficiently
- Improves Voltage on System
  - Allows motors to run more efficiently and cooler, improves their life and operation

Types of Power and Typical Loads

| Type of Power                                                    | Common Names                                                                      | Typical<br>Load/Component                                                                 |  |  |  |
|------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--|--|--|
| <b>KW</b> – Kilowatt<br>(Active Current)                         | Active Power<br>Kilowatt/Watt Power<br>Real Power<br>Resistive Power              | Resistor<br>Incandescent Lights<br>Toasters                                               |  |  |  |
| <b>KVAR</b> = Kilovolt Amperes<br>Reactive<br>(Reactive Current) | Reactive Power<br>Imaginary Power<br>KVAR/VAR Power<br>Inductive/Capacitive Power | Reactors/Inductors<br>Capacitors                                                          |  |  |  |
| Most electrical loads usuall                                     | y need a combination of both                                                      | active and reactive current.                                                              |  |  |  |
| <b>KVA</b> – Kilovolt Amperes<br>(Active + Reactive)             | Apparent Power<br>Complex Power<br>Total Power<br>KVA/VA Power                    | All industrial loads:<br>-Motors<br>-Welders<br>-Variable Speed Drives<br>-Lighting Loads |  |  |  |

Basic Types Of Utility Billing Protocols

| Billing Protocol                             | Concept                                                                                                           | How Capacitors Reduce<br>Cost                                                                                                   |
|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| KVA                                          | Utility bills for every Amp of current,<br>both active and reactive. Typically<br>based on peak current.          | Capacitors reduce reactive<br>current and therefore peak<br>current.                                                            |
| KW demand with<br>power-factor<br>adjustment | Utility bills for KW demand <u>plus</u> a surcharge for low power factor, for example: below 95%, below 85%, etc. | Capacitors increase power factor<br>to minimum required, eliminating<br>surcharge. Sometimes a credit<br>for high power factor. |
| KW demand with<br>reactive demand<br>charge  | Utility bills for KW demand <u>plus</u> a surcharge for excessive reactive demand.                                | Capacitors reduce reactive demand, eliminating surcharge.                                                                       |

Here are savings of a Detroit Edison customer after improving PF to >85. The power triangle started out at 812 KW, 1160 KVA and 828 KVAR. The customer installed capacitor banks totaling 410 KVAr. The final power triangle numbers were 812 KW, 913 KVA and 418 KVAR.

What does that mean in dollars for the customer:

The customer, doing the same amount of work but now with capacitors installed, has eliminated a \$650.00 monthly penalty. This would translate in to an annual savings of \$7,800.00. The capacitors and installation project totaled \$7,351.00. ROI for the project was less than 12 months.

How does this benefit the electrical system:

The utility has to generate 247 less kVA (1160-913=247). The customer has also unloaded his transformer of 247 kVA, which will allow for additional loads in the future without having to increase the transformer size.

A utility bill shows an average power factor of 0.72 with an **average KW** of 627. How much KVAR is required to improve power factor to 0.95?

<u>Using a PFC Multiplier Table (next slide)</u>

- 1. Locate 0.72 (original PF) in column 1.
- 2. Read across desired PF to 0.95 column, intersect at 0.635 multiplier
- 3. Multiply 627 (average KW) by 0.635 = 398 KVAR
- 4. Install 400 KVAR to improve PF to 95%

|          |           | Desired Power Factor (%) |           |           |           |           |           |           |           |           |           |           |           |            |
|----------|-----------|--------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|------------|
|          |           | <u>80</u>                | <u>85</u> | <u>90</u> | <u>91</u> | <u>92</u> | <u>93</u> | <u>94</u> | <u>95</u> | <u>96</u> | <u>97</u> | <u>98</u> | <u>99</u> | <u>100</u> |
|          | <u>68</u> | 0.328                    | 0.459     | 0.594     | 0.623     | 0.652     | 0.683     | 0.715     | 0.750     | 0.787     | 0.828     | 0.875     | 0.936     | 1.078      |
|          | <u>69</u> | 0.299                    | 0.429     | 0.565     | 0.593     | 0.623     | 0.654     | 0.686     | 0.720     | 0.757     | 0.798     | 0.846     | 0.907     | 1.049      |
|          | <u>70</u> | 0.270                    | 0.400     | 0.536     | 0.565     | 0.594     | 0.625     | 0.657     | 0.692     | 0.729     | 0.770     | 0.817     | 0.878     | 1.020      |
|          | <u>71</u> | 0.242                    | 0.372     | 0.508     | 0.536     | 0.566     | 0.597     | 0.629     | 0.663     | 0.700     | 0.741     | 0.789     | 0.849     | 0.992      |
|          | <u>72</u> | 0.214                    | 0.344     | 0.480     | 0.508     | 0.538     | 0.569     | 0.601     | 0.635     | 0.672     | 0.713     | 0.761     | 0.821     | 0.964      |
| (%)      | <u>73</u> | 0.186                    | 0.316     | 0.452     | 0.481     | 0.510     | 0.541     | 0.573     | 0.608     | 0.645     | 0.686     | 0.733     | 0.794     | 0.936      |
| or       | <u>74</u> | 0.159                    | 0.289     | 0.425     | 0.453     | 0.483     | 0.514     | 0.546     | 0.580     | 0.617     | 0.658     | 0.706     | 0.766     | 0.909      |
| Factor   | <u>75</u> | 0.132                    | 0.262     | 0.398     | 0.426     | 0.456     | 0.487     | 0.519     | 0.553     | 0.590     | 0.631     | 0.679     | 0.739     | 0.882      |
| er F     | <u>76</u> | 0.105                    | 0.235     | 0.371     | 0.400     | 0.429     | 0.460     | 0.492     | 0.526     | 0.563     | 0.605     | 0.652     | 0.713     | 0.855      |
| Power    | <u>77</u> | 0.079                    | 0.209     | 0.344     | 0.373     | 0.403     | 0.433     | 0.466     | 0.500     | 0.537     | 0.578     | 0.626     | 0.686     | 0.829      |
| al P     | <u>78</u> | 0.052                    | 0.183     | 0.318     | 0.347     | 0.376     | 0.407     | 0.439     | 0.474     | 0.511     | 0.552     | 0.599     | 0.660     | 0.802      |
| gin;     | <u>79</u> | 0.026                    | 0.156     | 0.292     | 0.320     | 0.350     | 0.381     | 0.413     | 0.447     | 0.484     | 0.525     | 0.573     | 0.634     | 0.776      |
| Original | <u>80</u> | 0.000                    | 0.130     | 0.266     | 0.294     | 0.324     | 0.355     | 0.387     | 0.421     | 0.458     | 0.499     | 0.547     | 0.608     | 0.750      |
| -        | <u>81</u> |                          | 0.104     | 0.240     | 0.268     | 0.298     | 0.329     | 0.361     | 0.395     | 0.432     | 0.473     | 0.521     | 0.581     | 0.724      |
|          | <u>82</u> |                          | 0.078     | 0.214     | 0.242     | 0.272     | 0.303     | 0.335     | 0.369     | 0.406     | 0.447     | 0.495     | 0.556     | 0.698      |
|          | <u>83</u> |                          | 0.052     | 0.188     | 0.216     | 0.246     | 0.277     | 0.309     | 0.343     | 0.380     | 0.421     | 0.469     | 0.530     | 0.672      |
|          | <u>84</u> |                          | 0.026     | 0.162     | 0.190     | 0.220     | 0.251     | 0.283     | 0.317     | 0.354     | 0.395     | 0.443     | 0.503     | 0.646      |
|          | <u>85</u> |                          | 0.000     | 0.135     | 0.164     | 0.194     | 0.225     | 0.257     | 0.291     | 0.328     | 0.369     | 0.417     | 0.477     | 0.620      |

Try this one yourself-

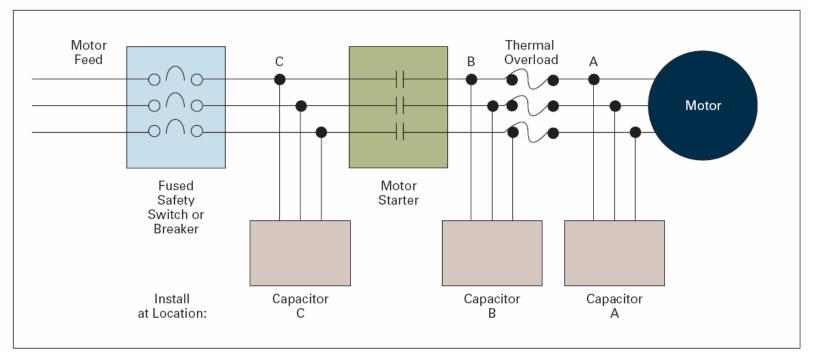
A utility bill shows an average power factor of 0.79 with an "**average kW**" of 865. How much KVAR is required to improve power factor to 0.95?

The average kW can be calculated in a few different ways depending on the information available on the utility bill.

## Sizing a Capacitor

Determine:

- HP
- Motor Type (Frame, Design)
- RPMs


Use the following table to determine KVAR

The following table shows "suggested maximum capacitor ratings" to raise full load PF to approximately 95%

## Sizing a Capacitor

|                      |                                                                                                                  | No. of Poles and Nominal Motor Speed in RPM |                   |                           |                   |                           |                   |                           |                   |                           |                   |                           |
|----------------------|------------------------------------------------------------------------------------------------------------------|---------------------------------------------|-------------------|---------------------------|-------------------|---------------------------|-------------------|---------------------------|-------------------|---------------------------|-------------------|---------------------------|
| Induction            | 2                                                                                                                |                                             | 4                 |                           | 6                 |                           | 8                 |                           | 10                |                           | 12                |                           |
| Motor                | 3600                                                                                                             | RPM                                         | 1800              | RPM                       | 1200              | 00 RPM 900 RPM            |                   | RPM                       | 720 RPM           |                           | 600 RPM           |                           |
| Horsepower<br>Rating | Capacitor<br>KVAR                                                                                                | Current<br>Reduction<br>%                   | Capacitor<br>KVAR | Current<br>Reduction<br>% | Capacitor<br>KVAR | Current<br>Reduction<br>% | Capacitor<br>KVAR | Current<br>Reduction<br>% | Capacitor<br>KVAR | Current<br>Reduction<br>% | Capacitor<br>KVAR | Current<br>Reduction<br>% |
| 2                    | 1                                                                                                                | 14                                          | 1                 | 24                        | 1.5               | 30                        | 2                 | 42                        | 2                 | 40                        | 3                 | 50                        |
| 3                    | 1.5                                                                                                              | 14                                          | 1.5               | 23                        | 2                 | 28                        | 3                 | 38                        | 3                 | 40                        | 4                 | 49                        |
| 5                    | 2                                                                                                                | 14                                          | 2.5               | 22                        | 3                 | 26                        | 4                 | 31                        | 4                 | 40                        | 5                 | 49                        |
| 7.5                  | 2.5                                                                                                              | 14                                          | 3                 | 20                        | 4                 | 21                        | 5                 | 28                        | 5                 | 38                        | 6                 | 45                        |
| 10                   | 4                                                                                                                | 14                                          | 4                 | 18                        | 5                 | 21                        | 6                 | 27                        | 7.5               | 36                        | 8                 | 38                        |
| 15                   | 5                                                                                                                | 12                                          | 5                 | 18                        | 6                 | 20                        | 7.5               | 24                        | 8                 | 32                        | 10                | 34                        |
| 20                   | 6                                                                                                                | 12                                          | 6                 | 17                        | 7.5               | 19                        | 9                 | 23                        | 10                | 29                        | 12.5              | 30                        |
| 25                   | 7.5                                                                                                              | 12                                          | 7.5               | 17                        | 8                 | 19                        | 10                | 23                        | 12.5              | 25                        | 17.5              | 30                        |
| 30                   | 8                                                                                                                | 11                                          | 8                 | 16                        | 10                | 19                        | 15                | 22                        | 15                | 24                        | 20                | 30                        |
| 40                   | 12.5                                                                                                             | 12                                          | 15                | 16                        | 15                | 19                        | 17.5              | 21                        | 20                | 24                        | 25                | 30                        |
| 50                   | 15                                                                                                               | 12                                          | 17.5              | 15                        | 20                | 19                        | 22.5              | 21                        | 22.5              | 24                        | 30                | 30                        |
| 60                   | 17.5                                                                                                             | 12                                          | 20                | 15                        | 22.5              | 17                        | 25                | 20                        | 30                | 22                        | 35                | 28                        |
| 75                   | 20                                                                                                               | 12                                          | 25                | 14                        | 25                | 15                        | 30                | 17                        | 35                | 21                        | 40                | 19                        |
| 100                  | 22.5                                                                                                             | 11                                          | 30                | 14                        | 30                | 12                        | 35                | 16                        | 40                | 15                        | 45                | 17                        |
| 125                  | 25                                                                                                               | 10                                          | 35                | 12                        | 35                | 12                        | 40                | 14                        | 45                | 15                        | 50                | 17                        |
| 150                  | 30                                                                                                               | 10                                          | 40                | 12                        | 40                | 12                        | 50                | 14                        | 50                | 13                        | 60                | 17                        |
| 200                  | 35                                                                                                               | 10                                          | 50                | 11                        | 50                | 11                        | 70                | 14                        | 70                | 13                        | 90                | 17                        |
| 250                  | 40                                                                                                               | 11                                          | 60                | 10                        | 60                | 10                        | 80                | 13                        | 90                | 13                        | 100               | 17                        |
| 300                  | 45                                                                                                               | 11                                          | 70                | 10                        | 75                | 12                        | 100               | 14                        | 100               | 13                        | 120               | 17                        |
| 350                  | 50                                                                                                               | 12                                          | 75                | 8                         | 90                | 12                        | 120               | 13                        | 120               | 13                        | 135               | 15                        |
| 400                  | 75                                                                                                               | 10                                          | 80                | 8                         | 100               | 12                        | 130               | 13                        | 140               | 13                        | 150               | 15                        |
| 450                  | 80                                                                                                               | 8                                           | 90                | 8                         | 120               | 10                        | 140               | 12                        | 168               | 14                        | 160               | 15                        |
| 500                  | 100                                                                                                              | 8                                           | 120               | 9                         | 150               | 12                        | 160               | 12                        | 180               | 13                        | 180               | 15                        |
| * For use with       | For use with 3-phase, 60 hertz NEMA Classification B Motors to raise full load power factor to approximately 95% |                                             |                   |                           |                   |                           |                   |                           |                   |                           |                   |                           |

#### **Capacitor Locations**



**Location A:** New motor installation where overloads can be adjusted to reduced amp draw. Existing motors when unable to place connection between starter and overloads (overloads must be sized according to new amp draw).

Location B: Normally used for most motor applications

**Location C:** Used when motors are jogged, plugged, reversed; for multi-speed motors, or reduced-voltage start motors. Also motors that start frequently.

## **Products** Power Factor Correction Capacitors

**CALMOUNT®** brand capacitor series Correct poor power factor at the load



NEMA 12 enclosure

## **Products** Power Factor Correction Capacitors

| Capacitor<br>Characteristic | Myron Zucker Advantages/Benefits                                                         |
|-----------------------------|------------------------------------------------------------------------------------------|
| Cell Casing                 | Industrial grade metal cell case, 20-year life                                           |
| Cell Phases                 | 3-phase cell                                                                             |
| Pressure interrupter        | Open, safe, non-flammable event                                                          |
| Cell Contents               | Dry                                                                                      |
| Replaceable Cells           | Individual capacitor cells easy to replace, if necessary.<br>Key feature for MRO market. |
| Power Termination           | Threaded stud, secure                                                                    |
| Loss-of-kVAR Signal         | Patented signal (CelTel®)                                                                |
| Fusing                      | All capacitors are fused                                                                 |
| Conduit entry               | Bottom or back conduit entry. Easier to wire; requires less material                     |
| Enclosure design            | Lift-off cover, open on 4 sides around wire termination<br>Easier, faster to maintain    |
| NEMA enclosure              | NEMA 12-type standard                                                                    |

## **Products** Power Factor Correction Capacitors

•Multical<sup>®</sup> – Corrects up to 4 motors with single capacitor assembly



•Traymount<sup>®</sup> -Open-style capacitor for Motor Control Center



## Products

#### **Power Factor Correction Capacitors**

Capacibank<sup>®</sup>
Autocapacibank <sup>™</sup>

Distribution center, service entrance





## **Benefits & Features**

- Low Voltage: 240, 480, 600 Volt –other ratings available
- U.L. Listed
- Patented CelTel <sup>®</sup> for loss-of-capacitance signal and monitoring system for auto-disconnect feature
- Broadest PFCC product offering in the industry

#### People Who Specify and/or Purchase PFCCs

- End User (*How is your power factor / power quality?*)
  - Plant Engineers
  - Maintenance Supervisors
  - New Construction
  - Primary Utility User
    - Refrigeration & Lighting
    - Waste Water Treatment Facilities
    - Plastics Extrusion Plants
    - Automotive Plants
    - Plating Plants
- OEMs Controls Engineers
- Electrical Motor Suppliers
- Electrical Distributors
- A & E firms
- Utility Account Reps

#### What Does Poor Factor Mean For....

The Supplier

- Ineffective use of transmission lines
- Ineffective use of generators
- Loss of productivity since more resources (coal, water, etc.) is required to produce the same amount of real power used.

The User

- Increase of thermal loss in the installed devices (I<sup>2</sup>R)
- Larger capacity supply line, transformer, power usage
- Increase cost of use for electricity

### Still need help?

Just call Paul!

(401) 473-8516 or paul\_ecs@msn.com

*If general information is provided:* 

- We will recommend unit rating and style

If One-Line diagram is provided

- We will recommend location of capacitors

If electrical bills are provided

 We will calculate monthly power cost savings and payback time of recommended products

# Questions?

# Harmonics?!

to be continued...