BAB IV METODOLOGI PENELITIAN

A. Materi Penelitian

Materi penelitian diambil dari hasil pengujian eksperimental oleh Tjahjono dan Purnomo (2004). Benda uji sambungan balok-kolom pracetak bagian sisi luar *(exterior)* dari bangunan gedung lima lantai. Benda uji yang akan dilakukan penelitian diambil dari sambungan tipe A, yaitu penyambungan dilakukan pada pertemuan elemen balok dan kolom pracetak dengan adanya penonjolan daerah balok pada sisi luar (Gambar 4.1). Penelitian dilakukan secara numerik yaitu dengan analisis dari permodelan komputer dan pemeriksaan mengenai sambungan balok kolom pracetak dengan beban statik. Penelitian terdiri dari dua benda uji yaitu Benda Uji 1 (BU-1) yang meliputi sambungan balok persegi dan kolom persegi, dan Benda Uji 2 (BU-2) yang meliputi sambungan balok T dan kolom

Material propertis pada BU-1 dan benda BU-2 dapat dilihat data-data sebagai berikut:

Mutu Beton (fc) :

Modulus Elastisitas Baja Tulangan (Ec)

Kolom = 32 MPa Balok = 28 MPa = 200.000 MPa

Tegangan tarik baja tulangan pada saat leleh (fy) = 420 MPa

Gambar 4.1 Sambungan tipe A (Tjahjono dan Purnomo, 2004)

B. Peralatan Penelitian

Peralatan yang digunakan dalam penelitian ini adalah Laptop dan Komputer yang memiliki *software* ABAQUS 6.11-2.

C. Set-Up Penelitian

Penelitian dilakukan terhadap dua benda uji yaitu benda uji 1 (BU-1) sambungan balok persegi-kolom dan benda uji 2 (BU-2) sambungan balok T-kolom, data dari benda uji dapat dilihat pada Tabel 1. Detail benda uji dapat dilihat pada Gambar 4.2 sampai Gambar 4.6. Benda uji akan diberi beban yang berbeda antara BU-1 dan BU-2, untuk BU-1 akan diberi beban sebesar 40 kN dan BU-2 sebesar 100 kN. Beban yang diberikan merupakan beban titik yang masing-masing benda uji terdapat dua titik. Pembebanan diletakkan pada pada ujung-ujung balok. Penyambungan pada daerah pertemuan balok dan kolom digunakan *grouting* pada beton, sedangkan tulangannya dibengkokkan pada ujung tonjolan balok dan diikat menggunakan tulangan sengkang. Mutu yang digunakan untuk *grouting* sama dengan mutu balok.

			Benda Uji 1 (BU-1)		Benda Uji 2 (BU-2)	
			Balok Kolom		Balok	Kolom
Mutu Beton (fc')		28 MPa	32 MPa	28 MPa	32 MPa	
Mutu B	aja (f	ý)	420 MPa	420 MPa	420 MPa 420 MPa	
	h	b _e	200 mm	200 mm	300 mm	200 mm
Dimonsi	D	b _w	200 mm	500 mm	200 mm	500 mm
Dimensi	hensi h _f		225 mm	200 mm	150 mm	200 mm
	n	h-h _f	225 mm	500 mm	175 mm	500 mm
Tulangan Utama		6D12	8D12	8D12	8D12	
Tulangan Sengkang		ø6-80	ø6-50	2ø6-80	ø6-50	
Bent	Bentang		1500 mm	895 mm	1500 mm	1125 mm
Selimut	t Beto	on	40 mm	40 mm	40 mm	40 mm

Tabel 4.1 Data Benda Uji 1(BU-1) dan Benda Uji 2 (BU-2)

Gambar 4.2 Detail benda uji 1

Gambar 4.3 Detail potongan benda uji 1

Gambar 4.5 Detail potongan benda uji 2

D. Alur Penelitian

Proses pelaksanaan penelitian dapat dilihat pada Gambar 4.6 berikut ini:

Gambar 4.6 Bagan Alir Penelitian

E. Langkah Permodelan Elemen Hingga

Permodelan elemen hingga pada ABAQUS CAE 6.11-2 ini mempunya lima modul yang setiap modulnya mempunyai fungsi dan pengaturan masing-masing, modul tersebut juga mewakili langkah-langkah dalam permodelan elemen hingga pada BU-1 dan BU-2. Langkah-langkah permodelan dapat dilihat seperti berikut:

1. Membuka menu ABAQUS CAE 6.11-2

Langkah pertama adalah masuk program ABAQUS CAE dengan cara pilih dari *desktop* atau *panel start*, kemudian klik *icon* ABAQUS CAE setelah itu akan muncul *viewport* kemudian pilih *creating model database*.

Gambar 4.7 Membuka program ABAQUS CAE

Gambar 4.8 Viewport awal ABAQUS CAE 6.11-2

2. Modul Part

Modul yang pertama adalah modul *part*, modul ini berfungsi untuk memodelkan geometri benda uji yang akan dianalis. Pertama memilih pilih *Create Part* untuk memulai memasukkan geometri benda uji. Akan muncul kotak dialog *Create Part* yang akan diberi nama sesuai part yang akan dimodelkan. Pada kotak dialog *create part* tersedia *approximate size* yang berfungsi untuk menentukan skala *sketcher* yang sesuai dengan dimensi yang akan dibuat. Pada permodelan ini digunakan *approximate* 1000, dengan asumsi bahwa permodelan ini menggunakan satuan millimeter (mm).

+ Create Part	×	
Name: Part-1		
Modeling Space 3D		
Type Deformab	Options le gid	
 Analytical Eulerian 	rigid None available	
Base Feature Shape	Туре	
 Solid 	Extrusion	
 Shell Wire Point 	Sweep	
Approximate si	ze: 1000	
Continue	. Cancel	

Gambar 4.9 Approximate size pada kotak dialog create part

a. Kolom

Pada permodelan ini dibuat kolom dengan tipe *deformeable* karena tegangan yang diterima diatas batas proporsional (*plastic area*), untuk BU-1 dan BU-2 memiliki dimensi yang sama yaitu sebesar 300×300 . Pilih tipe *solid* karena kolom merupakan benda padat yang mempunyai bentang untuk BU-1 sebesar 895 mm dan BU-2 sebesar 1125 mm, sehingga dipilih tipe *extrusion*.

Create Part	
Name: Kolom	
Modeling Space	
💿 3D 💿 2D Planar	Axisymmetric
Туре	Options
Oeformable	
Discrete rigid	Manage and Job In
Analytical rigid	None available
Eulerian	
Base Feature	
Shape Type	
Solid Extrus	ion
Shell Revolu	ution
O Wire Sweep	
Point	
Approximate size: 100	4
Continue	Consel

Gambar 4.10 Pemilihan Shape Solid dengan Type Extrusion untuk beton

Gambar 4.11 Sket kolom pada lembar kerja ABAQUS

Gambar 4.12 Hasil dari permodelan kolom pada tampilan 3D

b. Balok

Pada permodelan ini dibuat balok dengan tipe *deformeable* karena tegangan yang diterima diatas batas proporsional (*plastic area*), untuk BU-1 dimensi 200×225 dan BU-2 dengan ukuran untuk lebar sayap 300 mm, lebar badan 200 mm, dan tinggi balok T 325 mm. Pilih tipe *solid* karena kolom merupakan benda padat yang mempunyai bentang untuk BU-1 sebesar 1912,5 mm dan BU-2 sebesar 1877,5 mm, sehingga dipilih tipe *extrusion*.

Gambar 4.13 Hasil dari permodelan balok pada tampilan 3D

c. Tulangan

Dalam permodelan beton bertulang interaksi dengan beton sebagai *Embedded Interaction* yaitu pergerakan dari elemen beton. Sehingga diasumsikan lekatan tulangan dengan beton bersifat *Perfect Bond*. Diasumsikan tulangan bekerja didalam beton hanya mengalami tarik dan desak saja sehingga elemen yang digunakan adalah tipe *Truss Element*. Langkahnya adalah klik *Create Part*. Pada *Base Future*, pilih *Shape = Wire*, *Type = Planar*. Kemudian *Create Line* dan gambarkan garis sembarang pada arah horisontal. Pengisian pada *Base Future* dapat dilihat pada Gambar 4.14, dengan hasil akhir pada Gambar 4.15.

Gambar 4.14 Pemilihan Shape Wire dengan Type Planar untuk tulangan

Gambar 4.15 Hasil dari permodelan tulangan

d. Membuat Datum Plane

Datum Plane merupakan fasilitas yang dapat digunakan untuk membagi/ memotong *Cell* menjadi bagian bagian yang terpisah. Prosedur yang dilakukan adalah pilih *Tools*, *Datum* seperti pada Gambar 4.16, pilih *Type* = *Plane*, *Offset from plane*, pilih *Surface Cell* sebagai referensi seperti pada Gambar 4.17. Kemudian pilih arahnya sesuai dengan posisi *datum* terhadap permukaan yang direferensi seperti pada Gambar 4.18, isikan jaraknya adalah 200 mm, klik *OK*. Hasilnya seperti pada Gambar 4.19.

Gambar 4.16 Perintah membuat Datum

Gambar 4.17 Cara membuat Datum Plane

Gambar 4.18 Cara mengisikan arah Datum Plane

Gambar 4.19 Datum Plane yang sudah terbentuk

e. Melakukan Partition Cell

Partition Cell berfungsi untuk memisahkan elemen, ataupun *Surface* dalam 1 *Cell* agar dapat diberikan ukuran *mesh* ataupun beban di *Surfac*e yang terpisah. Pilih *Partition Cell* dengan ditahan, pilih tipe *Partition Cell Use Datum Plane* seperti pada Gambar 4.20, pilih *Cell* yang akan dipartisi dari *Datum Plane* yang telah dibuat kemudian pilih *Create Partition*. Hasilnya *Cell* yang sudah terpartisi pada Gambar 4.21.

Gambar 4.20 Fasilitas Partition Cell

Gambar 4.21 Hasil Cell yang sudah terpartisi

3. Modul Property

Modul *property* berfungsi untuk memasukkan properti material yang digunakan permodelan benda uji meliputi beton pracetak dan tulangan.

a. Material properties beton

Model material beton yang digunakan dalam penelitian ini adalah *Concrete Damaged Plasticity*. Masukan yang diperlukan meliputi modulus elastisitas, konstitusif material beton pada kondisi desak dan tarik, dan parameter *Plasticity*.

Langkah untuk memulai pengisian material adalah pilih *property* seperti Gambar 4.22, kemudian pilih *Create Material*, beri nama material, pilih *Elasticity* untuk memasukkan modulus elastisitas beton (E) beton = 24870,06232 MPa, dan kolom E = 26587,21497 MPa, sedangkan untuk *Poisson Ratio* = 0,3 (Gambar4.23). Kemudian pilih *plasticity*, pilih *Concrete Damaged Plasticity* seperti pada Gambar 4.24. Isikan parameter *Plasticity* dari data Tabel. 4.2 seperti Gambar 4.25, memasukkan data konstitutif desak beton sesuai Tabel 4.3 dan Tabel 4.4 seperti Gambar 4.26 dan kemudian memasukkan data konstitutif tarik sesuai dengan Tabel 4.5 dan Tabel 4.6 seperti Gambar 4.27. Data yang digunakan untuk pengisian material ini menggunakan satuan MPa.

Gambar 4.22 Mulai memasukkan data material

varne:	Beton Kolom		
Descrip	otion:		
	int Data stars		
Mate	nai benaviors		
Conc	< rete Damaged Play	ticity	
Cor	ncrete Compressio	n Damage	
Cor	ncrete Tension Dar	nage	
<u>G</u> en	eral <u>M</u> echanical	<u>T</u> hermal <u>O</u> ther	ø
Elasti	ic		
Туре	: Isotropic	•	 Suboptions
ΠU	se temperature-de	pendent data	
Num	her of field variabl	es: 0 🛎	
	P.P	· · · · · · · · · · · · · · · · · · ·	
Mod	uli time scale (for v	iscoelasticity): Long-term 👻	
Mod	uli time scale (for v o compression	riscoelasticity): Long-term 💌	
Mod	uli time scale (for v o compression o tension	riscoelasticity): Long-term 👻	
Mod N N Dat	uli time scale (for v o compression o tension ta	iscoelasticity): Long-term	
Mod N Dat	uli time scale (for v o compression o tension ta Young's Modulus	iscoelasticity): Long-term v Poisson's Ratio	
Mod N Dat	uli time scale (for v o compression o tension ta Young's Modulus 26587.21497	Poisson's Ratio 0.15	
Mod N Dat	uli time scale (for v o compression o tension ta Young's Modulus 26587.21497	Poisson's Ratio 0.15	
Mod N Dat	uli time scale (for v o compression o tension ta Young's Modulus 26587.21497	Poisson's Ratio 0.15	
Mod N Dat	uli time scale (for v o compression o tension ta Young's Modulus 26587.21497	Poisson's Ratio 0.15	
Mod N Dat	uli time scale (for v o compression o tension ta Young's Modulus 26587.21497	Polsson's Ratio 0.15	
Mod N Dat	uli time scale (for v o compression o tension ta Young's Modulus 26587.21497	Poisson's Ratio 0.15	
Mod NNNNN Dat	uli time scale (for v o compression o tension ta Young's Modulus 26587.21497	Pokson's 0.15	
Mod	uli time scale (for v o compression o tension ta Young's Modulus 26587.21497	Poisson's Ratio 0.15	

Gambar 4.23 Memasukkan data elastisitas

🐥 Edit Mate	rial	Not Police Introduction	×
Name: Betc Description: Material B Elastic Concrete Concrete Concrete	n Kolom chaviors Janaged Plasticity Compression Damage Tension Damage] 🌶
General Concrete I Plasticity Use te Number Data	Mechanical Ihermal Other Elsticity Damage for Duckle Metals Damage for Taction Separation Laws Damage for Fiber-Reinforced Composites Damage for Fiber-Reinforced Composites Damage for Fiber-Reinforced Damage for Elstomes D	Plastic Cap Plasticity Cast Jron Plasticity Clay Plasticity Clay Plasticity Cancrets Pamaged Plasticity Crustwable Exam Drucker Prager Mohr Coulomb Plasticity Porous Jetal Plasticity Creep Swelling Viscous	
	т Ск.	Cancel EN R 🔿 🛆	•

Gambar 4.24 Tampilan *form input* model material *Concrete Damaged Plasticity*

Tabel 4.2 Parameter *plasticity* beton (Panduan Permodelan Struktur BetonBertulang dengan ABAQUS)

Dilatation angle (Ψ)	Eccentricity	F_{b0}/f_{c0}	K	Viscocity
30	0,1	1,16	0,67	0,005

- contin	Aaterial		_		×
lame: E	Beton Kolom				
escripti	ion:				1
Materia	Material Behaviors				
Elastic					
Concre	ete Damaged Pla	asticity			
Conc	rete Compressi	on Damage			
Conc	rete Tension Da	image			
Gener	al <u>M</u> echanica	l <u>T</u> hermal <u>O</u> ther	,		A 1997
Concre	ete Damaged Pla	asticity			
Diacti	city Common	nin Daharian Tana	ile Debauies		
r idsti	city Compres	sive benavior Tens	sile benavior		
Us 📃 Us	e temperature-	dependent data			
Numt	ber of field varia	ibles: 0 🚔			
Numt Data	ber of field varia a	ıbles: 0 🐑			
Data	ber of field varia a Dilation Angle	Eccentricity	fb0/fc0	к	Viscosity Parameter
Data	ber of field varia a Dilation Angle 30	Eccentricity 0.1	fb0/fc0 1.16	к 0.67	Viscosity Parameter 0.005
Data 1	ber of field varia a Dilation Angle 30	Eccentricity 0.1	fb0/fc0 1.16	К 0.67	Viscosity Parameter 0.005
Numt Data	ber of field varia a Dilation Angle 30	Eccentricity 0.1	fb0/fc0 1.16	K 0.67	Viscosity Parameter 0.005
1	a Dilation Angle 30	Eccentricity 0.1	fb0/fc0 1.16	K 0.67	Viscosity Parameter 0.005

Gambar 4.25 Tampilan *form input* parameter *Plasticity* pada model material *Concrete Damaged Plasticity*

Tabel 4.3 Compressive Behavior	(Panduan	Permodelan	Struktur	Beton	Bertulang
de	engan ABA	AQUS)			

£ - ~)
Inelastic Strain
0
0,00039
0,00061
0,00109
0,00159
0,00179
0,00209
0,00259
0,00354
0,00459
0,00559
0,00959

Damage Parameter	Inelastic Strain
0	0
0	0,00039
0	0,00061
0	0,00109
0	0,00159
0	0,00179
0,02	0,00209
0,11	0,00259
0,5	0,00354
0,79	0,00459
0,88	0,00559
0,97	0,00959

 Tabel 4.4 Concrete compression damage (Panduan Permodelan Struktur Beton

 Bertulang dengan ABAQUS)

Gambar 4.26 Tampilan *form input Compression Behavior* model material *Concrete Damaged Plasticity*

Yield Stress	Cracking Strain
1,89742	0
2,10825	8,00E-05
1,99877	0,00013
1,94403	0,00015
1,82213	0,0002
1,34192	0,00039
1,01349	0,00052
0,79454	0,00061
0	0,00093

 Tabel 4.5 Tensile Behavior (Panduan Permodelan Struktur Beton Bertulang dengan ABAQUS)

 Tabel 4.6 Concrete tension damage (Panduan Permodelan Struktur Beton Bertulang dengan ABAQUS)

Damaged Parameter	Cracking Strain
0	0
0	8,00E-05
0,05	0,00013
0,08	0,00015
0,14	0,0002
0,36	0,00039
0,52	0,00052
0,62	0,00061
0,99	0,00093

Gambar 4.27 Tampilan *form input Tension Behavior* model material *Concrete Damaged Plasticity*

b. Material properties baja

Model material baja yang digunakan dalam penelitian ini adalah *Classic Plasticity*. Masukan yang diperlukan meliputi modulus elastisitas dan konstitutif material baja yang tersaji dalam Tabel 4.6. Material properties baja dengan modulus elastisitas baja (E) = 2000000, dengan *Poisson Ratio* = 0,3. Prosedur yang dilakukan adalah pilih *Create Material*, beri nama material, pilih *Elasticity* untuk input modulus elastisitas dan rasio poison dan *Plasticity* pilih *Plasticity* seperti pada Gambar 4.28. Isikan konstitutif material pada Tabel 4.7 seperti pada Gambar 4.29 kemudian pilih *OK*.

uengunn	DI (200)
Stress	Strain
420	0
420	0,018
500	0,028
500	0,198

Tabel 4.7 Tabel Stress dan Strain (Panduan Permodelan Struktur Beton E	Bertulang
dengan ABAQUS)	

🖶 Edit Mate	erial			1. No. 1	X
Name: Baja Description:	Tulangan				
Material B Elastic Plastic	ehaviors				
General Elastic Type: Iso Use ter Number o Moduli tir	Mechanica Elasticity Damage Damage Damage Damage	I [hermal Qth / for Ductile Metals for Traction Separ for Fiber-Reinforc for Elastomers tion Plasticity	er tation Laws ed Composites	Elastic Hyperelastic Hyperfoam Low Density Foam Hyp <u>o</u> elastic Porous Elastic	otions
No cor No ten Data Y	<u>D</u> ampin Expansio Brittle C E <u>o</u> s <u>V</u> iscosit	g on racking		VISCOEIASUC	
1	200000	0.3		Cancel	
		P **=	†	G	

Gambar 4.28 Tampilan form input Elasticity material baja

⇔ Edit Mate	rial				×
Name: Baja Description:	Tulangan				
Material B	ehaviors				
Elastic Plastic					
General	Mechanica	<u>T</u> hermal <u>O</u> th ,	er		🖉
Plastic	Plasticit	y y		Þ	<u>P</u> lastic
Hardening	Damage Damage	for D <u>u</u> ctile Metals for Traction Separ	ation Laws	•	<u>C</u> ap Plasticity Cast <u>I</u> ron Plasticity
📰 Use ter	Damage	for Fiber-Reinforc		Clay Plasticity Concrete Damaged Plasticity	
Number o	Deform	ation Plasticity		Concrete Smeared Cracking	
Data	<u>D</u> ampin	9		Crushable <u>F</u> oam	
	Expansion Brittle Creation				Drucker Prager
1	Eos	racking			Porous Metal Plasticity
2	Viscosit	/			Creep
3	500	0.028			Swelling
4	500	0.198			⊻iscous
	Ok	:			Cancel
X 🛛			+		S

Gambar 4.29 Tampilan form input Plasticity material baja

c. Create section dan Assign untuk Solid Element

Klik *Create Section* dan isikan nama *Section* yang dibuat pilih *Category* = *Solid*, dan *Type* = *Homogeneous* seperti pada Gambar 4.30, selanjutnya akan muncul *form Edit Section* seperti pada Gambar 4.31, pilih nama material, klik *OK*. Klik *Assign Section* seperti pada Gambar 4.32, pilih *Cell* yang akan dipasangkan ke *Section* pada kanvas seperti pada Gambar 4.33, klik *Done*.

Gambar 4.30 Perintah Create Section

- Edit Section
Name: Balok Type: Solid, Homogeneous
Material: Material Balok 🔽 🕅
Plane stress/strain thickness:
OK Cancel

Gambar 4.31 Perintah Edit Section

Gambar 4.32 Perintah Assign Section

Gambar 4.33 Cell dari Part yang dipasangkan Section

d. Create Section dan Assign untuk Truss Element

Pilih *Create Section* dan isikan nama *Section* yang dibuat pilih *Category* = *Beam*, dan *Type* = *Truss* seperti pada Gambar 4.34, selanjutnya akan muncul *form Edit Section* seperti Gambar 4.35, pilih nama material, klik *OK*. Klik *Assign Section* seperti pada Gambar 4.36, pilih *Cell* yang akan dipasangkan ke *Section* pada kanvas seperti pada Gambar 4.37.

	🐣 Create See	tion	-	X
<u>ε</u>	Name: Secti	on-1		
1	Category	Туре		
Create	Solid	Beam		
Section	Shell	Truss		
μ ^{η2} η1	Beam			
🛌 🧏t	Fluid			
🕂 🖽	Other			
🔶 📰	Continu	e	Cance	
🚍 🖡		a .	-	- 1

Gambar 4.34 Create Section Truss Element

Edit Section
Name: Section-1 Type: Truss
Material: Baja-Tulangan 💽 🖺
Cross-sectional area: 127234.5025
Temperature variation: Constant through thickness
OK Cancel

Gambar 4.35 Masukan material baja dan luas penampang tulangan dengan *Truss Element*

Gambar 4.36 Perintah Assign Section

🕂 Edit Section Assignment
Region
Region: (Picked)
Section
Section: Tulangan-D12 💌 🏝
Note: List contains only sections applicable to the selected regions.
Type: Truss
Material: Baja Tulangan
OK Cancel

Gambar 4.37 Masukan material baja dan luas penampang tulangan dengan *Truss Element*

4. Modul Mesh

Mesh merupakan fasilitas untuk melakukan pembagian dan penentuan tipe dari *Element* dari *Part* ataupun *Assembly*. Konvergensi dari analisis tergantung dari tingkat keteraturan dan kesesuaian elemen yang digunakan dengan geometrik struktur. Data kovergensi dalam penelitian ini tersaji dalam Tabel 4.8 untuk BU-1 dan Tabel 4.9 untuk BU-2, dari hasil konvergensi dipilih selisih yang kurang dari 5% untuk keakuratan data yang dipakai. Grafik hasil dari konvergensi tersebut dapat dilihat pada Gambar 4.38 pada BU-1 dan pada Gambar 4.39 pada BU-2. Dari data tersebut untuk BU-1 digunakan *Mesh* 70 dan untuk BU-2 digunakan *Mesh* 50. Langkah untuk menampilkan fasilitas *Mesh* pilih *Mesh*.

a. Mesh pada Solid Element

Mesh pada pada Solid Element dibuat dengan cara pilih module:mesh kemudian pilih seed part, kemudian pada global seeds isi Approximate global size sesuai dengan ukuran mesh yang diinginkan kemudian pilih OK seperti pada gambar 4.40. pilih mesh part untuk menampilkan mesh yang dibuat kemudian pilih yes, selanjutnya pilih Assign Element Type kemudian pilih part lalu done, akan muncul menu element type, pada bagian element library pilih explicit, dan pada bagian family pilih 3D Stress kemudian OK seperti pada gambar 4.41.

b. Mesh pada Truss Element

Mesh pada pada Truss Element dibuat dengan cara pilih module:mesh kemudian pilih seed part, kemudian pada global seeds isi Approximate global size sesuai dengan ukuran mesh yang diinginkan kemudian pilih OK seperti pada gambar 4.40. Pilih mesh part untuk menampilkan mesh yang dibuat kemudian pilih yes, selanjutnya pilih Assign Element Type kemudian pilih part lalu done, akan muncul menu element type, pada bagian element library pilih explicit, dan pada bagian family pilih truss kemudian OK seperti pada gambar 4.43.

No	Mesh	Jumlah Elemen	<i>Displacement</i> Terbesar			%		
1	100	1200	264,919	21.15				
2	90	1489	208,879	21,15	10 77			
3	80	2204	169,674		18,77	2.40		
4	70	2368	175,441			5,40	1 00	
5	60	3072	166,881				4,00	19.06
6	50	4382	247,088					40,00

Tabel 4.8 Hasil konvergensi Benda Uji 1

Tabel 4.9 Hasil konvergensi Benda Uji 2

No	Mesh	Jumlah Elemen	<i>Displacement</i> Terbesar			%		
1	80	4479	5,8292	()				
2	70	4908	5,4797	6,38	6.01			
3	60	6404	5,12564		0,91	1 27		
4	50	8580	4,91114			4,37	4.24	
5	40	14628	4,71117				4,24	10.00
6	30	29279	3,95979					18,98

🕂 Global Seeds 📃 🔀
Sizing Controls
Approximate global size: 50
Curvature control
Maximum deviation factor (0.0 < h/L < 1.0): 0.1
(Approximate number of elements per circle: 8)
Minimum size control
By fraction of global size (0.0 < min < 1.0) 0.1
○ By absolute value (0.0 < min < global size) 5
OK Apply Defaults Cancel

Gambar 4.40 Memasukkan ukuran Mesh

Standard Explicit DStress Acourt Cohesive Continuum Shell Hex Wedge Tet Hex Hybrid formulation Reduced integration Incompatible modes Element Controls Hourglass stiffings: Use default Specify Kinematic split: Acourds Ves & No	· · · · · · · · · · · · · · · · · · ·	Family	
Acoustic Geometric Order © Linear © Quadratic Her: Wedge Tet Phybrid formulation @ Reduced integration @ Incompatible modes Element Controls Element Controls Element Controls Uscosity: © Use default © Specify Viscosity: © Use default © Specify Viscosity: © Use default © Specify Viscosity: © Average strain © Orthogonal © Centroid Second-order accuracy: © Ves © No	Standard Explicit	3D Stress	
Geometric Oder Linear © Quadratic Linear © Quadratic Continuum Shell Hex Wedge Tet Phythof formulation Ø Reduced integration © Incompatible modes Element Controls Hourglass stiffness © Ube default © Specify Viscosity: © Use default © Specify Kinematic split: @ Average strain © Othogonal © Centroid Second-order accuracy; © Ves @ No		Acoustic	
Linear Quadratic Continuum Shell Here Wedge Tet Hybrid formulation Reduced integration Hourglass stiffness Uise default Specify Kinematic split Average stain Othogonal Centroid Second-order accuracy; Vise No	Geometric Order	Cohesive	
Hex Wedge Tet How Wedge Tet How Development of the second secon	🖲 Linear 💿 Quadratic	Continuum Shell	
Her Wedge Tet Hybrid formulation @ Reduced integration @ Incompatible modes Element Controls Hourglass stiffness: @ Use default @ Specify Kinematic split: @ Average strain @ Othogonal @ Centroid Second-order accuracy; @ Vse @ No			
Hybrid formulation Reduced integration Incompatible modes Element Controls Hourglass stiffness Use default Specify Kinematic split Average strain Othogonal Centroid Second-order accuracy; Yes No	Hex Wedge Tet		
Element Controls Hourglass stiffness: Use default Specify Viscosity: Use default Specify Kinematic split: Average strain Orthogonal Centroid Second-order accuracy: Ves No	Hybrid formulation	Reduced integration 🔲 Incompatible modes	
Hourglass stiffness: Use default Specify Viscosity: Use default Specify Kinematic split: Average strain Othogonal Centroid Second-order accuracy: Ves No	Element Controls		
Viscosity: Use default Specify Kinematic split: Viscosity: Viscos	Hourglass stiffness:		*
Kinematic split:	Viscosity:	Ose default Specify	E
Second-order accuracy: () Yes () No	Kinematic split:	Average strain O Orthogonal O Centroid	
The is an irray an	Second-order accurac	y: 🔘 Yes 🖲 No	
	and the second	AU 17 6 AV AN	*

Gambar 4.41 Menu element type pada Solid Element

Element Library	Family	
Standard	Piezoelectric	
	Pipe	
Geometric Order	Thermal Electric	
🖲 Linear 💿 Quadratic	Truss	
_		
Line		
Hybrid formulation		
Element Centrels		
Element Controls		
Scaling factors: Linear	bulk viscosity: 1	
Scaling factors: Linear	bulk viscosity: 1	
Scaling factors: Linear	bulk viscosity: 1	
Scaling factors: Linear	bulk viscosity:	
Scaling factors: Linear	bulk viscosity:	
Scaling factors: Linear	bulk viscosity:	
Scaling factors: Linear	bulk viscosity: 1D truss.	
Scaling factors: Linear	bulk viscosity: 1	
Scaling factors: Linear	bulk viscosity: 1	
Scaling factors: Linear	bulk viscosity: 1 -D truss.	

Gambar 4.42 Menu element type pada Truss Element

Gambar 4.43 Mesh pada semua elemen benda uji

5. Modul assembly

Modul *Assembly* merupakan fasilitas yang memberikan tempat model untuk bisa dilakukan eksekusi analisis. Modul ini digunakan untuk menyatukan

semua benda uji dari beberapa Part menjadi satu kesatuan. Pada model ini pengerjaan yang pertama adalah tulangannya. Model ini terdapat beberapa menu untuk menghubungkan antara part yang satu dengan part yang lain. Menu yang dipakai antara lain adalah menu Linear Pattern untuk menggandakan misalnya pada tulangan utama dan tulangan sengkang, menu Translate Instance untuk memindahkan part, menu Rotate Instance yang digunakan untuk merotasi part. Gambar 4.44 menunjukkan tulangan yang telah di assembly dan Gambar 4.45 adalah model keseluruhan dari part yang sudah di Assembly

Gambar 4.45 Model keseluruhan yang telah di Assembly

6. Modul step

Step merupakan fasilitas yang digunakan untuk menentukan algoritma iterasi numerik. Langkah untuk memulai pilih perintah Step klik Create, beri nama Step, pilih General, "Static, General" seperti Gambar 4.45. Output analisis yang diiginkan dapat ditentukan dengan perintah Field Output Request Manager seperti Gambar 4.46.

Create Step
Name: Step-3
Insert new step after
Initial
Step-1
Procedure type: General
Coupled temp-displacement
Direct cyclic
Dynamic, Implicit
Geostatic
Soils
Static, General
Static, Riks
Visco
Continue Cancel

Gambar 4.46 Menu Create Step

⇔ Edit Field	Output Request	x
Name:	F-Output-1	
Step:	Step-1	
Procedure:	Static, General	
Domain:	Whole model	
Frequency:	Every n increments n: 1	
Timing:	Output at exact times 👻	
Output Va	ariables	
Select f	rom list below 🔘 Preselected defaults 🔘 All 🔘 Edit variables	
CDISP,CF,	CSTRESS, DAMAGEC, DAMAGET, E, LE, PE, PEEQ, PEEQT, PEMAG, RF, S, U,	
🕨 🔳 St	resses	*
🕨 🔲 St	rains	
🕨 🕨 🗖	isplacement/Velocity/Acceleration	E
🕨 🕨 🖬 Fo	orces/Reactions	
) 🕨 🔳 O	ontact	
🕨 🕨 🕅 Er	nergy	
🕨 🕨 🗖 Fa	ailure/Fracture	
) 🕨 🕅 TI	hermal	Ŧ
•	4	
Note: Sor	me error indicators are not available when Domain is Whole Model (or Int
🔲 Output f	or rebar	
Output at s	hell, beam, and layered section points:	
Ose de	faults 🔘 Specify:	
🔽 Include	ocal coordinate directions when available	
	OK	

Gambar 4.47 Menu Edit Output Request

7. Modul interaction

Interaction merupakan fasilitas yang memberikan hubungan antar Part dalam suatu Assembly. Penelitian ini menggunakan interaksi Embedded Region untuk menghubungkan antara beton dan tulangan dan Surface-to-Surface

dengan Tie adjusted surface untuk menghubungkan grouting dengan balok dan kolom. Proses interaction dilakukan dengan memilih Create Constraint pilih Embeded Region untuk menghubungkan antara beton dan tulangan sehingga bisa bersifat perfect bond seperti pada Gambar 4.48 dan Gambar 4.49. Tampilkan Part tulangan saja dengan cara klik View, Assembly Display Options, pilih Instance. Kemudian beri tanda ceklist pada daerah tulangan saja (Gambar 4.50). Pilih semua tulangan, klik Done, selanjutnya klik Select Part beton saja klik Done. Tampilan setelah dilakukan *Region* dari Interaction pada beton dan tulangan dapat dilihat pada Gambar 4.51. Kemudian pada bagian grouting dengan balok kolom pilih Create Interaction pilih Surface-to-surface contact (Gambar 4.52), lalu pilih master pada bagian semua sisi balok grouting dan bagian slave atau yang menempel pilih bagian permukaan yang akan menempel pada bagian master tadi. Ceklist pada Tie adjusted surface (Gambar 4.53). Tampilan setelah antar grouting dengan balok dan kolom dilakukan interaction dapat dilihat pada Gambar 4.54.

Gambar 4.48 Menu Create Constraint

💠 Create Constraint
Name: Constraint-1
Туре
Tie
Rigid body
Display body
Coupling
Adjust points
MPC Constraint
Shell-to-solid coupling
Embedded region
Equation
Continue Cancel

Gambar 4.49 Pemilihan *Embedded region* untuk hubungan beton dan tulangan

Gambar 4.50 Menu untuk menampilkan tulangan

Gambar 4.51 Tampilan setelah beton dan tulangan diberi hubungan *Embedded* region

+ Create Interaction
Name: Int-3
Step: Step-1 💌
Procedure: Static, General
Types for Selected Step
Surface-to-surface contact (Standard)
Self-contact (Standard)
Model change Standard Evolicit Co. cimulation
Pressure penetration
Continue Cancel

Gambar 4.52 Menu Create Interaction untuk memilih Surface-to-surface contact

Gambar 4.53 Tampilan menu Edit Interaction

Gambar 4.54 Tampilan pada balok grouting setelah dilakukan Interaction

8. Modul *load*

Load merupakan fasilitas untuk memasukkan beban (Load) dan Boundary Condition. Pembebanan pada pengujian ini digunakan beban titik pada setiap ujung balok dan untuk tumpuan digunakan jepit-jepit. Beban yang diberikan untuk pengujian ini sebesar 40 kN untuk BU-1 dan 100 kN untuk BU-2. Langkah dalam memberi pembebanan adalah pilih Create Load untuk memberi nama beban, pada menu Create Load (Gambar 4.55) pilih Concentrated force (Gambar 4.56) karena yang digunakan adalah beban titik. Isi pada kolom CF2 dengan beban yang akan dianalisis, CF2 dipilih karena beban menunjukkan arah vertikal dari titik yang dipilih (Gambar 4.57). Kemudian untuk mengatur tumpuan pilih *Create Boundary Condition* (Gambar 4.58), kemudian pilih *Symmetry/Antisymmetry/Encastre* (Gambar 4.59), pilih *Encastre* karena tumpuan yang diinginkan bernilai nol atau jenis tumpuan jepit (Gambar 4.60). Tampilan yang telah selesai diinput data beban dapat dilihat pada Gambar 4.61.

Gambar 4.55 Pemilihan menu Create Load

Gambar 4.56 Menu Create Load

💠 Edit Load		x
Name: Loa	d-3	
Type: Con	centrated force	
Step: Step	-1 (Static, General)	
Region: (Pic	ked) 🔀	
CSYS: (Glo	bal) 🔉 🙏	
Distribution:	Uniform 🔻	f(x)
CF1:	0	
CF2:	-20000	
CF3:	0	
Amplitude:	(Ramp)	N
🔲 Follow no	dal rotation	
Note: Force	will be applied per node.	
ОК	Cancel	

Gambar 4.57 Input beban titik

Gambar 4.58 Pemilihan menu Create Boundary Condition

Gambar 4.59 Menu untuk memilih jenis tumpuan

Gambar 4.60 Menu Edit Boundary Condition untuk memilih tumpuan jepit

Gambar 4.61 Hasil dari benda uji yang telah diinput data Load

9. Modul Job

Job merupakan fasilitas untuk mengkonversi model menjadi *file input* yang selanjutnya akan dieksekusi secara numerik oleh *ABAQUS*. Prosedur yang dilakukan adalah pilih perintah *Job*, isikan nama *Job* dan klik *Continue* (Gambar 4.62). Selanjutnya isikan masukan *Job* pada bagian *Submission*, dan *Memory* seperti pada Gambar 4.63 dan Gambar 4.64 pilih *OK*. Untuk menjalankan analaisis numerik pilih *Submit* dari *Job* yang dipilih (Gambar 4.65). Untuk melakukan *monitor* progress analisis numerik pilih *Monitor* (Gambar 4.66).

🜩 Create Job	×
Name: Job-10	
Source: Model	-
Model-1	
Model-2	
Model-3	
Continue	Cancel

Gambar 4.62 Perintah Create Job

Edit Job	
Name: DATA1	
Model: Model-3	
Analysis product: Abaqus/Standard	
Description:	
Submission General Memory Parallelization	Precision
Job Type	
Full analysis	
Recover (Explicit)	
Restart	
Run Mode	
Background Queue: Hos Type	t name: e:
Submit Time	
Immediately	
🔿 Wait: hrs. min.	
O At	
OK	Cancel

Gambar 4.63 Tampilan Submission pada Edit Job

Edit Job
Name: DATA1
Model: Model-3
Analysis product: Abaqus/Standard
Description:
Submission General Memory Parallelization Precision
Memory
Memory allocation units: O Percent of physical memory
Megabytes (MB)
Gigabytes (GB)
Maximum preprocessor and analysis memory: 1500 MB
✓ Increase memory allocation based on analysis estimates
OK

Gambar 4.64 Tampilan pengaturan Memory pada Edit Job

⇔ Job Manager	r –		_		×
Name	Model	Туре	Status		Write Input
DATA1	Model-3	Full Analysis	Completed		Data Check
Me-40	Model-3	Full Analysis	Terminated		
Me-50	Model-3	Full Analysis	Completed	Ξ	Submit
Me-60	Model-3	Full Analysis	Completed		Continue
Me-70	Model-3	Full Analysis	Completed		Monitor
Me-80	Model-3	Full Analysis	Completed		
Me-90	Model-3	Full Analysis	Completed		Results
Ma 100 ∢	Model 2 III	Eull Analusia	Completed +	Ŧ	Kill
Create	Edit Copy	Rename	Delete		Dismiss

Gambar 4.65 Tampilan Job yang selesai dibuat

			Severe					
Step	Increment	Att	Discon Iter	Equil Iter	Total Iter	Total Time/Freq	Step Time/LPF	Time/LPI Inc
1	310	10	0	1	1	0.992223	0.992223	0.0070161
1	310	2	0	2	2	0.993977	0.993977	0.0017540
1	311	1	0	2	2	0.996608	0.996608	0.0026310
1	312	1	0	3	3	1	1	0.0033916
•								•
Log l	Errors ! Warni	ngs Ou	itput Data	File Mess	age File	Status File		
Comple Comple	eted: Abaqus/St eted: Tue May 0	andard 9 11:19:2	5 2017					
Search	Text							

Gambar 4.66 Tampilan *Monitoring Job* yang telah selesai *running* (Completed)

10. Modul Visualization

Visualization merupakan fasilitas untuk menampilkan keluaran analisis numerik secara grafis meliputi kontur tegangan, regangan, *displacement*, *damage* parameter, dan parameter *output* lainnya. Cara menampilakan perintah ini adalah klik *Result* pada *form Job Manager* seperti pada Gambar 4.67.

Name	Model	Туре	Status	*	Write Inpu
DATA1	Model-3	Full Analysis	Completed		Data Chec
Me-40	Model-3	Full Analysis	Terminated		
Me-50	Model-3	Full Analysis	Completed	=	Submit
Me-60	Model-3	Full Analysis	Completed		Continue
Me-70	Model-3	Full Analysis	Completed		Monitor
Me-80	Model-3	Full Analysis	Completed		women.
Me-90	Model-3	Full Analysis	Completed		Results
< <u>100</u>	Model 2	Full Appleain	Completed	Ŧ	Kill

Gambar 4.67 Perintah Result untuk menampilkan kontur parameter output