AUTOMATIC LOCAL SEGMENTATION TECHNIQUE FOR DETECTION OF ROAD SURFACE CRACK
dc.contributor.author | RIYADI, SLAMET | |
dc.date.accessioned | 2018-03-23T02:19:02Z | |
dc.date.available | 2018-03-23T02:19:02Z | |
dc.date.issued | 2016 | |
dc.identifier.issn | 2393-2835 | |
dc.identifier.uri | http://repository.umy.ac.id/handle/123456789/18155 | |
dc.description.abstract | Image processing technique has been implemeted to detect the crack on road surface. However, the accuracy of the detection is still low due to the difficulties in segmentation between crack and non-crack area. This research proposes the implementation of Sauvola technique to perform automatic local segmentation of crack. The methodology involves preprocessing, image segmentation, feature extraction and classification step. In segmentation step, in addition to Sauvola, other techniques, i.e. manual thresholding, Otsu and Bernsen, are also implemented for comparison purpose. The result shows that Sauvola technique produces consistent segmentation results on high, medium and low quality images. Sauvola method also perform the best accuracy detection of 96% among them. | en_US |
dc.subject | Image Processing | en_US |
dc.subject | Road Surface Crack | en_US |
dc.subject | Segmentation | en_US |
dc.subject | Sauvola Technique | en_US |
dc.subject | Thresholding | en_US |
dc.title | AUTOMATIC LOCAL SEGMENTATION TECHNIQUE FOR DETECTION OF ROAD SURFACE CRACK | en_US |
Files in this item
This item appears in the following Collection(s)
-
JURNAL
Berisi tulisan dosen dalam yang telah dimuat dalam jurnal nasional maupun internasional yang tidak diterbitkan oleh UMY. Diharapkan menambahkan link dari jurnal yang asli dalam diskripsinya.maupun internasional