BAB III

LANDASAN TEORI

A. Bahan Penyusun Campuran Hot Rolled Sheet -Wearing Course (HRS-WC)

Pengadaan lapisan padat yang awet pada lapisan perata, lapis pondasi atau lapis aus campuran aspal yang terdiri dari agregat kasar, agregat halus, bahan pengisi (filler) dan bahan ikat aspal yang dicampuri di pusat instalasi pencampuran, serta dihampar dan dipadatkan diatas pondasi atau permukaan jalan yang telah disiapkan, harus sesuai dengan spesifikasi yang disyaratkan.

1. Agregat

Menurut Sukirman (2003), secara umum agregat didefinisikan sebagai formasi kulit bumi yang keras dan padat. Agregat merupakan komponen utama dari struktur perkerasan jalan, yaitu 90-95% agregat berdasarkan persentase berat, atau 75-85% agregat berdasarkan persentase volume. Dengan demikian kualitas perkerasan jalan ditentukan juga dari sifat agregat dan hasil campuran agregat dengan material lain. Berikut adalah agregat yang digunakan dalam campuran beton aspal:

a. Agregat Kasar

Agregat kasar adalah agregat dengan ukuran butir lebih besar dari saringan No. 8 (2,36). Parameter agregat kasar untuk campuran Lataston terdiri dari batu pecah atau kerikil pecah yang bersih, kering, kuat, awet, dan bebas dari bahan lain yang mengganggu seperti lumpur, agregat kasar harus mempunyai angularitas seperti yang didefinisikan sebagai persen terhadap berat agregat yang lebih besar dari 4,75 mm dengan muka bidang pecah satu atau lebih berdasarkan uji menurut SNI 7619: 2012 dan harus memenuhi spesifikasi seperti yang disyaratkan pada Tabel 3.1. Agregat yang digunakan harus dari sumber dan jenis yang sama untuk menjamin keseragaman campuran.

Tabel 3.1 Persyaratan agregat kasar

	Pengujian	Standar	Nilai		
Kekekalan bentuk agregat terhadap natrium sulfat			SNI 3407:2008	Maks. 12%	
	larutan	magnesium sulfat		SINI 3407.2006	Maks. 18%
Abrasi	Campuran AC		100 putaran		Maks. 6 %
dengan	n Modifikasi 500 putaran			SNI 2417:2008	Maks. 30%
mesin Los	1 Los Semua jenis campuran aspal		100 putaran	SIN1 2417:2008	Maks. 8%
Angeles	bergradasi lainnya		500 putaran		Maks. 40%
	Kelekatan agegat terhad	SNI 2439:2011	Min. 95 %		
Butir Pecah pada Agregat Kasar				SNI 7619:2012	95/90
Partikel Pipih dan Lonjong				ASTM D4791 Perbandingan 1:5	Maks.10 %
Material lolos Ayakan No. 200				SNI 03-4142- 1996	Maks. 2%

Sumber: Spesifikasi Umum Bina Marga Edisi 2010 (Revisi 3)

b. Agregat Halus

Agregat halus adalah material yang pada prinsipnya lewat saringan 2.36 mm dan tertahan pada saringan 75 µm atau saringan no. 200. Fungsi utama agregat halus adalah mendukung stabilitas dan mengurangi deformasi permanen dari campuran melalui ikatan (*interlocking*) dan gesekan antar partikel. Berkenaan dengan hal ini, sifat-sifat khas yang diperlukan dari agregat adalah sudut permukaan, kekasaran permukaan, bersih dan bukan bahan organik. Dalam konstruksi HRS komposisi agregat halus merupakan bagian yang terbesar sehingga sangat mempengaruhi kinerja pada saat masa konstruksi maupun pada masa pelayanan.

Tabel 3.2 Persyaratan agregat halus

Pengujian	Standar	Nilai
Nilai Setara Pasir	SNI 03-4428-1997	Min 60%
Angularitas dengan uji kadar rongga	SNI 03-6877-2002	Min 45%
Agregat lolos ayakan	SNI ASTM	Maks 10%
no.200	C117:2012	1VIAKS 10/0
Kadar lempung	SNI 03-4141-1996	Max 1%

Sumber: Spesifikasi Umum Bina Marga Edisi 2010 (Revisi 3)

c. Bahan pengisi (Filler)

Filler adalah material yang lolos saringan no.200 (0,075 mm) dan termasuk kapur hidrat, abu terbang, Portland semen dan abu batu. Filler dapat berfungsi untuk mengurangi kepekaan terhadap temperatur serta mengurangi jumlah rongga udara dalam campuran, namun demikian jumlah filler harus dibatasi pada suatu batas yang menguntungkan. Terlampau tinggi kadar filler maka cenderung menyebabkan campuran menjadi getas dan akibatnya akan mudah retak akibat beban lalu lintas. Pada sisi lain kadar filler yang terlampau rendah menyebabkan campuran menjadi lembek pada temperatur yang relatif tinggi. Jumlah filler ideal antara 0.6 sampai 1.2, yaitu perbandingan prosentase filler dengan prosentase kadar aspal dalam campuran atau lebih dikenal dengan istilah *Dust Proportion*.

2. Aspal

Aspal merupakan senyawa hidrokarbon berwarna hitam atau coklat tua, yang tersusun dari unsur-unsur asphaltness, resin dan oils, sedangkan senyawa hidrokarbon tersebut banyak terkandung dalam bitumen, sehingga aspal sering juga disebut sebagai bitumen. Asphaltenes yang merupakan material berwrna hitam atau coklat tua yang tidak larut dalam n-heptane. Asphaltenes menyebar di dalam larutan yang disebut maltenes. Malthenes larut dalam heptane, merupakan cairan kental yang terdiri dari resins dan oils. Resins adalah cairan berwarna kuning atau coklat tua yang memberikan sifat adhesi dari aspal, merupakan bagian yang mudah hilang atau berkurang selama masa pelayanan jalan, sedangkan oils yang berwarna lebih muda merupakan media dari asphaltenes dan resins. Maltenes merupakan komponen yang mudah berubah sesuai perubahan temperature dan umur pelayanan.

Menurut Sukirman (2003) aspal sering digunakan sebagai material perkerasan jalan karena berfungsi sebagai:

a. Bahan pengikat, memberikan ikatan yang kuat antara aspal dan agregat dan antara sesama aspal.

b. Bahan pengisi, mengisi rongga antar butir agregat dan pori-pori yang ada di dalam butir agregat itu sendiri.

Aspal yang digunakan dalam campuran beraspal Laston (HRS-WC) adalah aspal keras / asphalt cement penetrasi 60/70 yang memenuhi persyaratan seperti pada Tabel 3.3. Kadar aspal dalam campuran Laston merupakan perbandingan antara persentase berat aspal terhadap berat total campuran agregat, yang mana besaran persentase tersebut akan ditentukan dari hasil perhitungan pada benda uji pemeriksaan kadar aspal optimum (KAO). Kadar aspal yang semakin tinggi akan mempengaruhi kemampuan aspal untuk saling mengikat antar butir agregat dan mengurangi kadar rongga dalam campuran, tetapi apabila kadar aspal terlalu tinggi maka akan terjadi bleeding dimana material campuran lapisan perkerasan beraspal akan terpompa keluar atau lepas akibat beban lalu lintas (Sukirman, 2003).

Dalam AASHTO (1982) dinyatakan bahwa jenis aspal keras ditandai dengan angka penetrasi aspal,angka ini menyatakan tingkat kekerasan aspal atau tinggat konsentrasi aspal,semakin meningkatnya angka penetrasi aspal maka tingkat kekerasan aspal semakin tinggi.terdapat bermacam-macam tingkat penetrasi aspal yang dapat digunakan dalam campuran agregat aspal, antara lain 40/50,60/70,80/100. Umumnya aspal yang di gunakan di indonesia adalah aspal dengan pentrasi 60/70.

Fungsi kandungan aspal dalam campuran juga berperan sebagai selimut penyelubung agregat dalam bentuk tebal *film* aspal yang berperan menahan gaya geser permukaan dan mengurangi kandungan pori udara yang lebih lanjut, juga berarti mengurangi penetrasi air dalam campuran.

Pemeriksaan aspal tersebut antara lain:

a. Pemeriksaan Penetrasi

Nilai penetrasi didapat dari uji penetrasi dari alat *penetrometer* pada suhu 25° C dengan beban 100 gram selama 5 detik, dilakukan sebanyak 5 kali.

Penelitian ini menggunakan jenis aspal keras dengan angka penetrasi 60/70 yang mengacu pada spesifikasi umum bidang jalan dan jembatan, Departemen Pekerjaan Umum tahun 2010 (Revisi 3).

b. Pemeriksaan Titik Lembek

Tujuan dari pemeriksaan ini adalah untuk mengukur nilai temperatur saat bola-bola baja mendesar turun lapisan aspal yang ada pada cincin, hingga aspal tersebut menyentuh dasar pelat yang terletak dibawah cincin pada jarak 1 inchi, sebagai akibat dari percepatan pemanasan tertentu. Berat bola baja 3,45 – 3,55 gram dengan diameter 9,53 mm. Pemeriksaan ini diperlukan untuk mengetahui batas kekerasan aspal. Pengamatan titik lembek dimulai dari suhu 5° C sebagai batas paling tinggi sifat kekakuan dari aspal yang disebabkan oleh sifat termoplastik. Penelitian ini mengacu pada Spesifikasi Umum Bidang Jalan dan Jembatan, Departemen Pekerjaan Umum tahun 2010 (Revisi 3).

c. Pemeriksaan Titik Nyala dan Titik Bakar

Pemeriksaan ini untuk menentukan suhu dimana diperoleh nyala pertama di atas permukaan aspal dan menentukan suhu dimana terjadi terbakarnya pertama kali di atas permukaan aspal. Dengan mengetahui nilai titik nyala dan titik bakar aspal, maka dapat diketahui suhu maksimum dalam memanaskan aspal sebelum terbakar. Penelitian ini mengacu pada Spesifikasi Umum Bidang Jalan dan Jembatan, Departemen Pekerjaan Umum tahun 2010 (Revisi 3).

d. Pemeriksaan Kehilangan Berat

Pemeriksaan ini berguna untuk mengetahui pengurangan berat akibat penguapan unsur – unsur aspal yang mudah menguap dalam aspal. Apabila aspal dipanaskan di dalam oven pada suhu 163° C dalam waktu 4,5 – 5 jam, maka akan terjadi reaksi terhadap unsur – unsur pada aspal, sehingga dimungkinkan sifat aspal akan berubah, hal ini tidak diharapkan pada lapis perkerasan lentur, untuk itu disyaratkan kehilangan berat aspal maksimum adalah 0,8% dari berat semula. Penelitian ini mengacu pada Spesifikasi Umum Bidang Jalan dan Jembatan, Departemen Pekerjaan Umum tahun 2010 (Revisi 3).

e. Pemeriksaan Daktilitas Aspal

Tujuan dari pemeriksaan ini adalah mengukur jarak terpanjang yang dapat ditarik pada cetakan yang berisi aspal sebelum putus pada suhu 25° C dengan

kecepatan tarik 5 cm/menit. Penelitian ini mengacu pada Spesifikasi Umum Bidang Jalan dan Jembatan, Departemen Pekerjaan Umum tahun 2010 (Revisi 3).

f. Pemeriksaan Berat Jenis Aspal

Berat jenis aspal merupakan perbandingan antara berat aspal dengan berat air suling dengan volume yang sama. Penelitian ini mengacu pada Spesifikasi Umum Bidang Jalan dan Jembatan, Departemen Pekerjaan Umum tahun 2010 (Revisi 3).

g. Elastisitas

Tujuan penelitian ini adalah untuk mendapatkan nilai aspal yang dimodifikasi polimer jenis elastomer. Elastisitas merupakan perbandingan antara panjang aspal setelah mengalami elastisitas selama satu jam dengan panjang penarikannya yang dinyatkan dalam satuan persen. Penelitian ini mengacu pada Spesifikasi Umum Bidang Jalan dan Jembatan, Departemen Pekerjaan Umum tahun 2010 (Revisi 3).

Untuk mendapatkan campuran yang berkualitas baik terhadap aspal – agregat, maka kadar aspal dalam campuran harus dirancang sedemikian rupa sehingga mendapatkan kadar aspal optimum. Bila kadar aspal yang ditambahkan lebih rendah dari kadar aspal optimum, maka *film* aspal yang menyelimuti agregat akan tipis. *Film* aspal yang tipis menyebabkan ikatan antara aspal dan agregat mudah mengelupas, mengakibatkan lapis permukaan atau perkerasan tidak lahi kedap air, oksidasi mudah terjadi, sehingga lapisan perkerasan mudah menjadi rusak.

Penambahan kadar aspal yang lebih tinggi dari kadar aspal optimum akan menyebabkan aspal tidak lagi dapat menyelimuti agregat dengan baik. Jika volume pori dalam total campuran kecil, maka dengan adanya pemadatan tambahan akibat beban lalu lintas dan temperatur udara yang tinggi akan menyebabkan aspal keluar dari lapisan (bleeding), dan mengakibatkan permukaan jalan menjadi licin dan tidak aman bagi pengguna jalan. Kelebihan kadar aspal juga dapat menyebabkan kerusakan pada lapisan permukaan seperti keriting

(corrugation), bergelombang (washboarding), dan pergeseran (shoving), Daryanto (2005) dalam Rojali (2008).

Penelitian ini menggunakan jenis aspal keras dengan angka penetrasi 60/70 yang mengacu pada spesifikasi umum bidang jalan dan jembatan, Departemen Pekerjaan Umum tahun 2010 (Revisi 3), seperti pada Tabel 3.3.

Tabel 3.3 Persyaratan Aspal Keras Pen 60/70

	Jenis Pemeriksaan	Cara pemeriksaan	Pene- trasi 60/70	Satuan	Tipe II Aspal yang dimodifikasi			
No					A Asbuton yang diproses	B Elastom er sintesis		
1	Penetrasi (25°C, 5 detik)	SNI 06-2456-1991	60-70	0,1 mm	Min 50	Min 40		
2	Viskositas Dinamis	SNI 06-6441-2000	160-240	60°C	240-360	320-480		
3	Viskositas kinemis	SNI 06-6441-2000	>300	135°C	385-2000	< 3000		
4	Titik Lembek (ring ball)	SNI 2434:2011	>48	°C	> 53	> 54		
5	Titik Nyala (Clev.Open cup)	SNI 2433 : 2011	>232	°C	>232	>232		
6	Daktilitas (25°C, 5 cm/menit)	SNI 2433 : 2011	>100	% berat	>100	>100		
7	Kelarutan dlm trichloethy	AASHTO 144-03	>99	% berat	>99	>99		
8	Berat Jenis (25°C)	SNI 2441 : 2011	>1,0	gr/cc	>1,0	>1,0		
9	Stabilitas penyimpanan perbedan titik lembek	ASTM D 5976 part 6.1	-	°C	<2,2	<2,2		
10	Partikel yang lebih halus dari 150 micron	-	-	% berat	Min 95			
	Pengujian Residu hasil TFOT (SNI-03-6835-2002							
11	Berat yang hilang	SNI 06-2441-1991	<0,8	% berat	<0,8	<0,8		
12	Viskositas dinamis	SNI 03-6441-2000	<800	°C	<1200	<1600		
13	Penetrasi pada 25 °C	SNI 06-2456-1991	>54	% berat	>54	>54		
14	Daktalitas pada 25 °C	SNI 2432 : 2011	>100	Cm	>50	>25		
15	Keelastisan setelah pengembalian	AASTHO T 301- 98	-	% berat		>60		

Sumber: Spesifikasi Umum Bina Marga Edisi 2010 (Revisi 3)

Ada beberapa persamaan dalam menentukan kadar aspal optimum atau tidak, salah satunya yang dirumuskan oleh Departemen Pekerjaan Umum (2010), dan SNI M-01-2003 pada metode pengujian campuran beraspal panas dengan alat *Marshall*, perkiraan awal kadar aspal rancangan adalah:

$$Pb = 0.035(\% CA) + 0.045 (\% FA) + 0.18 (\% Filler) + K(3.1)$$
 dengan,

Pb = kadar aspal perkiraan

CA = agregat kasar tertahan saringan No. 8 (Course Aggregate)

FA = agregat halus lolos saringan No. 8 dan tertahan No. 200

(Fine Aggregate)

Filler = agregat halus lolos saringan No. 200

K = konstanta; 0,5-1,0 untuk Laston (AC), 2,0-3,0 untuk Lataston (HRS)

Kadar aspal optimum adalah nilai tengah dari rentang kadar aspal yang menggambarkan hubungan antara kadar aspal rancangan dengan nilai dari setiap parameter karakteristik *Marshall*, dan yang memenuhi sifat-sifat campuran serta ketentuan yang disyaratkan. Sifat-sifat benda uji yang sudah dipadatkan dihitung menggunakan metode persamaan yang ditunjukkan dalam petunjuk rancangan campuran aspal.

B. Pembagian Butir Agregat

Pembagian butir (gradasi) agregat adalah distribusi butir-butir agregat dengan ukuran tertentu yang diperoleh dari hasil analisis saringan dengan menggunakan satu set saringan yang dinyatakan dalam persentase lolos, atau persentase tertahan, dihitung berdasarkan berat agregat. Gradasi mempengaruhi sifat dari campuran aspal panas meliputi kekakuan, stabilitas, durabilitas, permeabilitas, workabilitas, kekesatan, dan ketahanan terhadap kerusakan.

Gradasi agregat menentukan besarnya rongga atau pori yang mungkin terjadi dalam campuran agregat. Distribusi butiran agregat dengan ukuran tertentu

yang dimiliki oleh suatu campuran menentukan jenis gradasi agregat. Gradasi agregat dapat dikelompokkan dalam 3 jenis, yaitu :

- 1. Gradasi Menerus (Continous Graded), atau biasa disebut gradasi rapat (dense graded) yaitu ukuran butir agregat dimana rongga antar butiran besar diisi oleh butiran yang lebih kecil lagi, atau gradasi yang mempunyai ukuran butiran dari terbesar sampai terkecil. Biasanya disebut juga gradasi padat atau gradasi baik karena memadat akibat saling mengisi dan mengunci (interlocking). Campuran agregat bergradasi rapat akan menghasilkan lapis perkerasan dengan stabilitas tinggi, kurang kedap air, sifat drainase jelek, dan berat volume besar.
- 2. Gradasi Tunggal (Single Graded), atau gradasi seragam (uniformly atau one size graded), adalah butiran agregat yang mayoritas satu ukuran, biasanya masih terdapat sedikit butiran halus yang ikut terbawa sehingga tidak dapat mengisi rongga antar agregat. Gradasi ini tidak rawan terhadap segregasi dan umumnya merupakan produk crusher yang dapat dengan mudah diatur proporsinya untuk mencapai gradasi yang diinginkan. Campuran agregat ini mempunyai pori yang cukup besar, sehingga sering disebut juga agregat bergradasi terbuka (open graded). Campuran agregat bergradasi tunggal atau seragam akan menghasilkan lapis perkerasan dengan sifat permeabilitas tinggi, stabilitas kurang, dan berat volume kecil.
- 3. Gradasi Senjang (Gap Graded), adalah ukuran butiran agregat yang sedemikian hingga tidak ada, atau hampir tidak ada suatu rentang ukuran 'menengah''. Perbedaan material untuk ukuran butiran menengah yang berukuran jika dibawah 10 % baru disebut gradasi senjang. Campuran bergradasi senjang akan menghasilkan lapis perkerasan yang mutunya terletak antara kedua jenis diatas.

Menurut Robert (1991), gradasi agregat merupakan gambaran distribusi ukuran partikel agregat berupa presentase lolos saringan. Gradasi ditentukan dari analisis saringan dengan menggunakan satu set saringan sesuai dengan spesifikasi gradasi campuran , saringan yang paling besar diletakkan paling

atas dan saringan yang paling kecil diletakkan paling bawah. Satu set saringan berdasarkan AASHTO menunjukkan ukuran bukaan dari masing-masing saringan seperti yang ditampilkan pada Tabel 3.4 dibawah ini.

Tabel 3.4 Ukuran Bukaan Saringan

Ukuran Saringan	Bukaan (mm)	Ukuran Saringan	Bukaan (mm)	
4 inchi	100	3/8 inchi	9,5	
3 1/2inchi	90	No. 4	4,75	
3 inchi	75	No. 8	2,36	
2 1/2 inchi	63	No. 16	1,18	
2 inchi	50	No. 30	0,6	
1 1/2 inchi	37,5	No. 50	0,3	
1 inchi	25	No. 100	0,15	
3/4 inchi 19		No. 200	0,075	
1/2 inchi	12,5			

Sumber: Sukirman, 2003

Pada campuran HRS – WC digunakan agregat dengan gradasi dengan gradasi senjang *(gap graded)*. Dengan karakteristik campuran HRS-WC yang bergradasi halus, maka akan diperoleh rongga dalam agregat (VMA) yang lebih besar. Untuk HRS – WC dan HRS – *Base*, paling sedikit 80% agregat lolos ayakan No. 8 (2,36 mm) harus juga lolos ayakan No. 30 (0,600 mm). Seperti terlihat pada contoh batas-batas ''bahan bergradasi senjang'' yang lolos ayakan No. 8 (2,36 mm) dan tertahan ayakan No. 30 (0,600 mm) dalam Tabel 3.5

Tabel 3.5 Gradasi agregat gabungan untuk campuran Laston (HRS-WC)

Ukuran Ayakan (mm)		% Berat Lolos Terhadap Total Agregat dalam Campuran HRS-WC				
		Gradasi	Senjang	Gradasi Semi Senjang		
Inchi	Mm	Wearing Coarse (WC)	Base	Wearing Coarse (WC)	Base	
1½	37,5	-	-	-	-	
1	25	-	-	-	-	
3/4	19	100	100	100	100	
1/2	12,5	90 – 100	90-100	90-100	90-100	
3/8	9,5	75 – 85	65-90	55-88	55-70	
No.40	4,75	-	-	-	-	
No.8	2,36	50 – 72	35-55	50-62	32-44	
No.16	1,18	-	-	-	-	
No.30	0,6	35 – 60	15-35	20-45	15-35	
No.50	0,3	-	-	15-35	5-35	
No.100	0,15	-	-	-	-	
No.200	0,075	6 – 10	2-9	6-10	4-8	

Sumber: Spesifikasi Umum Bina Marga Edisi (Revisi 3)

C. Metode Marshall (Marshall Test)

Pada pengujian ini meliputi pengukuran stabilitas dan pelelehan (flow) suatu campuran beraspal dengan butir agregat berukuran maksimum 25,4 mm. Stabilitas adalah kemampuan suatu campuran aspal untuk menerima beban sampai terjadi alir (flow) yang dinyatakan dalam kilogram. Alir (flow) adalah keadaan perubahan bentuk suatu campuran aspal yang terjadi akibat suatu beban, dinyatakan dalam mm. Acuan normatif yaitu SNI 06-2489-1991, AASHTO T 245-97, AASHTO T 209-90, BS 598, dan Asphalt Institute MS-2-1994.

Pengujian Marshall merupakan suatu metode untuk menentukan rancangan campuran agregat-aspal, dimana dalam metode ini terlebih dahulu

dibuat benda uji padat yang dibentuk dari agregat campuran dan aspal dengan kadar tertentu sesuai spesifikasi campuran. Pengujian *Marshall* dilakukan dengan menggunakan alat *Marshall*, merupakan alat tekan yang dilengkapi kepala penekan (*breaking head*) berbentuk lengkung, cincin penguji (*proving ring*) kapasitas 2500 kg dan atau 5000 kg yang digunakan untuk mengukur nilai stabilitas, arloji (*dial*) tekan dengan ketelitian 0,0025 mm, arloji pengukur alir (*flow*) dengan ketelitian 0,25 mm digunakan untuk mengukur kelelehan plastis (*flow*) beserta perlengkapannya.

D. Metode Pengujian Material

1. Agregat Kasar

Agregat kasar merupakan kerikil sebagai hasil disintegrasi 'alami' dari batuan atau berupa batu pecah yang diperoleh dari industri pemecah batu dan mempunyai ukuran butir antara 4,75 mm (No.4) sampai 40 mm (No.11/2 inchi). Beberapa perhitungan dalam agregat kasar yaitu:

a. Berat Jenis Curah Kering

Dalam perhitungan berat jenis curah kering (S_d) menggunakan persamaan sebagai berikut :

Berat Jenis Curah Kering =
$$\frac{A}{(B-C)}$$
...(3.2)

dengan,

A = berat benda uji kering oven (gram)

B = Berat Benda Uji kondisi jenuh kering permukaan di udara (gram)

C = Berat Benda Uji dalam air (gram)

b. Berat Jenis Curah (Jenuh Kering Permukaan)

Dalam perhitungan berat jenis curah kering permukaan (S_S) menggunakan persamaan sebagai berikut :

Berat Jenis Curah (Jenuh Kering Permukaan) =
$$\frac{B}{(B-C)}$$
.....(3.3) dengan,

B = berat benda uji kondisi jenuh kering permukaan di udara (gram)

C = berat benda uji dalam air (gram)

c. Berat Jenis Semu

Dalam perhitungan berat jenis semu (S_a) menggunakan persamaan sebagai berikut :

Berat Jenis Semu =
$$\frac{A}{(A-C)}$$
....(3.4) dengan,

A = berat benda uji kering oven (gram)

C = berat benda uji dalam air (gram)

d. Penyerapan Air

Dalam perhitungan persentase penyerapan air (S_w) menggunakan persamaan sebagai berikut :

Penyerapan air=
$$\frac{B-A}{A}$$
x 100%....(3.5) dengan,

A = berat benda uji kering oven (gram)

B = berat benda uji kondisi jenuh kering permukaan di udara (gram)

e. Keausan Agregat dengan mesin Los Angeles

Keausan Agregat dengan mesin *Los Angeles* merupakan pengujian untuk mengetahui angka keausan yang dinyatakan dengan perbandingan antara berat bahan aus terhadap berat semula dalam persen. Untuk menghitung keausan agregat maka digunakan persamaan sebagai berikut:

Keausan =
$$\frac{a-b}{a}$$
x 100%....(3.6)

dengan,

A = berat benda uji semula (gram)

B = berat benda uji tertahan saringan No.12 (1,70mm) (gram)

2. Agregat Halus

Agregat halus ialah merupakan pasir alam sebagai hasil disintegrasi 'alami' batuan atau pasir yang dihasilkan oleh industri pemecah batu dan mempunyai ukuran butir terbesar 4,75 mm (No.4). Dalam menghitung berat jenis agregat halus menggunakan piknometer, dengan cara menghitung jumlah air yang dibutuhkan untuk mengisi piknometer pada temperatur yang ditentukan secara volumetrik dengan menggunakan buret yang ketelitiannya 0,15 mL. Hitung berat total piknometer, benda uji dan air dengan rumus:

$$C = 0,9975. Va + S + W....(3.7)$$
 dengan,

C = berat piknometer, benda uji dan air pada batas pembacaan (gram)

Va = volume air yang dimasukkan kedalam piknometer (mL)

S = berat benda uji kondisi jenuh kering permukaan (gram)

W = berat piknometer kosong (gram)

Langkah alternatif lainnya menggunakan labu Le Chatelier adalah dengan mengisi labu tersebut dengan air sampai pada posisi garis yang berada di antara 0 dan 1mL. Beberapa perhitungan dalam agregat halus yaitu :

a. Berat Jenis Curah Kering

Dalam perhitungan berat jenis curah kering (S_d) menggunakan persamaan sebagai berikut :

Berat Jenis Curah Kering =
$$\frac{A}{(B+S-C)}$$
....(3.8)

dengan,

A= berat benda uji kering oven (gram)

B= berat piknometer yang berisi air (gram)

C= berat piknometer dengan benda (gram)

S= berat benda uji kondisi jenuh kering permukaan (gram).

Jika labu Le Chatelier digunakan, maka berat jenis curah kering dihitung dengan persamaan :

Berat jenis curah kering =
$$\frac{S1(\frac{A}{S})}{0.9975(R2-R1)}$$
 (3.9)

A= berat benda uji kering oven (gram)

dengan,

R₁= pembacaan awal posisi air pada labu Le Chatelier

R₂= pembacaan akhir posisi air pada labu Le Chatelier

S= berat benda uji kondisi jenuh kering permukaan (gram)

S₁= berat benda uji kondisi jkp yang dimasukkan ke labu (gram)

b. Berat Jenis Curah (Jenuh Kering Permukaan)

Dalam perhitungan berat jenis curah kering permukaan (S_S) menggunakan persamaan sebagai berikut :

Berat Jenis Curah
$$=\frac{S}{(B+S-C)}$$
 (3.10) dengan,

B = berat benda uji kondisi jenuh kering permukaan di udara (gram)

C = berat benda uji dalam air (gram)

S = berat benda uji kondisi jenuh kering permukaan (gram)

Jika labu Le Chatelier digunakan, maka berat jenis curah kering dihitung dengan persamaan :

Berat jenis curah kering =
$$\frac{S1(\frac{A}{S})}{0.9975(R2-R1)}$$
....(3.11) dengan,

 R_1 = pembacaan awal posisi air pada labu Le Chatelier

R₂ = pembacaan akhir posisi air pada labu Le Chatelier

 S_1 = berat benda uji kondisi jkp yang dimasukkan ke labu (gram)

c. Berat Jenis Semu

Dalam perhitungan berat jenis semu (S_a) menggunakan persamaan sebagai berikut:

Berat Jenis Semu
$$=\frac{A}{(B+A-C)}$$
.....(3.12) dengan,

A = berat benda uji kering oven (gram)

B = berat piknometer yang berisi air (gram)

C = berat piknometer dengan benda uji dan air sampai batas pembacaan (gram)

d. Penyerapan Air

Dalam perhitungan persentase penyerapan air (S_w) menggunakan persamaan sebagai berikut :

Penyerapan air =
$$\left[\frac{S-A}{A}\right] \times 100\%$$
....(3.13) dengan,

A = berat benda uji kering oven (gram)

S = berat benda uji kondisi jenuh kering permukaan di udara (gram)

3. Aspal

Fungsi kandungan aspal dalam campuran juga berperan sebagai selimut penyelubung agregat dalam bentuk tebal *film* aspal yang berperan menahan gaya geser permukaan dan mengurangi kandungan pori udara yang lebih lanjut, juga berarti mengurangi penetrasi air dalam campuran.

Pemeriksaan aspal tersebut antara lain:

a. Pemeriksaan Penetrasi

Penetrasi merupakan kekerasan yang dinyatakan sebagai kedalaman masuknya jarum penetrasi standar secara vertikal yang dinyatakan dalam satuan 0,1 mm pada kondisi beban, waktu dan temperatur yng diketahui.Untuk mendapatkan nilai penetrasi dilakukan dengan cara menggunakan alat *penetrometer*.

b. Titik Lembek

Untuk mendapatkan nilai titik lembek aspal dilakukan pengujian titik lembek menggunakan alat cincin dan bola,dimaksudkan untuk

menentukan angka titik lembek aspal yang berkisar dari 30° sampai 157° dengan cara *Ring and Ball*.

c. Berat Jenis

Didalam mencari nilai berat jenis pada campuran aspal, maka digunakan alat *piknometer*. Perhitungan berat jenis aspal dapat dilihat dari persamaan berikut :

Berat Jenis
$$=\frac{(C-A)}{[(B-A)-(D-C)]}$$
 (3.14)

dengan,

A = massa piknometer dan penutup

B = massa piknometer dan penutup berisi air

C = massa piknometer, penutup, dan benda uji

D = massa piknometer, penutup, benda uji, dan air

Untuk mencari berat isi benda uji maka digunakan persamaan:

Berat isi = Berat jenis x
$$W_{T}$$
 (3.15) dengan,

W_T = berat isi air pada temperatur pengujian

d. Daktilitas

Pada pengujian daktilitas dilakukan pada temperatur $25^{\circ}\text{C} \pm 0,5^{\circ}\text{C}$ atau temperatur lainnya dengan cara menentukan jarak pemuluran aspal dalam cetakan pada saat putus setelah ditarik dengan kecepatan 50 mm per menit $\pm 2,5$ mm sehingga akan didapat nilai daktilitas.

e. Kehilangan Berat Minyak dan Aspal

Kehilangan berat minyak dan aspal merupakan selisih berat sebelum dan sesudah pemanasan pada tebal tertentu pada suhu tertentu. Untuk mencari nilai kehilangan berat minyak dan aspal maka digunakan persamaan berikut:

Penurunan berat
$$= \frac{A-B}{A} \times 100\%$$
(3.16) dengan,

A = berat benda uji semula

B = berat benda uji setelah pemanasan

f. Elastisitas

Elastisitas merupakan perbandingan antara panjang aspal setelah mengalami elastisitas selama satu jam dengan panjang penarikkannya dalam satuan persen. Untuk perhitungan elastisitas dengan menggunakan persamaan berikut:

% Elastisitas
$$=\frac{10-X}{10} \times 100\%$$
....(3.17) dengan,

X = perpanjangan benda uji dalam satuan cm setelah mengalami

Elastisitas

g. Titik nyala dan Titik Bakar

Standar untuk menentukan titik nyala dan titik bakar aspal dengan menggunakan alat *cleveland open cup* secara manual dan dapat digunakan untuk semua jenis aspal yang mempunyai titik nyala dalam rentang 79°C sampai dengan 400°C. Untuk perhitungan titik nyala dan titik bakar menggunakan persamaan sebagai berikut:

Titik nyala/titik bakar terkoreksi =C + 0.25(101.3 - K).....(3.18) dengan,

C = titik nyala / titik bakar, °C

K = tekanan barometer udara, kPa

E. Metode Pengujian Campuran

Didalam perhitungan rancangan campuran dibutuhkan parameter penunjuk berat, yaitu berat jenis. Analisis berat jenis diperlukan dalam perhitungan untuk mencari karakteristik *Marshall*, sehingga perlu dipahami terlebih dahulu konsep mengenai berat jenis kering agregat, berat jenis efektif agregat, dan berat jenis maksimum teoritis campuran.

1. Berat Jenis Kering Agregat (*Bulk Specific Gravity of Aggregate*)

Berat jenis kering agregat dinyatakan dalam berat jenis curah untuk agregat yang merupakan campuran berbagai fraksi agregat, yaitu agregat kasar, agregat halus, dan *filler*.

Berat jenis kering (bulk specific gravity) dari total agregat ditentukan dari:

Gsb total agregat
$$= \frac{P1 + P2 + P3 \dots + Pn}{\frac{P1}{Gsb} + \frac{P2}{Gsb2} + \frac{P3}{Gsb3} \dots + \frac{Pn}{Gsbn}}.$$
(3.19)

2. Berat Jenis Semu Agregat (Apparent Specific Gravity of Aggregate)

Berat jenis semu untuk agregat yang merupakan campuran berbagai fraksi agregat, yaitu agregat kasar, agregat halus dan *filler*.

Berat jenis semu (*apparent spesific gravity*) dari total agregat dapat dihitung dari:

Gsa total agregat
$$= \frac{P1 + P2 + P3 \dots + Pn}{\frac{P1}{Gsa1} + \frac{P2}{Gsa2} + \frac{P3}{Gsan} \dots + \frac{Pn}{Gsan}}$$
(3.20)

dengan,

 $G_{\text{sb total agregat}}$ = Berat jenis kering agregat gabungan (gr/cc)

G_{sa total agregat} = Berat jenis semu agregat gabungan (gr/cc)

 Gsb_1, Gsb_2, Gsb_n = Berat jenis kering masing-masing agregat 1, 2, 3... n (gr/cc)

Gsa₁, Gsa₂, Gsa_n = Berat jenis semu masing-masing agregat 1, 2, 3... r (gr/cc)

 P_1, P_2, P_n = Persentase berat dari masing-masing agregat (%)

3. Berat Jenis Efektif Total Agregat

Berat jenis efektif total agregat sulit untukdiukur sehingga belum ada standarnya dan selama ini nilainya diperkirakan. Berat jenis efektif dari agregat dapat dihitung dengan persamaan berikut:

Gse total agregat
$$= \frac{Gsb-G}{2}$$
 (3.21)

Gse total agregat
$$= \frac{Pmm - Pb}{\frac{Pnn}{Gmm} + \frac{Pb}{Gb}}$$
 (3.22)

dengan,

 G_{sb} = Berat jenis kering/bulk spesific gravity (gr/cc)

 G_{sa} = Berat jenis semu/apparent spesific gravity (gr/cc)

 G_b = Berat jenis aspal (gr/cc)

Gse total agregat = Berat jenis efektif agregat gabungan (gr/cc)

Gse₁, Gse₂... Gse_n = Berat jenis efektif dari masing-masing agregat 1,

2, 3... n

G_{mm} = Berat jenis campuran maksimum teoritis setelah

pemadatan (gr/cc)

Pmm = Persen berat total campuran (=100)

P_b = Persentase kadar aspal terhadap total campuran (%)

4. Volume Campuran dan Berat Jenis Campuran Setelah Pemadatan

Volume campuran setelah pemadatan dapat dihitung dengan persamaan berikut:

$$V_{\text{bulk}} = V_{\text{SSD}} - W_{\text{W}} \tag{3.23}$$

Berat jenis campuran setelah pemadatan dapat ditentukan dengan perhitungan berikut:

$$G_{\rm mb} = \frac{W_{\rm a}}{V_{\rm bulk}}.$$
(3.24)

Berat jenis campuran maksimum teoritis setelah pemadatan (G_{mm})

$$G_{mm} = \frac{P_{mm}}{\frac{P_S}{Gse_{total \, agregat}} + \frac{P_b}{Gsb_{total \, agregat}}}$$
(3.25)

dengan,

 V_{bulk} = Volume campuran setelah pemadatan (cc)

 P_{mm} = Persen berat total campuran (=100)

P_s = Kadar agregat, persen terhadap berat total campuran

P_b = Kadar aspal, persen terhadap berat total campuran

 W_a = Berat dalam air (gr)

 G_{mb} = Berat jenis campuran setelah pemadatan (gr/cc)

 G_{mm} = Berat jenis campuran maksimum teoritis setelah pemadatan (gr/cc)

F. Karakteristik Marshall

Konsep dasar dari karakteristik *Marshall* dalam campuran aspal dikembangkan oleh *Bruce Marshall* seorang insinyur bahan aspal bersamasama dengan *The Mississipi State Highway Department. The U.S. Army Corp*

Of Engineers (BB, 2003) melanjutkan penelitian dengan intensif dan mempelajari hal-hal yang ada kaitannya, meningkatkan dan manambah kelengkapan pada prosedur pengujian *Marshall* dan akhirnya mengembangkan rancangan campuran pengujian ini, yang telah distandarisasikan di dalam ASTM D-1559.

Parameter penting yang ditentukan dalam pengujian *Marshall*adalah bebanmaksimum yang dapat dipikul oleh benda uji sebelum hancur atau yang biasa disebut *Marshall Flow*, serta turunan dari keduanya yang merupakan perbandingan antara *Marshall stability* dengan *Marshall Flow* yang disebut *Marshall Quotient*, yang merupakan nilai kekakuan berkembang (*pseudo stiffness*), yang menunjukan ketahanan campuran terhadap deformasi *permanent*.

Karakteristik campuran dari lapisan perkerasan dipengaruhi oleh susunan dan kualitas dari bahan-bahan penyusunnya, selain itu proses pelaksanaan dalam pengerjaannya dapat mempengaruhi kualitas campuran. Adapun karakteristik yang harus dimiliki oleh beton aspal campuran panas, antara lain adalah.

1. Kepadatan (*Density*)

Kepadatan merupakan berat campuran yang diukur tiap satuan volume. Kepadatan dipengaruhi oleh kualitas bahan, kadar aspal, jumlah tumbukan, komposisi bahan penyusunnya. Nilai kepadatan yang semakin tinggi menghasilkan kemampuan menahan beban lalu lintas yang lebih baik serta memiliki kekedapan terhadap air dan udara yang tinggi pula. Nilai kepadatan dari benda uji ini dapat dihitung dengan persamaan:

$$Gmb = \frac{Wmp}{\frac{Wmssd}{\gamma w} - \frac{Wmv}{\gamma w}}.$$
(3.26)

dengan,

Gmb = berat volume benda uji (density) (gr/cc)

W_{mp} = berat kering benda uji sebelum direndam air (gram)

W_{mssd} = berat benda uji dalam keadaan jenuh air (gram)

 W_{mv} = berat benda uji dalam air (gram)

 $\gamma_{\rm w}$ = berat volume air (gr/cc)

2. Rongga antara Mineral Agregat (Void in the Mineral Agregat, VMA)

VMA adalah ruang antara partikel agregat pada suatu perkerasan beraspal, termasuk rongga udara dan volume aspal efektif (tidak termasuk volume aspal yang diserap agregat). Volume rongga yang terdapat antara partikel agregat suatu campuran berasapal yang telah dipadatkan, yaitu rongga udara dan volume kadar aspal efektif, yang dinyatakan dalam persentase terhadap volume total benda uji. Peran VMA penting didalamnya untuk membuat ruang yang cukup bagi aspal untuk membuat campuran yang mempunyai durabilitas yang baik. Jika nilai VMA terlalu besar, dibutuhkan aspal dalam jumlah yang berlebihan untuk mengurangi rongga udara sehingga sesuai standar yang diisyaratkan. Jumlah aspal yang berlebihan di dalam suatu campuran juga dapat membuat stabilitas terganggu (Lavin, 2003).

VMA dapat dihitung dengan menggunakan persamaan:

$$VMA = 100 - \frac{Gmb \times Ps}{Gsb}$$
...(3.27) dengan,

VMA = Voids mineral aggregate (%)

 G_b = Berat jenis agregat (gr/cc)

 G_{mb} = Berat jenis curah campuran padat (gr/cc)

 P_s = Persen agregat terhadap berat total campuran (%)

3. Rongga Udara dalam Campuran (Voids in Mix, VITM)

VITM adalah persentase volume rongga terhadap volume total campuran setelah dipadatkan, dinyatakan dalam %. VITM digunakan untuk mengetahui besarnya rongga campuran, demikian sehingga rongga tidak terlalu kecil (menimbulkan *bleeding*) atau terlalu besar (menimbulkan oksidasi / penuaan aspal dengan masuknya udara). Nilai

VITM mengalami penurunan dengan penambahan kadar aspal hingga mencapai rongga udara dalam campuran minimum (Lavin, 2003).

VITM dibutuhkan untuk tempat bergesernya butir-butir agregat akibat pemadatan tambahan dari beban lalu lintas, atau tempat jika aspal menjadi lunak akibat naiknya temperature. VITM dapat dihitung dengan menggunakan persamaan :

$$VITM = 100 x \frac{Gmm x Gmb}{Gmm}.$$
(3.28)

dengan,

VITM = kadar rongga terhadap campuran (%)

 G_{mb} = berat volume benda uji (gr/cc)

G_{mm} = berat jenis maksimum teoritis (gr/cc)

4. Rongga terisi Aspal (Voids Filled with Asphalt, VFWA)

VFA ditentukan dari jumlah VMA dan rongga udara di dalam campuran VFA adalah persentase dari VMA yang terisi oleh aspal, tidak termasuk aspal yang diserap oleh agregat. Nilai VFA meningkat dengan penambahan kadar aspal (Sukirman, 2003). VFA merupakan bagian VMA yang terisi aspal, dimana aspal tersebut berfungsi menyelimuti butir-butir agregat dalam campuran agregat aspal padat untuk menghitung VFA dapat digunakan persamaan berikut ini:

$$VITM = 100 x \frac{VMA - VIM}{VMA}$$
 (3.29)

dengan,

VFA = rongga terisi aspal (%)

VMA = rongga diantara mineral agregat (%)

VITM = rongga di dalam campuran (%)

5. Stabilitas

Stabilitas adalah kemampuan lapis perkerasan menerima beban lalu lintas tanpa terjadi perubahan bentuk permanen seperti gelombang, alur ataupun bleeding (Sukirman, 2003). Stabilitas tergantung dari gesekan

antar agregat dalam campuran dan kohesi. Nilai stabilitas yang terlalu tinggi menyebabkan lapisan menjadi kaku dan cepat mengalami retak, selain itu karena volume rongga antar agregat kurang, mengakibatkan kadar aspal yang dibutuhkan rendah sehingga ikatan aspal dengan agregat mudah lepas dan durabilitasnya rendah. Besarnya stabilitas benda uji didapat dari pembacaan arloji stabilitas alat tekan *marshall*yang dicocokkan dengan kalibrasi *proving ring*nya dalam satuan kilogram (kg). Selanjutnya nilai stabilitas dikoreksi dengan faktor koreksi tebal benda uji.

Formula untuk menghitung nilai stabilitas dapat dihitung juga dengan menggunakan persamaan :

O = q x kalibrasi *proving ring* x koreksi tebal benda uji.....(3.30) dengan,

O = stabilitas (kg)

q = nilai pembacaan arloji

6. Kelelehan Plastis atau Alir (*Flow*)

Kelelehan adalah bentuk keadaan perubahan bentuk suatu campuran aspal yang terjadi akibat suatu beban, dinyatakan dalam millimeter (mm). Parameter kelelehan diperlukan untuk mengetahui deformasi (perubahan bentuk) vertikal campuran pada saat dibebani hingga hancur (pada saat stabilitas maksimum). Kelelehan akan meningkat seiring meningkatnya kadar aspal (Lavin, 2003).

Apabila pembacaan pada arloji menunjukkan nilai flow rendah, maka campuran cendrung menjadi getas, sebaliknya jika nilai flow tinggi campuran cendrung plastis.

7. *Marshall Quotient* (MQ)

MQ adalah hasil bagi dari stabilitas dengan kelelehan yang dipergunakan untuk pendekatan terhadap nilai kekakuan atau kelenturan campuran, dinyatakan dalam kN/mm. Nilai MQ yang tinggi menunjukkan nilai kekakuan lapis keras tinggi. Lapis keras yang mempunyai nilai MQ yang terlalu tinggi akan mudah terjadi retak-retak akibat repetisi beban lalu

lintas. Sebaliknya nilai MQ yang terlalu rendah menunjukan campuran terlalu fleksibel yang mengakibatkan perkerasan mudah berubah bentuk bila menahan beban lalu lintas.

Marshall Quotient dapat dihitung dengan menggunakan persamaan sebagai berikut :

$$MQ = \frac{MS}{MF}.$$
(3.31)

dengan,

MQ = Marshall Quotient (kg/mm)

MS = Marshall Stability (kg)

MF = Flow Marshall (mm)

8. Penyerapan Aspal

Penyerapan aspal adalah aspal yang diserap agregat dinyatakan dalam persen terhadap berat agregat, dimana untuk mendapatkan penyerapan aspal dapat dipergunakan persamaan berikut :

$$Pba = 100 \text{ x } \frac{Gse - Gsb}{Gsb - Gse}$$
 (3.32)

dengan,

Pba = penyerapan aspal (%)

 G_{se} = berat jenis efektif agregat (gr/cc)

 G_{sb} = berat jenis curah agregat (gr/cc)

 G_b = berat jenis aspal (gr/cc)

9. Kadar Aspal Efektif

Kadar sepal efektif adalah kadar aspal total dikurangi jumlah aspal yang diserap dalam partikel agregat. Untuk menghitung kadar aspal efektif dapat digunakan persamaan :

Pbe =
$$P_b - \frac{Pba}{100} \times P_s$$
...(3.33)

dengan,

Pbe = kadar aspal efektif, persen terhadap berat total campuran

P_b = kadar aspal total, persen tehadap berat total campuran

P_s = persen agregat terhadap berat total campuran

P_{bs} = penyerapan aspal, persentase agregat

G. Kadar Aspal Optimum (KAO)

Kadar aspal optimum adalah hasil dari pengujian *Marshall* yang berupa nilai tengah dari rentang kadar aspal yang memenuhi spesifikasi campuran. Untuk mendapatkan kadar aspal optimum terlebih dahulu harus digambarkan hubungan antara kadar aspal dengan karakteristik *marshall*, yaitu gambar hubungan kadar aspal dengan kepadatan (*density*), kadar aspal dengan *void mineral aggregate*(VMA), kadar aspal dengan *voids in the mix* (VITM), kadar aspal dengan *voids with aggregate* (VFWA), kadar aspal dengan stabilitas, kadar aspal dengan *flow*, kadar aspal dengan *Marshall Quotient* (MQ).

Kadar aspal optimum yang baik adalah kadar aspal yang memenuhi sifat campuran yang diinginkan dengan rentang kadar aspal optimum lebih besar 0,5%.

Persyaratan karakteristik campuran Laston yang diuji *Marshall* harus memenuhi persyaratan yang ditentukan. Berdasarkan spesifikasi umum Bina Marga edisi 2010 revisi 3 persyaratan campuran Laston dapat dilihat pada Tabel 3.6.

Tabel 3.6 Ketentuan sifat-sifat campuran HRS-WC

Sifat - Sifat Campuran			HRS-WC			
			Lapis Aus		Lapis Pondasi	
Keterangan	Satuan	Min/Maks	Senjang	Semi	Senjang	Semi
Keterangan				Senjang		Senjang
Kadar Aspal Efektif	% Min.		5,9	5,9	5,5	5,5
Penyerapan Aspal	% Maks.		1,7			
Jumlah Tumbukan			75			
perbidang	-	=				
Rongga dalam	%	Min.	4			
campuran	/0	Maks.	6			
Rongga dalam	Min.		18 17		7	
agregat	%	171111.	10		/	
Rongga Terisi Aspal	Min.		68			

Sifat - Sifat Campuran			HRS-WC		
			Lapis Aus	Lapis Pondasi	
Stabilitas Marshall	Kg Min.		800		
Pelelehan	mm	Min.	3		
Marshall Quotient	Quotient Kg/mm Min.		250		
Stabilitas Marshall	% Min.				
sisa setelah			90		
rendaman selama 24	70	IVIIII.	70		
jam, 60 °C					
Rongga dalam					
campuran pada	%	Min.	3		
kepadatan	70 IVIIII.		3		
membal(refusal)					

Sumber : Spesifikasi Umum Bina Marga Edisi 2010 (Revisi 3)