BAB III METODOLOGI PENELITIAN

3.1 Alat Penelitian

Pada Penelitian ini dilakukan secara numerik dengan metode *Computer Fluid Dynamic* (CFD) menggunakan *software Ansys Fluent* versi 15.0. dengan menggunakan perangkat laptop Compac Presario CQ40 dengan spesifikasi prosesor Intel[®] Pentium[®] InsideTM, RAM 1 GB, penyimpanan 250 GB. Pada simulasi ini menggunakan model *Volume Of Fluid* (VOF), dengan jenis aliran turbulen RNG k- ε , dan kondisi *transient*. Geometri yang digunakan adalah bentuk geometri pipa horisontal berdiameter dalam 19 mm dan panjang 1000 mm. Simulasi ini menggunakan fluida air dan udara, dengan variasi kecepatan superfisial udara (JG) dan kecepatan superfisial air (JL).

3.1.1 Prosedur Penggunaan Software Ansys 15.0

Langkah-langkah umum untuk menyelesaikan analisis CFD pada Fluent adalah sebagai berikut :

- a. Membuat geometri dan mesh pada model
- b. Memilih *solver* yang tepat untuk model tersebut (2D atau 3D)
- c. Mengimpor *mesh* model
- d. Melakukan pemeriksaan pada mesh model
- e. Memilih formulasi solver
- f. Memilih persamaan dasar yang akan dipakai dalam analisis
- g. Menentukan sifat material yang akan dipakai
- h. Menentukan kondisi batas
- i. Mengatur parameter control solusi
- j. Initialize the flow field
- k. Melakukan perhitungan / iterasi
- 1. Memeriksa hasil iterasi
- m. Menyimpan hasil iterasi

n. Jikaperlu, memperhalus *grid* kemudian dilakukan iterasi ulang untuk mendapatkan hasil yang lebih baik.

3.1.2 Diagram Alir Simulasi

Simulasi dilakukan dengan prosedur yang ditunjukkan pada gambar 3.1.

Gambar 3.1. Diagram Alir Simulasi CFD Menggunakan Software Ansys Fluent

3.2 Proses Simulasi CFD

Padadasarnya proses simulasi CFD dibagi menjadi 3 proses, yaitu Pre-Processing, Processing dan Post-Processing.

3.2.1 Pre-Processing

Pre-Processing adalah proses awal dalam melakukan simulasi CFD yang perlu dilakukan, seperti membuat geometri, *meshing*, pendifinisian bidang batas pada geometri dan melakukan pengecekan *mesh*.

a. Membuat Geometri

Selain menggunakan aplikasi simulasi Ansys Fluent, proses pembuatan geometri juga dapat dilakukan dengan aplikasi *solidwork, autocad, gambit,* dan lain sebagainya, selanjutnya di impor ke aplikasi Ansys Fluent. Geometri dalam penelitian ini menggunakan pipa anulus berbahan *acrylic* dengan diameter luar pipa sebesar 25,4 mm, diameter dalam pipa sebesar 19 mm dan panjang 1000 mm, dengan diameter saluran masuk udara sebesar 10 mm, besarnya diameter saluran masuk udara akan mempengaruhi pola aliran yang terjadi di dalam pipa.

Gambar 3.2. Hasil Geometri (tampak depan)

Gambar 3.3. Hasil Geometri (tampak samping)

b. Membuat Mesh

Setelah geometri dibuat, proses selanjutnya yaitu *meshing* (membagi volume menjadi bagian-bagian kecil) agar dapat dianalisa pada program CFD. Ukuran *mesh* yang terdapat pada suatu obyek akan mempengaruhi ketelitian dan daya komputasi analisis CFD. Semakin kecil *mesh* yang dibuat, maka hasil yang didapatkan akan semakin teliti, tetapi membutuhkan daya komputasi yang besar.

Konsep pembuatan *mesh* mirip dengan membuat geometri. Proses *meshing* dilakukan dengan menekan tombol perintah *mesh* volume yang ada pada *operation toolpad*. Pertama volume yang diinginkan harus dipilih terlebih dahulu. Kemudian, bentuk yang diinginkan dapat dipilih pada tombol jenis elemen dan tipenya, harus ditentukan juga ukuran dari *mesh* yang diinginkan. Terakhir, melakukan proses *name selection*, yaitu pemberian nama pada bidang yang telah di*-mesh* sesuai dengan fungsinya. Bidang yang diidentifikasi dalam proses *name selection* adalah *inlet* dan *outlet* pipa baik untuk udara maupun air. Pada penelitian ini menggunakan 2 *inlet*, yaitu *inlet* air dan *inlet* udara, dan menggunakan 1 *outlet* agar fluida air dan fluida udara dapat tercampur di dalam pipa dan dapat membentuk pola aliran.

A : Fluid Flow (Fluent) - Meshing [ANSYS ICEM CFD]			
 File Edit View Units Tools Help ↔ 孝G	jenerate Mesh 🏥 👪 🔺 💕 🕶 🖤 Worksheet i 🖡		
👻 💱 🐚 - 🗞 - 🕅 🛅 🚺 🍪 -	S 💠 Q Q 🔍 Q Q Q 💥 10 📾 🖥	i 🗞 🗖 🕶	
	🙏 📕 Random Colors 🕜 Annotation Preferences		
Edge Coloring - 1 - 1 - 1 - 13 - 1.	🖌 🙌 🗠 Thicken Annotations		
Model 👔 Virtual Topology 🛛 🚵 Symmetry 🛛 🎕	Connections 🏟 Fracture 🏟 Mesh Numbering 🔮	Named Selection	
Outline 4			
Filter: Name 💌			ANSYS
Project		Selection Name	R15.0
Hodel (A3)			
Coordinate Systems		outlet	
Dimension Named Selections			-
autput (Apply selected geometry	
Alt input_uuara		Apply geometry items of same:	
wall		Size	
		Г Туре	
		Location X	
		Location Y	
		Location Z	
		Apply To Corresponding March Nodes	
Details of "Model (A3)" 4			-
Lighting Ambient 0.1		OK Cancel	
Diffuse 0.6	+		
Specular 1			-
Color	· · · · · · · · · · · · · · · · · · ·		Y
			+
		0.00 25.00 50.00) (mm)
		12.60 27.60	2
		12.00 37.00	
	Geometry Print Preview Report Preview		
	0 No Messages	1 Face Selected: Surface Area(approx.) = 282.09 mm ²	Metric (mm, kg, N, s, mV, mA) Degrees rad/s Cels
	🔳 🖇 🕑 🔼 🔥		▲ 🕅 🔐 🐗 🔍 8:33 AM 11/7/2016

Gambar 3.4. Proses Name Selection

c. Memeriksa Kualitas Mesh

Setelah *mesh* dibuat, selanjutnya memeriksa kualitas mesh, kualitas mesh yang baik dapat dilihat dari orthogonalnya, orthogonal yang rendah sangat tidak direkomendasikan, semakin besar *orthogonal quality* maka *mesh* semakin baik,

Orthogonal Quality mesh metrics spectrum									
Unacceptable	Bad	Acceptable	Good	Very good	Excellent				
0-0.001	0.001-0.14	0.15-0.20	0.20-0.69	0.70-0.95	0.95-1.00				
© 2012 ANSYS, Inc.	March 27, 2014		14		Release 14.5				

Gambar 3.5 Orthogonal Quality (Ansys Fluent User's Guide)

Mesh			
So	ale	Check	Report Quality
Dis	play		

Mesh Quality: Orthogonal Quality ranges from 0 to 1, where values close to 0 correspond to low quality. Minimum Orthogonal Quality = 1.58183e-01 Maximum Aspect Ratio = 2.09733e+01

Gambar 3.6 Report Mesh Quality

Gambar 3.7. Hasil Meshing (tampak depan)

Gambar 3.8. Hasil Meshing (tampak samping)

Gambar 3.9. Hasil Meshing

3.2.2 Processing

Pada tahap ini banyak yang harus dilakukan kaitannya dengan penentuan kondisi batas dalam sebuah simulasi CFD. Proses ini merupakan bagian yang paling penting karena hampir semua parameter penelitian diproses dalam tahapan ini, seperti *models, mesh*, interfaces, *materials, cell zone conditions, boundary conditions, dynamic mesh, references values, solution methods, solution controls, solution initialization, calculation activities, dan run calculation.*

a. General

Pada tahap ini menggunakan metode solusi *default* berdasarkan tekanan. Kemudian untuk *velocity formulation* menggunakan *absolute*. Aliran ini bersifat *transient* sehingga menggunakan waktu pada iterasinya.

General Mesh Scale Check Repo	ort Quality
Solver	
Type Velocity Formulati Image: Pressure-Based Image: Pressure-Based Image: Pressure-Based Image: Density-Based Image: Pressure-Based Image: Pressure-Based Image: Pressure-Based	ion
Time Steady Transient	
Gravity Gravitational Acceleration	Units
X (m/s2) 0	
Y (m/s2) -9.81	
Z (m/s2) 0	
Help	

Gambar 3.10. Tampilan Menu General

b. Models

Pada tahap ini *energy* disetting *off* karena pada simulasi ini tidak memerlukan penghitungan energi dalam prosesnya. Selanjutnya untuk *viscous* disetting menggunakan *k-epsilon* dengan model *realizable*. Pada kasus simulasi ini, *Realizable k-epsilon* dipilih karena memiliki tingkat akurasi yang lebih baik dibanding metode *standard k-epsilon* ataupun *RNG k-epsilon*.

Gambar 3.11. Tampilan Menu Models

c. Materials

Simulasi ini menggunakan material *solid* dan *fluid*. Pada penelitian ini menggunakan fluida *water-liquid* dan *air*.

d. Cell Zone Conditions

Cell Zone Conditions berisi daftar zona sel yang dibutuhkan. Pada tahap ini masing-masing zona disesuaikan dengan nama dan jenis materialnya. Untuk *Porous Formulation* yang berisi opsi untuk mengatur kecepatan simulasi disetting *default* dengan memilih *Superficial Velocity*.

e. Boundary Conditions

Pada tahap ini memberikan kondisi batas berupa data yang dibutuhkan pada simulasi ini. Data yang dimasukkan adalah *velocity inlet* serta *pressure outlet*. Pada *inlet* menggunakan data kecepatan superfisial air dan udara. Untuk *outlet* data yang dimasukkan adalah tekanan atmosfer.

Boundary Cor	nditions
Zone	
input_air input_udara interior-solid output wall wall-solid	
Phase	Type ID
Edit	Copy Profiles
Parameters	Operating Conditions
Display Mesh	Periodic Conditions
Highlight Zone	

Gambar 3.12. Tampilan Menu Boundary Condition

f. Solution Methods

Simulasi ini menggunakan skema SIMPLE, persamaan yang digunakan untuk aliran *transient* atau untuk *mesh* yang mengandung *cells* dengan *skewness* yang lebih tinggi dari rata-rata. Metode ini didasarkan pada tingkatan yang lebih tinggi dari hubungan pendekatan antara faktor koreksi tekanan dan kecepatan. Untuk meningkatkan efisiensi perhitungan, Pada *Spatial Discretization*, untuk *Gradient*-nya menggunakan *Least Squares Cell based*, *Pressure* menggunakan *PRESTO!*, dan untuk *Momentum*, *Volume Fraction*, *Turbulent Kinetic Energy, Turbulent Dissipation Rate*, dan *Energy* menggunakan *Second Order Upwind*.

Solution Methods
Pressure-Velocity Coupling
Scheme
SIMPLE
Spatial Discretization
Gradient
Least Squares Cell Based 👻
Pressure
PRESTO!
Momentum
Second Order Upwind 👻
Volume Fraction
Geo-Reconstruct
Turbulent Kinetic Energy
Second Order Upwind 👻 👻
Transient Formulation
First Order Implicit 👻
Non-Iterative Time Advancement
High Order Term Relaxation Options
Default
Help

Gambar 3.13. Tampilan Menu Solution Methods

g. Monitors

Pada tahap ini akan diatur parameter yang digunakan untuk memantau konvergensi secara dinamis. Pada dasarnya konvergensi dapat ditentukan dengan merubah parameter pada residual, statistik, nilai gaya, dll. Pada kasus ini *equations* pada *residual monitors* disetting sesuai kebutuhan yaitu akan menampilkan *continuity*, *z-velocity*, *energy*, *k-epsilon*, dan *do-intensity*.

Options	Equations				
Print to Console	Residual	Monitor C	heck Converger	nce Absolute Criteria	^
✓ Plot	continuity		•	0.001	
Window	x-velocity			0.001	
Terations to Plot	y-velocity			0.001	
1000	z-velocity		•	0.001].
	Residual Values			Convergence Cr	iterion
erations to Store	Normalize		Iterations	absolute	~
	☑ Scale	ocal Scale		19	

Gambar 3.14. Tampilan Menu Residual Monitor

h. Solution Initialization

Pada simulasi ini Initialization methods yang dipakai adalah hybrid initialization.

Solution Initialization
Initialization Methods
 Hybrid Initialization Standard Initialization
More Settings Initialize
Patch
Reset DPM Sources Reset Statistics
Help

Gambar 3.15. Tampilan Menu Solution Initialization

i. Run Calculation

Proses ini yaitu melakukan iterasi hingga iterasi selesai atau komplit. *Number of iterations* adalah batasan iterasi yang kita tentukan, sedangkan konvergensi tidak terpaku oleh jumlah data *number of iterations* yang kitam asukkan. Konvergensi dipengaruhi oleh ketepatan dalam menentukan metode yang digunakan dalam simulasi ini. Karena kita menggunakan metode *transient*, maka kita tidak perlu menunggu konvergensi.

Run Calculation	
Check Case	Preview Mesh Motion
Time Stepping Method	Time Step Size (s)
Fixed	0.001
Settings	Number of Time Steps
	1000
Options	
Extrapolate Variables Data Sampling for Time Sampling Interval Time Sampled (s	Statistics Sampling Options)
Max Iterations/Time Step	Reporting Interval
Profile Update Interval	
Data File Quantities	Acoustic Signals
Calculate	

Gambar 3.16. Tampilan Menu Run Calculation

3.2.3 Post-Processing

Langkah selanjutnya yaitu melihat hasil proses kalkulasi. Pada kasus penelitian ini, hasil yang dibutuhkan adalah *plane volume fraction* yang terbentuk pada sistem akibat dari variasi kecepatan superfisial air dan kecepatan superfisial udara.

Ada 3 tahap yang harus dilakukan untuk mengetahui hasil simulasi yang berupa pola aliran serta kecepatannya.

1. Plane

Tampilan *plane* ditunjukkan dalam bentuk tampilan 2 dimensi. Area tampilan dapat ditentukan berdasarkan sumbu koordinat geometri.

Details of Plane	e 1	Details of Plan	ne 1
Geometry	Color Render View	Geometry	Color Render View
Mode	Variable 🗸	Domains	All Domains 🔹 🔒
Variable	Phase 1. Volume Fraction	Definition	XY Plane
Range	Global	, icelied	
Min	0	Z	0.0 [m]
Max	1	Plane Bound	ds 🖂
Boundary Dat Color Scale	ta O Hybrid O Conservative	Туре	None
Color Map	Default (Rainbow)	Plane Type	Ξ
Undef. Color		Slice	⊘ Sample
Apply	Reset Defaults	Apply	Reset Default

Gambar 3.17. Tampilan Menu Pembuatan Plane

Gambar 3.18. Tampilan YZ Plane

Dalam penelitian ini, selain menentukan area tampilan *plane* berdasarkan koordinat YZ juga berdasarkan koordinat XY untuk mengetahui area tampilan hasil pada tiap titik di sepanjang sumbu Z pipa ini.

Gambar 3.19. Tampilan XY Plane Pada Titik Z 500 mm dari Inlet

2. Contour

Dengan *contour* dapat diketahui dengan lebih detail terkait pola hasil simulasi berdasarkan variabel yang dikehendaki pada setiap *plane* yang telah ditentukan sebelumnya. *Contour* dideskripsikan dengan warna untuk membaca pola berdasarkan variabel yang ditentukan.

Details of Cont	tour 1						Details of Con	tour 1					
Geometry	Labels	Render	View				Geometry	Labels	Render	View			
Show N	umbers						Domains	All FFF I	Domains			•	
Text Height	0.024						Locations	interior	part air par	t udara p	art udara	•	
Text Font	Sans S	erif			•		Variable	Phase	1.Volume Fi	action		•	
Color Mode	Defaul	t			•		Range	Global				•	
							Min					0	
							Max					1	
							Boundary Da	ata	Hybrid		Onservation	ervative	
							Color Scale	Linear				•	
							Color Map	Defau	lt (Rainbow)			•	3
							# of Contours	; 11				* *	
							Clip to Ra	nge					
Apply)		R	eset	Defau	ults	Apply]			Reset	Defau	ults

Gambar 3.20. Tampilan Menu Pembuatan Countur

Gambar 3.21 Tampilan YZ Countur

Gambar 3.22 Tampilan XY Countur Pada Titik Z 500 mm dari Inlet

3. Legend

Setelah menentukan area tampilan dan pola aliran berdasarkan warna dari hasil simulasi dengan *plane* dan *contour*, tahap selanjutnya adalah menentukan dimensi untuk membaca warna pola dengan menggunakan *legend*. Tiap *plane* atau *contour* dibuatkan *legend* tersendiri untuk mendapatkan dimensi yang lebih spesifik dan akurat.

Definition /	Appearance	Definition A	opearance	
Sizing Parame	ters		- · · ·	
Size	0.6	Plot	Contour 1	
Aspect	0.07	Title Mode	Variable	•
Text Paramete	ers	 Vertical 	Horizontal	
Precision	2 Fixed -	Location		
Value Ticks	10 (*	X Justification	Left	-
Font	Sans Serif 🔹	Y Justification	Тор	-
Color Mode	Default 👻	Position	0.02 0.15	
Colour				
Text Rotation	0			
Text Height	0.024			

Gambar 3.23. Tampilan Menu Pembuatan Legend

Gambar 3.24. Tampilan Legend