BAB V

HASIL DAN PEMBAHASAN

A. Analisis Statik Ekivalen

Analisis statik ekivalen adalah salah satu metode menganalisis struktur gedung terhadap pembebanan gempa dengan menggunakan beban gempa nominal statik ekivalen. Analisis statik ekivalen ini menggunakan Tata Cara Perencanaan Ketahanan Gempa Untuk Struktur Bangunan Gedung dan Non Gedung (SNI-1726-2012).

1. Pembebanan

Beban-beban yang diperhitungkan untuk analisis statik ekivalen meliputi berat sendiri struktur, beban mati, dan beban hidup.

a. Berat Sendiri Struktur Tiap Lantai

Berat sendiri struktur tiap lantai yaitu sebagai berikut:

Tabel 5.1 Beban struktur terhadap beban sendiri tiap lantai

	Time.		Berat	Panjang	Total	TOTAL
Lantai	Tipe Elemen	Material	Elemen	Elemen	Berat	TOTAL
	Ziemen		kN/m	m	kN	kN
	Balok	Profil WF	0,660	7,180	4,738800	
1	Dulok	400.400.8.13 mm	0,000	7,100	1,750000	8,974850
1	Kolom	Profil WF	0,665	3,185	2,118025	0,774030
	Kololli	250.250.8.13 mm	0,003	3,103	2,110023	

b. Dead Load (DL)

Dead Load/beban mati adalah berat dari semua bagian suatu gedung/bangunan yang bersifat tetapselama masa layan struktur termasuk unsure-unsur tambahan, *finishing*, mesin-mesin serta bagian tak terpisahkan dari gedung/bangunan serta berat struktur, pipa-pipa, saluran listrik, AC, lampu-lampu, penutup lantai, dan plafon (Setiawan, 2008).

Berdasarkan Peraturan Pembebanan Indonesia Untuk Gedung Tahun 1983, beban mati yang merupakan berat sendiri dapat dilihat pada Tabel 3.2.

Beban mati tambahan yang terjadi pada elemen plat lantai yaitu sebagai berikut:

1) Lantai 1

Berat beton bertulang	$= 24 \text{ kN/m}^3$
Panjang kolom per as	= 7,59 m
Jarak antar balok terdekat	= 2.9 m
Tebal plat lantai	= 0.12 m

TOTAL

Berat beton bertulang x (panjang kolom x jarak antar balok x tebal plat lantai) = $24 \text{ kN/m}^3 \text{ x } (7,59 \text{ m x } 2,9 \text{ m x } 0,12 \text{ m})$ = 63,39168 kN

Beban mati struktur tiap lantai antara lain:

Tabel 5.2 Beban mati tiap lantai

	Beban M	TOTAL	
Lantai	Beban Mati	Berat Stuktur	(kN)
	Tambahan	Derat Staktur	(KIV)
1	63,39168	8,97485	72,36653

a. Live Load (LL)

Live Load/beban hidup adalah beban gravitasi yang bekerja pada struktur dalam masa layannya, dan timbul akibat penggunaan suatu gedung termasuk beban pengguna dan penghuni bangunan/gedung (Setiawan, 2008). Beberapa contoh beban hidup menurut kegunaan suatu bangunan seperti Tabel 3.3.

Beban hidup yang terjadi pada plat lantai antara lain:

1) Lantai 1

Beban hidup gedung parkir $= 8 \text{ kN/m}^2$

Panjang kolom per as = 7,59 m

Jarak antar balok terdekat = 2.9 m

TOTAL

Berat plat lantai x panjang kolom x jarak antar balok

 $8 \text{ kN/m}^2 \text{ x } 7,59 \text{ x } 2,9 \text{ m}$ = 176,088 kN

b. Beban Total Struktur

Beban akumulasi yang terjadi pada struktur pengaruh beban sendiri stuktur, *Dead Load*, *Live Load* yaitu sebagai berikut:

Tabel 5.3 Beban total struktur

	Pembebanan (kN)		TOTAL (Ton)
Lantai	Beban Mati	Beban	[1,2 DL + 1,6 LL]
	(DL)	Hidup (LL)	[1,2 DL + 1,0 LL]
1	72,3665300	176,0880000	36,8580636

2. Klasifikasi Material

a. Modulus Elastik Baja

$$E = 200000 \text{ kg/cm}^2$$

b. Modulus Inersia

1) Kolom Lantai 1

$$I_x = 9930 \text{ cm}^4$$

2) Balok Lantai 1

$$I_x = 23700 \text{ cm}^4$$

3. Kekakuan Elemen

a. Kolom Lantai 1

k =
$$\frac{12 \cdot E \cdot I}{h^3}$$
 = $\frac{12 \cdot 200000 \cdot 9930}{(318,5)^3}$ = 737,6191447 kg/cm

b. Balok Lantai 1

k =
$$\frac{12 \cdot E \cdot I}{h^3}$$
 = $\frac{12 \cdot 200000 \cdot 23700}{(718)^3}$ = 153,6689964 kg/cm

c. Kekakuan Lantai 1

4. Klasifikasi Bangunan

a. Bangunan ini digunakan sebagai bangunan parkir

Berdasarkan Tabel 3.4, bangunan yang berfungsi sebagai parkiran termasuk kategori resiko 1 karena termasuk ke dalam kategori gedung umum seperti untuk penghunian, perniagaan dan perkantoran dengan nilai keutamaan bangunan, Ie = 1 dari Tabel 5.4.

Tabel 5.4 Faktor keutamaan gempa

Kategori risiko	Faktor keutamaan gempa, I _e
I atau II	1,00
III	1,25
IV	1,50

(Sumber: SNI 1726:2012)

 Bangunan parkiran ini termasuk sistem rangka baja dengan bresing konsentris khusus

Berdasarkan Tabel 9 dalam SNI 1726:2012, kategori bangunan yang termasuk sistem rangka baja dengan bresing konsentris khusus mempunyai nilai faktor reduksi beban, R=6.

5. Periode Fundamental Struktur Pendekatan

Berdasarkan Tabel 5.5, tipe struktur sistem rangka baja dengan bresing konsentris khusus tidak terdapat pada tabel sehingga digunakan tipe struktur semua sistem stuktur lainnya.

$$Ct = 0.0488$$

x = 0,75
Ta =
$$C_t * h^x = 0,0488 * (5,685)^{0,75} = 0,1796667342 \text{ detik}$$

Tabel 5.5 Nilai parameter periode pendekatan C_t dan x

Tipe Struktur	C_{t}	X
Sistem rangka pemikul momen dimana rangka memikul 100		
persen gaya gempa yang disyaratkan dan tidak dilingkupi		
atau dihubungkan dengan komponen yang lebih kaku dan		
akan mencegah rangka dari defleksi jika dikenai gaya		
gempa:		
Rangka baja pemikul momen	0,0724	0,80
Rangka beton pemikul momen	0,0466	0,90
Rangka baja dengan bresing eksentris	0,0731	0,75
Rangka baja dengan bresing terkekang terhadap tekuk	0,0731	0,75
Semua sistem struktur lainnya	0,0488	0,75

(Sumber: SNI 1726:2012)

6. Klasifikasi Situs

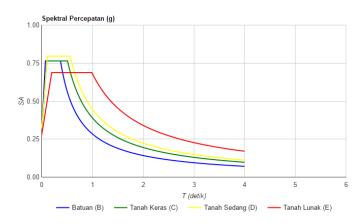
a. Data Gempa

Beban gempa harus menyesuaikan dengan jenis tanah dimana bangunan tersebut didirikan. Pada lokasi penelitian diasumsikan klasifikasi tanah sedang (SD). Dengan data yang disediakan pada laman http://puskim.pu.go.id/ seperti pada Gambar 5.1 sebagai berikut:

Lokasi : Jl. Jlagran Lor No. 17, Bumijo, Gedong Tengen,

Kota Yogyakarta, Daerah Istimewa Yogyakarta 55272

Koordinat : -7,7894176; 110,3593851


Nilai $S_1 = 0,425$

Nilai $S_s = 1,145$

Nilai F_a diperoleh dari interpolasi nilai S_S dari Tabel 5.6 dan nilai F_v diperoleh dari interpolasi nilai S_1 dari Tabel 5.7.

Nilai
$$F_a = 1.1 - \left(\frac{1}{1.25}. (1.1 - 1)\right) = 1.02$$

Nilai
$$F_v$$
 = 1,6 - $\left(\frac{0.4}{0.5}$. (1,6 - 1,5) $\right)$ = 1,52

Gambar 5.1 Desain spektrum gempa (Sumber: Badan Penelitian Dan Pengembangan, 2011)

Tabel 5.6 Koefisien situs, Fa

Kelas	Parame	Parameter respons spektral percepatan gempa (MCE _R)			
Situs	terpo	etakan pada p	periode pende	k, T=0,2 detil	k, S_S
	$S_S \leq 0,25$	$S_S \leq 0.5$	$S_S \leq 0.75$	$S_S \le 1,0$	$S_S \le 1,25$
SA	0,8	0,8	0,8	0,8	0,8
SB	1,0	1,0	1,0	1,0	1,0
SC	1,2	1,2	1,1	1,0	1,0
SD	1,6	1,4	1,2	1,1	1,0
SE	2,5	1,7	1,2	0,9	0,9
SF			SS ^b		<u>'</u>

(Sumber: SNI 1726:2012)

Tabel 5.7 Koefisien Situs, F_v

Kelas	Parameter re	Parameter respons spektral percepatan gempa MCE _R terpetakan			
Situs		pada	periode 1 det	ik, S_1	
	$S_1 \leq 0,1$	$S_1 \leq 0,2$	$S_1 \leq 0,3$	$S_1 \leq 0,4$	$S_1 \leq 0.5$
SA	0,8	0,8	0,8	0,8	0,8
SB	1,0	1,0	1,0	1,0	1,0
SC	1,7	1,6	1,5	1,4	1,3
SD	2,4	2,0	1,8	1,6	1,5

Tabel 5.7 Koefisien Situs, F_v (Lanjutan)

			/	<u></u>	
SE	3,5	3,2	2,8	2,4	2,4
SF			SS^b		

(Sumber: SNI 1726:2012)

b. Parameter Spektrum Respon

$$\begin{split} S_{MS} &= S_s \text{ x } F_a = 1,145 \text{ x } 1,02 = 1,1679 \\ S_{M1} &= S_1 \text{ x } F_v = 0,425 \text{ x } 1,52 = 0,646 \\ S_{DS} &= (^2/_3) \text{ x } S_{MS} = (^2/_3) \text{ x } 1,1679 = 0,7786 \\ S_{D1} &= (^2/_3) \text{ x } S_{M1} = (^2/_3) \text{ x } 0,646 = 0,43066666667 \end{split}$$

7. Gaya Lateral Ekivalen

a. Perhitungan Koefisien Respons Seismik

$$C_{S \text{ min}} = S_{DS} / {\binom{R}{I_{e}}} = 0,7786 / {\binom{6}{I_{1}}} = 0,129766666667$$

$$C_{S \text{ min}} = 0,044 \text{ x } S_{DS} \text{ x } I_{e} = 0,044 \text{ x } 0,7786 \text{ x } 1 = 0,0342584$$

$$C_{S \text{ max}} = \frac{S_{D1}}{T_{a} \cdot {\binom{R}{I_{e}}}} = \frac{0,4306666667}{0,1796667342 \cdot {\binom{6}{1}}} = 0,3995051065$$

Karena $C_{S \text{ min}} < C_{S} < C_{S \text{ max}}$ maka digunakan nilai $C_{S} = 0,12976666667$

b. Gaya Dasar Seismik

$$V = C_S x W_{total}$$
= 0,129766666667 x 36,8580636
= 4,782948053 ton = 47829,48053 N

c. Distribusi Vertikal Gaya Gempa (Fi)

Nilai k untuk T=0,1796667342 adalah 1 karena nilai $T\leq 0,5$, maka dapat dihitung gaya gempa lateral (F_i) dengan rumus sesuai persamaan 3.13 dan didapatkan hasil seperti pada Tabel 5.8.

Tabel 5.8 Distribusi gaya gempa lateral (F_i)

1 does 3.0 Distribusi guyu gempu laterar (1 1)					
Lantai	V (ton)	w _i (ton)	$h_{i}\left(m\right)$	$w_i.h_i^{k}$	F _i (ton)
1	4,782948053	36,858063600	3,185000000	117,392932600	4,782948053

8. Kontrol Periode Fundamental Struktur (T) Menurut Rayleigh

Nilai Y_i didapatkan dari rumus V_i/k_i dan untuk menghitung periode fundamental struktur dengan rumus sesuai persamaan 3.14 dan didapatkan hasil seperti pada Tabel 5.9.

T_0	Damiada	fundamental	atmiletiem	T
Taber 1.9	Periode	пинааттентат	SITHKIHI	(1)

1
4,782948053
36,858063600
4,782948053
1,628907286
2,936292381
2,936292381
317,783329900
14,044133930

$$T = 6,3.$$
 $\sqrt{\frac{\sum w_i.d_i^2}{g.\sum F_i.d_i}} = 6,3.$ $\sqrt{\frac{317,7833299}{981.14,04413393}} = 0,9568065074 \text{ detik}$

9. Kontrol Batasan Periode Fundamental Struktur

 $S_{D1} = 0,4306666667$

Karena nilai $S_{D1} \geq 0,4$, maka nilai $C_u = 1,4$ didapat dari Tabel 14 SNI 1726:2012.

 $T_a = 0,1796667342 \text{ detik}$

 $T_a \cdot C_u = 0.1796667342 \times 1.4$

= 0.2515334279 detik

 $T_a Rayleigh = 0.9568065074 detik$

Menurut FEMA 451 terdapat 4 ketentuan batasan nilai periode yaitu:

- Ta > Ta.Cu maka digunakan Ta.Cu
- Ta < T Rayleigh < Ta.Cu maka gunakan T Rayleigh
- T Rayleigh < Ta maka digunakan Ta

- T Rayleigh > Ta.Cu maka digunakan T Rayleigh

Berdasarkan ketentuan diatas, T_a $Rayleigh > T_a$. C_u , maka nilai T diambil dari T Rayleigh yaitu sebesar 0,9568065074 detik.

Tabel 5.10 Koefisien untuk batas atas pada periode yang dihitung

tuber 5.10 Roenisten untuk butus utus puda periode jung unntu			
Parameter percepatan respons spectral desain pada $1 \; \text{detik, } S_{\text{D1}}$	Koefisien C _u		
≥ 0,40	1,4		
0,30	1,4		
0,20	1,5		
0,15	1,6		
≤ 0,10	1,7		

(Sumber: SNI 1726:2012)

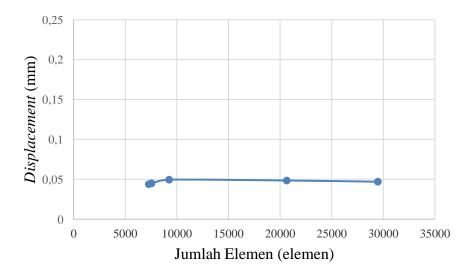
B. Konvergensi Elemen

Sebelum dilakukan analisis konvergensi, terlebih dahulu menentukan jumlah *meshing* yang akan digunakan untuk setiap benda uji. Semakin kecil ukuran *meshing* yang digunakan maka semakin kecil tingkat akurasinya dan semakin banyak pula jumlah elemen yang didapatkan.

Analisis konvergensi dilakukan pada ketiga benda uji yaitu pada *bracing* v terbalik, x, dan k. Dalam analisis konvergensi ini digunakan beban yang tetap (diasumsikan dengan beban 1000 N) untuk dibandingkan dengan hasil *displacement*nya.

1. Bracing Tipe V Terbalik

Pada *bracing* tipe v terbalik ini dilakukan konvergensi dengan 5 kali proses *running* dengan *software* Abaqus 6.11 dengan jumlah elemen yang berbeda-beda.


Tabel 5.11 Hasil analisis konvergensi bracing tipe v terbalik

No.	Jumlah Elemen	Displacement	Persentase Perbandingan
1.	29468	0,046974	0

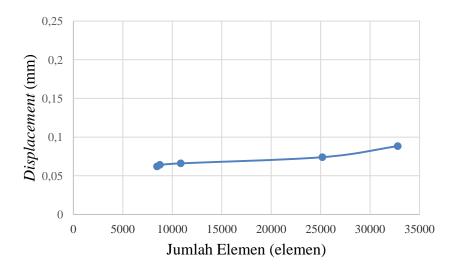
1	5.11 Hash aliansis konvergensi <i>bracing</i> tipe v terbank (Lan						
	2.	20638	0,048490	3,226678588			
	3.	9244	0,049503	2,089309688			
	4.	7542	0,044988	9,120494194			
	5.	7278	0,043919	2,375749924			

Tabel 5.11 Hasil analisis konvergensi *bracing* tipe v terbalik (Lanjutan)

Pada Tabel 5.11 dan Gambar 5.2 dapat dijelaskan bahwa semua jumlah elemen yang digunakan untuk konvergensi pada *bracing* tipe v terbalik telah memenuhi syarat batas *displacement* yang telah ditetapkan yaitu tidak lebih dari 5%. Oleh karena itu, salah satu dari jumlah elemen tersebut dapat digunakan untuk analisis selanjutnya. Jumlah elemen yang digunakan yaitu 7278 elemen dengan *displacement* sebesar 0,043919 mm.

Gambar 5.2 Hubungan jumlah elemen dan *displacement* pada *bracing* tipe v terbalik

2. Bracing Tipe X


Pada *bracing* tipe x ini dilakukan konvergensi dengan 5 kali proses *running* dengan *software* Abaqus 6.11 dengan jumlah elemen yang berbedabeda.

Ta	Tabel 5.12 Hasil analisis konvergensi <i>bracing</i> tipe x					
		emen Displacement	Persentase			
No.	Jumlah Elemen		Perbandingan			
1.	32800	0,088308	0			
2.	25180	0,074021	16,179055130			
3.	10858	0,066072	10,738767320			
4.	8750	0,064167	2,883231399			

0,062069

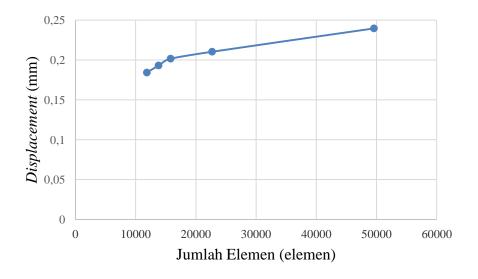
3,268985315

Pada Tabel 5.12 dan Gambar 5.3 dapat dijelaskan bahwa semua jumlah elemen yang digunakan untuk konvergensi pada bracing tipe x telah memenuhi syarat batas displacement yang telah ditetapkan yaitu tidak lebih dari 5%. Oleh karena itu, salah satu dari jumlah elemen tersebut dapat digunakan untuk analisis selanjutnya. Jumlah elemen yang digunakan yaitu 8460 elemen dengan displacement sebesar 0,062069 mm.

Gambar 5.3 Hubungan jumlah elemen dan displacement pada bracing tipe x

3. Bracing Tipe K

5.

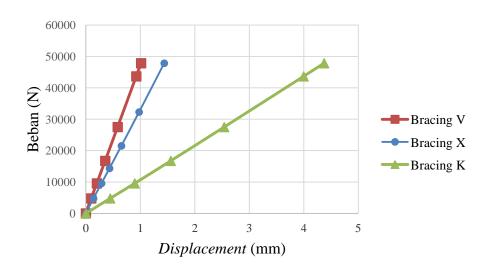

8460

Pada bracing tipe k ini dilakukan konvergensi dengan 5 kali proses running dengan software Abaqus 6.11 dengan jumlah elemen yang berbedabeda.

TD 1 1 7 10 TI		1 ,		
Tabel 5.13 H	acıl analıcıc	konvergensi	bracing	tine k

	The CT CVTE TIME! MINISTER HOLD, CT GOING C CVC III O				
No.	Jumlah Elemen	Displacement	Persentase Perbandingan		
1.	49564	0,239544	0		
2.	22682	0,210309	12,204438430		
3.	15794	0,201608	4,137245672		
4.	13792	0,193046	4,246855284		
5.	11850	0,184187	4,589061674		

Pada Tabel 5.13 dan Gambar 5.4 dapat dijelaskan bahwa semua jumlah elemen yang digunakan untuk konvergensi pada *bracing* tipe k telah memenuhi syarat batas *displacement* yang telah ditetapkan yaitu tidak lebih dari 5%. Oleh karena itu, salah satu dari jumlah elemen tersebut dapat digunakan untuk analisis selanjutnya. Jumlah elemen yang digunakan yaitu 15794 elemen dengan *displacement* sebesar 0,201608 mm.


Gambar 5.4 Hubungan jumlah elemen dan *displacement* pada *bracing* tipe k

Dari ketiga konvergensi diatas, dapat diketahui bahwa grafik mengalami fluktuatif naik dan turun karena dalam melakukan konvergensi kurang banyaknya jumlah elemen yang digunakan untuk proses *running*. Untuk membuat

konvergensi dengan grafik yang bagus diperlukan beberapa puluh kali jumlah elemen yang digunakan untuk proses *running*. Pada penelitian ini belum bisa melakukan konvergensi secara halus dikarenakan keterbatasan waktu dan juga spesifikasi laptop yang digunakan kurang mendukung untuk melakukan proses *running*.

C. Hubungan Beban dan Displacement

Hasil hubungan beban dan *displacement* yang telah dilakukan dari struktur portal baja yang menggunakan *bracing* tipe v terbalik, x, dan k dengan beban yang sama yaitu sebesar 47829,48053 N didapatkan bahwa struktur portal baja yang menggunakan *bracing* tipe v terbalik mengalami *displacement* maksimum sebesar 1,01298 mm, *bracing* tipe x mengalami *displacement* maksimum sebesar 1,43769 mm, dan *bracing* tipe k mengalami *displacement* maksimum sebesar 4,3731 mm. Hasil beban dan *displacement* tersebut dapat dilihat pada Gambar 5.5.

Gambar 5.5 Hubungan beban dan displacement

Pada gambar tersebut dijelaskan bahwa *displacement* terbesar terjadi pada struktur portal baja yang menggunakan *bracing* tipe k dengan *displacement* maksimum sebesar 4,3731 mm. Berdasarkan hasil dari Gambar 5.5, struktur portal baja yang menggunakan *bracing* tipe v terbalik adalah model yang paling baik

untuk menahan beban karena memiliki *displacement* yang terkecil dibandingkan menggunakan *bracing* x dan k.

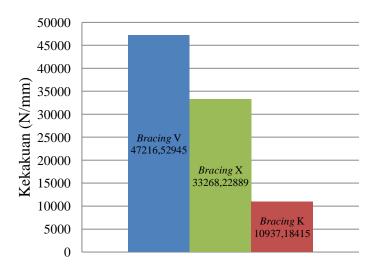
D. Kekakuan

Hasil kekakuan dalam penelitian ini menunjukkan bahwa struktur portal baja yang menggunakan *bracing* tipe v terbalik mempunyai nilai kekuatan yang paling baik dibandingkan menggunakan *bracing* tipe x dan k karena memiliki nilai kekakuan paling besar dibandingkan dengan menggunakan *bracing* tipe x dan k. Semakin besar kekakuannya maka semakin kuat struktur portal tersebut untuk menahan beban lateral karena *displacement*nya semakin kecil. Hasil kekakuan dari ketiga bracing tersebut dapat dilihat pada Tabel 5.14, Tabel 5.15, dan Tabel 5.16.

Tabel 5.14 Hasil kekakuan *bracing* tipe v terbalik (7278 elemen)

No.	Beban (P)	Displacement (Δ)	Kekakuan (P/Δ)
NO.	(N)	(mm)	(N/mm)
1.	0	0	-
2.	4782,94	0,0983263	48643,54705
3.	9565,88	0,2013175	47516,38581
4.	16740,28	0,3547905	47183,56326
5.	27502	0,5834200	47139,28216
6.	43644,40	0,9247430	47196,24804
7.	47829,40	1,0129800	47216,52945

Tabel 5.15 Hasil kekakuan *bracing* tipe x (8460 elemen)


No	Beban (P)	Displacement (Δ)	Kekakuan (P/Δ)
No.	(N)	(mm)	(N/mm)
1.	0	0	-
2.	4782,94	0,1402855	34094,32906
3.	9565,88	0,2870690	33322,58098
4.	14348,82	0,4336405	33089,20638
5.	21523,20	0,6524055	32990,52506

Tabel 5.15 Hasil kekakuan *bracing* tipe x (8460 elemen) (Lanjutan)

6.	32284,80	0,9766065	33058,14573
7.	47829,40	1,4376900	33268,22889

Tabel 5.16 Hasil kekakuan *bracing* tipe k (15794 elemen)

N	Beban (P)	Displacement (Δ)	Kekakuan (P/Δ)
No.	(N)	(mm)	(N/mm)
1.	0	0	-
2.	4782,94	0,445851	10727,66462
3.	9565,88	0,896199	10673,83472
4.	16740,28	1,557860	10745,68960
5.	27502	2,538675	10833,21024
6.	43644,40	3,996885	10919,60364
7.	47829,40	4,373100	10937,18415

Gambar 5.6 Nilai kekakuan untuk *bracing* tipe v terbalik, x, dan k

Berdasarkan Gambar 5.6 dapat dijelaskan bahwa struktur portal baja yang menggunakan *bracing* tipe v terbalik memiliki nilai kekakuan yaitu 47216,52945 N/mm, *bracing* tipe x memiliki nilai kekakuan sebesar 33268,22889 N/mm, dan *bracing* tipe k memiliki nilai kekakuan sebesar 10937,18415 N/mm. Dari ketiga *bracing* tersebut mempunyai perbedaan nilai kekakuan yang signifikan

dikarenakan setiap struktur portal baja tersebut mempunyai bentuk *bracing* yang berbeda-beda sehingga kekuatannya pun berbeda-beda juga.

E. Hysteretic Energy (HE)

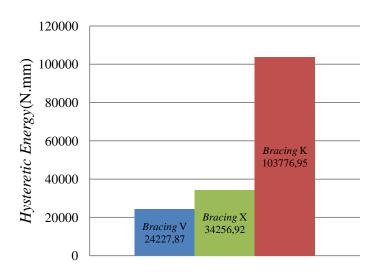
Hysteretic energy merupakan luasan total dari besarnya energi yang terjadi pada setiap siklusnya dimana besarnya energy serapan pada setiap siklus menunjukkan kemampuan struktur untuk menyerap dan meredam beban luar yang diberikan dari beban awal sampai beban puncak yang telah ditentukan. Dalam analisis hysteretic energy ini menggunakan hitungan integral numerik yaitu dengan metode trapeziodal banyak pias. Berikut ini adalah hasil dari perhitungan hysteretic energy pada struktur portal baja yang menggunakan bracing v terbalik, x, dan k:

1. Bracing Tipe V Terbalik

Tabel 5.17 Nilai *hysteretic energy bracing* tipe v terbalik (7278 elemen)

		(1210 elemen)		
	Beban (P)	Displacement (Δ)	Hysteretic Ene	ergy (HE)
No.	(N)	(mm)	Per Step	Total
	(14)	(111111)	(N.mm)	(N.mm)
1.	0	0	0	
2.	4782,94	0,0983263	235,1443967	
3.	9565,88	0,2013175	738,9010952	
4.	16740,28	0,3547905	2018,6426470	24227,87
5.	27502	0,5834200	5057,5451780	
6.	43644,40	0,9247430	12141,9513400	
7.	47829,40	1,0129800	4035,6868450	

2. Bracing Tipe X

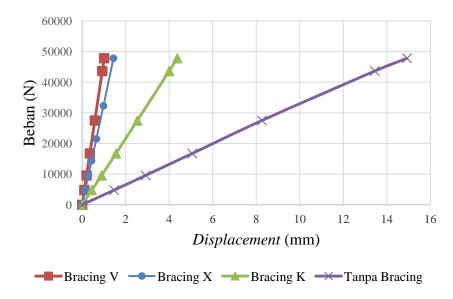

Tabel 5.18 Nilai *hysteretic energy bracing* tipe x (8460 elemen)

	Beban (P)	Displacement (Δ)	Hysteretic Ene	ergy (HE)
No.	(N)	(mm)	Per Step	Total
	(14)	(IIIII)	(N.mm)	(N.mm)
1.	0	0	0	
2.	4782,94	0,1402855	335,4885647	
3.	9565,88	0,2870690	1053,0850100	
4.	14348,82	0,4336405	1752,6067260	34256,92
5.	21523,20	0,6524055	3923,7712280	
6.	32284,80	0,9766065	8722,3037040	
7.	47829,40	1,4376900	18469,6678700	

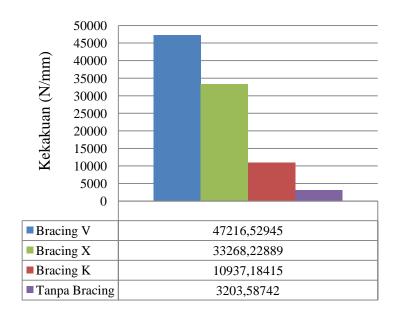
3. Bracing Tipe K

Tabel 5.19 Nilai hysteretic energy bracing tipe k (15794 elemen)

No.	Beban (P) (N)	Displacement (Δ) (mm)	Hysteretic Energy (HE)	
			Per Step	Total
			(N.mm)	(N.mm)
1.	0	0	0	
2.	4782,94	0,445851	1066,239291	
3.	9565,88	0,896199	3230,981195	
4.	16740,28	1,557860	8702,880066	103776,95
5.	27502	2,538675	21696,745930	
6.	43644,40	3,996885	51873,195970	
7.	47829,40	4,373100	17206,907830	

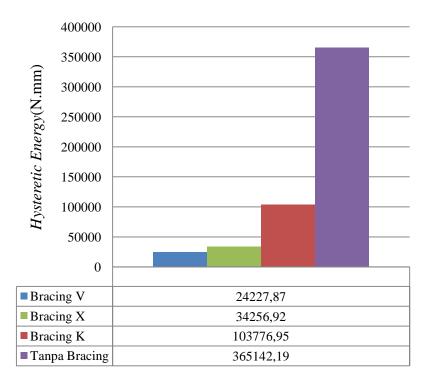

Gambar 5.7 Nilai *hysteretic energy* untuk *bracing* v terbalik, x, dan k

Berdasarkan Gambar 5.7 dapat dijelaskan bahwa struktur portal baja yang menggunakan *bracing* tipe v terbalik memiliki nilai *hysteretic energy* yaitu 24227,87 N.mm, *bracing* tipe x memiliki nilai *hysteretic energy* sebesar 34256,92 N.mm, dan *bracing* tipe k memiliki nilai *hysteretic energy* sebesar 103776,95 N.mm. Dari ketiga *bracing* tersebut dapat ditarik kesimpulan bahwa struktur portal baja yang menggunakan *bracing* tipe v terbalik adalah model yang paling baik dibandingkan dengan *bracing* x dan k karena memiliki nilai *hysteretic energy* terkecil yaitu 24227,87 N.mm.


F. Perbandingan Struktur Portal Dengan Bracing Dan Tanpa Bracing

Hasil hubungan beban dan *displacement* yang telah dilakukan dari struktur portal baja yang menggunakan *bracing* tipe v terbalik, x, dan k dengan beban yang sama yaitu sebesar 47829,48053 N didapatkan bahwa struktur portal baja yang menggunakan *bracing* tipe v terbalik mengalami *displacement* maksimum sebesar 1,01298 mm, *bracing* tipe x mengalami *displacement* maksimum sebesar 1,43769 mm, dan *bracing* tipe k mengalami *displacement* maksimum sebesar 4,3731 mm sedangkan struktur portal baja yang tidak menggunakan *bracing* mengalami *displacement* maksimum sebesar 14,92995 mm seperti Gambar 5.8. Berdasarkan hasil beban dan *displacement* struktur portal baja yang menggunakan

bracing dan tidak menggunakan bracing, diketahui bahwa struktur portal baja yang menggunakan bracing dapat mereduksi gaya yang terjadi akibat beban lateral dibandingkan dengan struktur portal baja yang tidak menggunakan bracing.



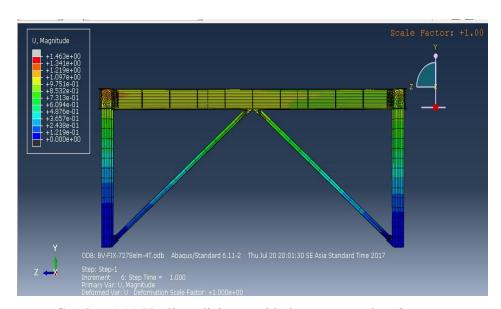
Gambar 5.8 Hubungan beban dan *displacement* untuk portal dengan *bracing* dan tanpa *bracing*

Gambar 5.9 Nilai kekakuan untuk portal dengan *bracing* dan tanpa *bracing*

Berdasarkan Gambar 5.9 dapat dijelaskan bahwa struktur portal baja yang menggunakan *bracing* tipe v terbalik memiliki nilai kekakuan yaitu 47216,52945 N/mm, *bracing* tipe x memiliki nilai kekakuan sebesar 33268,22889 N/mm, dan *bracing* tipe k memiliki nilai kekakuan sebesar 10937,18415 N/mm sedangkan struktur portal baja yang tidak menggunakan *bracing* memiliki nilai kekakuan sebesar 3203,58742 N/mm. Dari nilai kekakuan tersebut dapat diketahui bahwa struktur portal baja yang menggunakan *bracing* memiliki kekuatan yang lebih bagus dibandingkan dengan struktur portal baja yang tidak menggunakan *bracing*.

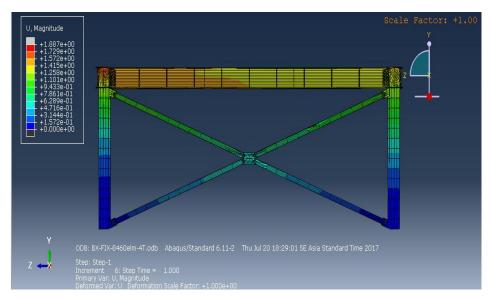
Gambar 5.10 Nilai *hysteretic energy* untuk portal dengan *bracing* dan tanpa *bracing*

Berdasarkan Gambar 5.10 dapat dijelaskan bahwa struktur portal baja yang menggunakan *bracing* tipe v terbalik memiliki nilai *hysteretic energy* yaitu 24227,87 N.mm, *bracing* tipe x memiliki nilai *hysteretic energy* sebesar 34256,92 N.mm, dan *bracing* tipe k memiliki nilai *hysteretic energy* sebesar 103776,95 N.mm sedangkan struktur portal baja yang tidak menggunakan *bracing* memiliki nilai *hysteretic energy* yaitu 365142,19 N.mm. Dari nilai *hysteretic energy*


tersebut dapat diketahui bahwa struktur portal baja yang menggunakan *bracing* mampu meminimalisir penyerapan *energy* yang terjadi dibandingkan dengan struktur portal baja yang tidak menggunakan *bracing*.

Dari ketiga gambar diatas, dapat diketahui bahwa struktur portal yang menggunakan *bracing* paling aman digunakan karena memiliki nilai *displacement* yang kecil, nilai kekakuan yang besar, dan nilai *hysteretic energy* total yang kecil dibandingkan dengan struktur portal baja yang tidak menggunakan *bracing*.

G. Gambar Hasil Analisis


Hasil analisis ketiga model menggunakan *software* Abaqus 6.11 yang telah diberi beban statik gempa dapat ditunjukkan dengan gambar sebagai berikut:

1. Bracing Tipe V Terbalik

Gambar 5.11 Hasil analisis portal baja menggunakan *bracing* tipe v terbalik

2. Bracing Tipe X

Gambar 5.12 Hasil analisis portal baja menggunakan bracing tipe x

3. Bracing Tipe K

Gambar 5.13 Hasil analisis portal baja menggunakan bracing tipe k

Dari Gambar 5.11, Gambar 5.12, dan Gambar 5.13 dapat diketahui bahwa energi yang ditimbulkan dengan adanya beban lateral yang diberikan sudah

hampir tersebar merata pada semua model akan tetapi setiap model memiliki penyebaran energi yang tidak sama karena setiap model memiliki bentuk *bracing* yang berbeda-beda. Dalam gambar hasil analisis tersebut terdapat beberapa warna yang mempunyai arti berbeda.

- 1. Warna merah sampai abu-abu menandakan bahwa struktur portal baja tersebut sudah mengalami plastis (tidak dapat kembali ke bentuk semula) setelah mendapatkan beban puncak atau maksimum.
- 2. Warna hijau sampai kuning menandakan bahwa struktur portal baja tersebut berada di daerah elastatis dimana struktur tersebut masih bersifat elastis (dapat kembali ke bentuk semula).
- 3. Warna biru tua sampai muda menandakan bahwa struktur portal baja tersebut berada di daerah linier.