MTENG-6490.pdf

By Sri Atmaja Rosyidi



5] Journal of Materials in Civil Engineering

Wavelet Spectrogram Analysis of Surface Wave Technique for In-situ Pavement

Stiffness Measurement
--Manuscript Draft--

Manuscript Number: aTENG-6490R2

Full Title: Wavelet Spectrogram Analysis of Surface Wave Technigue for In-situ Pavement
Stiffness Measurement

Article Type: Technical Paper

Abstract: Accurate, quick, non-destructive in-situ tests for measuring pavement stiffness, or
elastic modulus.ﬁan increasingly important element in pavement management

systems. This is due to the increasing number of aged road networks and the limited
budget allocated by the goveaenl for pavement monitoring and maintenance. This
paper aims to propose a new wavelet-spectrogram analysis of ace wave (WSSW)
technigue for a non-destructive testing and in situ measureme pavement surface
layers. The proposed technique was developed based on the spectral-analysis of
surface wave (SASW) and modified data analysis of the ulirasonic-surface-wave

(Us thods. is technique utilizes two receivers to detect and record the signals
of the surface w ropagating on a pavement surface. In wavelet analysis, the
received signals are transformed into a time-fr ncy domain and displayed in a
spectrogram. The spectrogram was generated based on the mother wavelet of
Gaussian derivative (GoD). A wavelet filtration technique was also used in the time-
frequency spectrogram to diminish the effect of the noise signal recorded during field
measurement. The unwrapped phase of a different spectrum was generated from a
selected wave-energy in the spectrogram to obtain a phase velocity; this is done
through a Iinﬁegression analysis for calculating the value of the slope of a phase
velocity. The elastic modulus of pavement surface layer can be obtained via a linear
relationship of assumed density, measured phase velocity, and assumed Poisson ratio
of pavement materials. The results can be used to show that the proposed technigue
can be of practical use for in situ elastic modulus measurement on flexible and rigid
pavements. It can also be used to determine any changes that might occur in the
stiffness pavement surface layer.

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation




Manuscript

11

12

13

14

16

17

18

19

20

21

22

23

24

25

Click here to download Manuscript
5thRevised_Paper_Ms._No._MTENG-6490.doc

Wavelet-Spectrogram Analysis of Surface Wave Technique for

In-Situ Pavement Stiffness Measurement

Sri Atmaja P. Rosyidi, Ph.D., P.Eng.

Associate  Professor, Department of Civil Engineering, Universitas

Muhammadiyah Yogyakarta, Bantul. 55183, Yogyakarta, Indonesia, Email:

atmaja_sri@umy.ac.id

Nur [zzi Md. Yusoff, Ph.D.
a
Senior Lecturer, Department of Civil and Structural Engineering. Universiti

Kebangsaan Malaysia, 43600 Bandar Baru Bangi, Malaysia Email:

1zzil@ukm.edu.my

ABSTRACT
Accurate, quick, non-destructive in-situ tests for measuring pavement stiffness, or

clastic modulus, is an increasingly important element in pavement management

systems. This is due to the increasing number of aged road networks and the

limited budget allocated by the government for pavement monitoring and

maintenance. This paper aims to propose a new wavelet-spectrogram analysis of
surface wave (WSSW) technique for a non-destructive testing and in situ
measurement of pavement surface layers. The proposed technique was developed
based on the ctral-analysis of surface wave (SASW) and modified data analysis
of the ultrasonic-surface-wave (USW) methods. This technique utilizes two
receivers to detect and record the signals of the surface wave propagating on a

pavement surface. In wavelet analysis, the received signals are transformed into a
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time-frequency domain and displayed in a spectrogram. The spectrogram was
generated based on the mother wavelet of Gaussian derivative (GoD). A wavelet
filtration technique was also used in the time-frequency spectrogram to diminish
the effect of the noise signal recorded during ficld measurement. The unwrapped
phase of a different spectrum was generated from a selected wave-energy in the
spectrogram to obtain a phase velocity; this is done through a linear regression
analysis for calculating the value of the slope of a phase velocity. The elastic
modulus of pavement surface layer can be obtained via a linear relationship of
assumed density, measured phase velocity, and assumed Poisson ratio of pavement
materials. The results can be used to show that the proposed technique can be of
practical use for in situ clastic modulus measurement on flexible and rigid
pavements. It can also be used to determine any changes that might occur in the
stiffness pavement surface layer.

Keywords: clastic modulus, pavement surface layer: surface wave techniques,

wavelet analysis

INTRODUCTION

SASW is one of of the frequently used non-destructive testing (NDT) methods for
assessing the material strength of pavement structures. This method uses the
dispersive characteristics of seismic surface wave to determine the stiffness profile
of shear wave velocity which corresponds with the elastic modulus of a pavement
layer. This method comprises three steps of data analysis. i.c.. (1) recoding the
signals and analyzing its spectrum based on the measured scismic waves

propagation, (2) generating experimental dispersion curves from the results of
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phase velocity analysis, and (3) inverting the experimental dispersion curves to
generate a shear wave velocity profile. Researchers have conducted studies on the
various ways the SASW method was used. Amongst them are the use of SASW
for soil characterization (Stokoe et. al. 1994, Kim et. al. 2001); evaluation of
dynamic soil properties (Rosyidi and Taha 2012): pavement investigation (Rosyidi
et. al. 2007, Yusoff et. al. 2013, Rosyidi, 2017); and measuring of the stiffness of

asphaltic pavements (Shirazi et al. 2009, Hazra and Kumar 2014).

In order to generate a stiffness profile, or shear wave velocity, of a pavement. an
advanced mathematical approach was used to invert the SASW method. Several
clastic stress wave theories for solids have been developed to derive theoretical
dispersion curves in the attempt to produce a reliable inversion analysis. Among
them are the transfer and dynamic stiffness matrix, which use plane-wave
approximations and assume that the pavement system comprises profile layers with
homogeneous and isotropic properties; generalized reflection-transmission
cocfficient; finite element; and finite difference methods. These inversion
processes utilized existing information of model parameters in an initial profile
36
consisting of zet of horizontal homogeneous layers with constant stiffness in the
horizontal direction overlaying a half-space. Layer thickness, stress wave

velocities (shear and compression wave), Poisson's ratio of the material and density
are assigned to each layer of the profile. A change in the isson’s ratio and
density of the material has a negligibly small effect on the calculated dispersion
curve (Tokimatsu et al., 1992). This initial profile is then used as a basis for

calculating a theoretical dispersion curve by using one of the clastic stress wave

theories. Once a theoretical dispersion curve has been obtained, the inversion
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method is iteratively implemented by comparing the theoretical curve with the
experimental data. This comparison is done by calculating the error between the
theoretical and experimental data, such as the root mean square error. If the match
is not acceptable or if the error of the dispersion curves is large, the initial profile is
updated and the new profile is used to produce a new theoretical dispersion curve.
The process is iterated until both curves match, and only matched theoretical curve
are considered as a real profile. However, in the case of an irregular profile such as
pavements, the inversion process becomes more difficult and requires extended
data processing time. Many researchers have elaborated on the difficulties they
encountered when applying the SASW method on pavement profile. Al-Hunaidi
(92), Tokimatsu et. al. (1992). Ganji et. al. (1998). Ryden ct. al. (2004) reported
that most of the difficultics are due to the effect of higher modes stress wave

propagation.

The conventional stress wave propagation analysis in the SASW inversion method
is not capable of directly distinguishing between the fundamental and the higher
modes that occurr in a pavement system. It is also unable to clearly observe the
stress waves propagation superposition modes if it is only based on the field
configuration and receiver locations. This effect, which is also known as apparent
phase velocity, varies with distance and has an effect on receivers position for data
analysis and the fundamental and higher- modes superposition for the inversion
analysis. Ryden et. al. (2004) proposed a new approach for conducting seismic
testing on pavements. This method is able to distinguish stress wave propagation
modes, thereby solving some of the difficultics commonly encountered in

pavement testing. They used a multichannel simulation with one receiver (MSOR)
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method. which was developed from the concept of multichannel analysis of surface
wave (MASW) which typically requires a minimum of 48 receivers, to gather data.

Results show that the dispersion of stress waves in a pavement profile for a

frequency of between 50 to 3.000 Hz cannot be represented with only one average

dispersion curve. The high frequency range of the dispersion curve is matched with
11

goretical Lamb waves in a free plate, while the lower frequencies are matched
with several branches of dispersion curves which correspond with each layer of the
varying stiffness in the pavement profile. However, due to the complexity in
interpreting surface wave as well as the tedious and complicated data analysis, the

MASW and MSOR methods arc not widely used in structural pavement

asscssment.

There is an urgent need to develop a quick, practical, accurate, cost-efficient, non-
intrusive test for evaluating pavement systems since pavement maintenance and
management is a cumulatively complex process due to the increasing number of
aging roads and the limited budget allocated by the government. Additionally, for
practical and functional purposes, pavement engineers need to be able to do rapid

assessment and reasonably simple analysis to measure the stiffness of pavement

surface layer.

This paper introduces a new technique for measuring surface wave which uses a
combination of continuous wavelet transform and a simple formulation of phase
data, phase velocity, and clastic stiffness relationships to determine the surface
stiffness of a pavement structure. This technique is known as the wavelet-

spectrogram analysis of surface wave (WSSW). A continuous wavelet transforms
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(CWT) is used to decompose the received seismic signals and to identify and
enhance the phase information from the time-frequency spectrogram. The
technique is utilized to improve the phase data obtained from the signals. Seismic
data in the conventional SASW method is usually processed and analyzed in

frequency domain by using the fast Fourier transforms (FFT). However, since
3

gourier transform works by utilizing any arbitrary periodic sinusoidal function of
time, the analysis is not appropriate for interpreting the spectral characteristics for
non-stationary signals (Rosyidi et.al. 2009). Wavelet is being used more
frequently as an effective analysis for seismic signals in the time dimension and for
localizing various their spectral events. A time-frequency spectrogram can be
generated in wavelet analysis to examine the signals in the time and frequency
domains simultancously. Therefore, the translation and scaling process in wavelet
analysis is of particular use for measuring the influence of the varying seismic
wave modes and identifying some of the modes in the time domain. Wavelet
analysis also allows for a more stable computation of phase velocity in comparison
to the phase velocity obtained by using the time-difference method which is
commonly employed in traditional SASW. Gucunski and Shokouhi (2005) asserted
that CWT analysis can be used to identify the cavities in media sub-surface. i.c.
the pavement. It is also capable of differentiating between the characteristics of

layer dipping and interface layers when there is an extreme change in stiffness.

This paper describes the simple procedure of using phase data from wavelet
analysis and material properties to obtain the elastic modulus of pavement surface
layer without utilizing any complex inversion algorithms. It then presents the

typical results from some case studies which were conducted to evaluate the
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asphalt concrete (AC) layer of pavement structurez at two different locations, i.c.,
Purwakarta national highway network. Indonesia and road pavement in Bandar
Baru Bangi. Malaysia. Several comparative tests of the WSSW measurement were

also conducted on rigid pavements in Yogyakarta, Indonesia.

CONTINUOUS WAVELET TRANSFORM

Continuous wavelet transform (CWT) is an interactive signal processing tool used
to analyze the time and frequency characteristics of nonstationary seismic signals.
It has been variously employed to analyze data in soil and geotechnical
investigations (Rosyidi et. al. 2009) and in geophysical methods (Foufoula-
Georgiou and Kumar 1995). CWT compares signals with another version of
wavelet function. Wavelets compress or stretch g such a way that the time
component changes with frequency. The wavelet functions are manipulated in a
translation process where the function moves along the time domain and in a
dilation process where the wavelet spreads out. When the time domain increases or
decreases, the frequency component of the wavelet changed into high or low
frequency. respectively. Consequently. as the frequency resolution increases. the
time resolution decreases, and vice versa. The ability of CWT to construct a time-
frequency resolution generated by wavelet analysis is very suitable gr non-
stationary seismic analysis.

A wavelet is expressed as a function of () € L*(R) and. by dilating and
translating the wavelet \p(t), it is possible to mathematically define a wavelet

function as:
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where o is dilation parameter (it is also referred to as a scale) and T is translation
parameter (o, T € R and o # 0). The wavelet has varying basic wavelet shapes
which are utilized in seismic data analysis. These shapes are known as mother
wavelet, i.e., Gaussian, Daubechies Haar, Meyer., Morlet, Symlets, Paul,
Biorthogonal and Mexican Hat, which dilate and translate the versions of the
derived mother wavelet which are then used in wavelet analysis. The selection of
a suitable mother wavelet in a particular analysis is based on the waveforms of
seismic signals.

CWT can be written and derived from the family wavelets Y5 - () with a signal f{1)

and is expressed by the following equation:

w 8
Firlon0)= (e )= [ 10 o ®

where i is the complex conjugate of y; and Fir(o.7) is the time-scale plot.

In this study, the Gaussian Derivative (GoD) was used as the mother wavelet. The

real GoD wavelet component in the time (f) and frequency (s®) domains can be

expressed as:

%(,):Lj (e/) @
t{me3) ™
ﬂl+2

=

Wolso)=— — (s@)" (e iy ] @
I [m + %J

where m and 1" are wave number and Gamma function, respectively. Hence, the
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complex wavelet form of GoD in the frequency domain can be created by using a
Heaviside function where the wavelet decays with the square root of a gamma
function. In the GoD mother wavelet, the shape of the wave is essentially

determined by the wavelet derivative order. Thus. the best resolution of the

waveform can be simply obtained by varying the derivative order.

RESEARCH METHOD

Field Measurement

In the WSSW method field measurement of seismic data is done by dropping
steel ball bearings weighing between 5 and 15 g to generate seismic waves on the
pavement. Two high-frequency accelerometers (25 kHz) are employed to detect
the signals of seismic waves. Both accelerometer receivers are located in a lincar
array with the source. The signals are then recorded in a set of ADT analog-digital
acquisition which is connected to a computer unit used to analyze the spectrum of
signals (Figure 1). The configuration of mid-point receiver spacings employed in
this study is shown in Figure 2. The field mid-point receiver spacing and receiver-
source spacings were arranged for sampling different depths and layers of the
pavement structures. The receiver spacing (as shown in Figure 2 as d2) is less than
and/or equal to the thickness of the layer (H). The distance from the source to the
first receiver (di) must be equal with the receiver spacing (dz). Since measurement
was made on the surface layer of flexible and rigid pavement structures, short
receiver spacings of 5, 10, 15 to 30 cm were utilized. In order to enhance signal
quality and minimize the shifting of internal phase between receivers, the forward

and backward procedure of the test configuration was repeated at least 4 to 6 times

for each spacing measurement. This repetition was also used to verify the
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variability and consistency of the results of the WSSW test. This paper also
discusses the result of the statistical analysis of the various repetition procedures.

In addition to the WSSW test, comparative tests, i.c.. spectral analysis of surface
wave (SASW). falling weight deflectometer (FWD), and laboratory resilient
modulus tests. were also conducted at three different sites, i.e. existing flexible
pavement of a national road network in Purwakarta, West Java, Indonesia; a
campus road in Universiti Kebangsaan Malaysia (UKM), Malaysia; and a new
rigid pavement in Yogyakarta, Indonesia. SASW and FWD measurements were
made at the same locations of the road pavements. Pit test was also conducted to
determine the number of layer and the materials of the pavement profile. The result
of the pit test show that the measured pavement comprises three layers. i.c.. 18 cm
of asphalt concrete (AC), 10 cm of crushed stone base, and 30 cm of sub-base
overlaying the compacted subgrade materials. Another comparative test, i.e.,
resilient modulus laboratory test, was conducted on existing flexible pavement at
the Universiti Kebangsaan Malaysia (UKM) Campus, Malaysia. The pavement
profile at UKM campus sites consists of an AC layer (7 cm) and a base layer of
crushed aggregate (40 cm) over a soil subgrade layer. The WSSW measurement
of rigid pavement was validated by conducting a compressive test on new PCC

slabs 45 cm thick over a compacted layer of sand.

Proposed Data Analysis in the WSSW Method
The following scheme for the WSSW method is proposed based on the seismic
data analysis using continuous wavelet transform and calculation of the clastic

modulus of pavement:

Page 10




245

246

247

248

249

250

251

252

253

254

259

256

257

258

259

260

261

262

263

264

Measure the

field seismic surface wave by using the mid-point receiver

spacing configuration (Figure 2).

Compute the time-frequency spectrogram of CWT based on the Gaussian

Derivative (DoG) mother wavelet for the received signal waveforms. The

generated spectrogram will provide information of the varying wave modes

effects. encrgy cvents of the spectrum, and the manner in which higher modes

diverge in time.

Analyze the phase difference in the transfer function spectrum from the TF

spectrograms of the signal recorded by the first and second receivers. The

mathematical equation for the computation of phase spectrum is based on the

wavelet spec

2017):

trogram and is expressed as (Rosyidi & Taha, 2012, Rosyidi.

oy j}

()= L) s % T

r X B

‘l (,f) Hf{u_.n J‘\({)L [I_‘r)dl
PN

where,
X() = signal input in the frequency domain from first receiver X(1),
Y = signal output in the frequency domain from second receiver

Yit),

[19)

4 T 1 [—u —i&(t-n)
W o= Y(’)ﬁg(T]e

>4 _ T 1 [—u ~i&(t-u)
e

(6)

@)

A phase spectrogram in the time-frequency domain based on Eq.6 and Eq.7
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can be computed using the following equation:

ei[(—‘]- (a.b)-0y(a.b))

W Gs) 7 )

Hlu,s)=—— = - - - 8
(w.5) W (us) W (us) < W (u,s) ®
Thus. phase difference is calculated as a ratio of the imaginary to the real part
of the phase spectrogram. which is expressed as:
T H (u,
¢ =1tan -1 5 (Hv S‘) (9)
N H(u,s)

Determine the coherence function spectrum to evaluate the quality of signals
recorded by both receivers. The coherence value is scaled in real number from
zero to one within the range of the measured frequencies. A value of one
indicates a good signal and the best correlation between the two observed
signals while a value of zero indicates a bad signal and lack of correlation
between the two signals. The coherence function was obtained by using the

following formula (Rosyidi, 2017):

) W7 )
W P )

r*(/) (10)

Generate a trendline of linear regression relationship from phase difference

versus frequency. Phase velocity is then calculated as a function of the slope

value (m) of linear regression line. The mathematical formulation for the phase

velocity and the slope is expressed as:

360D

=y

‘f= mf an

The phase velocity given by Equation 11 is determined from the slope of the
obtained best-fit line (7). In this formulation, the phase velocity is assumed to

be independent of the wavelength with a value approximately equal to the

ph
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thickness of the uppermost layer. The range of the wavelength can be

assessed from the relationship of phase velocity and its frequency (/):

”

A=2 (12)
/

@

6. Calculate the dynamic elastic modulus (E) of the pavement materials by using

Formulas 13 and 14 (Baker et al, 1995):

E= Yjkv,| 13
g
2(1-p)
K= (113-0.16 14
( DN (14)
a

where Vpn is phase velocity. g is acceleration of gravity, vy is total unit weight
of the material, and p is the assumed Poisson’s ratio. It should be noted that, in
the WSSW technique, the materials on surface layer of the pavement are

assumed to be uniform when the

high-frequency surface waves were generated.

RESULTS AND DISCUSSION

Application of WSSW on Flexible Pavement

In situ Measurement of the Elastic Modulus of Surface Layer

WSSW tests were carried out at twelve locations of road-flexible pavements on
the national highway network in Purwakarta, Indonesia. Figure 3 shows the
example of the signals from the WSSW measurement. The groups of body and
surface waves from the recorded signals can be explored, as shown in Figure
3These signals were used to generate a time-frequency (TF) spectrogram plot by
using the CWT of GoD. The spectrogram of CWT can be used to solve the

problems of identifying spectral events of the seismic signals obtained from ficld
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measurement. The spectrogram shows the energy of measured signals as a linear
combination in signal which is shifted by Gaussian Derivation functions in time
and frequency domain. This technique is effectively used for a good tool in
investigation of wave group in energy events. A typical CWT spectrogram in the
time-frequency resolution plot of the signals is shown in Figure 4. It shows two
distinct energy from the wave propagation events in the wavelet spectrogram. The
energy amplitude distribution in both spectrograms are displayed in a normalized-
dB unit. The wave group which arrived early has been identified as a lower mode
of seismic waves. The frequency band of the lower energy ranges from 2.8 to 16
kHz. Within this spectrum range, the wave mode has been identificd as coming
from the surface wave signals. The energy level of the lower mode of scismic
signals can detect up to 60 % of total wave energy through independent
measurement of surface wave propagation. The wave group which arrived later
was identified from direct and reflected body waves. The waves which arrived later
have higher frequency and is  the higher mode of seismic waves. This mode
occurs at frequencies greater than 16 kHz. The result of the CWT spectrogram
indicates that the dominant wave energy of the surface waves at the frequency
range of interest can be clearly observed. The spectrogram provides information on
wave mode with a clear time-frequency resolution at high frequency signals. It can
be used to interpret the group frequency bandwidth by using various derivation

order of the Gaussian mother wavelet.

Figure 4 shows the calculated phase difference of seismic signals in the frequency

domain which were determined from both wavelet spectrograms. Without

information on the observed energy wave groups. the wrapped phase could
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produce erroneous phase velocity. The separation of energy wave group of interest
can be done by extracting the selected dominant energy event of surface wave
group from the CWT spectrogram. In this study. the energy event of surface wave
detected between 2.8 to 16 kHz was extracted and the wrapped phase difference
was then measured from the transfer function spectrum, as shown in Figure 5. The
wrapped phase data is represented with a value of between -n and = radian (or -180
and 180 degrees) which makes it easier to observe the detailed variation in the
phase data in a small space of graph. By using the wavelet spectrogram approach
to extract the selected energy wave group of surface waves. the phase difference
from transfer function spectrum shows clear saw-tooth patterns since the phase
spectrum for the most part carries the dominant energy event of a wave group at a
given frequency. It also shows that the time-frequency CWT spectrogram of the
Gaussian Derivative wavelet can be effectively used to generate enhanced phase
spectrum with a better, smooth, clear pattern than the traditional phase unwrapping
by Fourier analysis that is usually done in the SASW. Figure 6 compares the phase
spectrum obtained by using CWT and Fourier analysis. The transient wave pattern
from seismic waves is usually sparse in the wavelet (Ching et al., 2004). Their
investigation shows that. compared to the Fourier domain, the wavelet domain is a
better platform for estimating the function for transient wave pattern since the
pattern can be casily differentiated from the signals, higher mode reflected signals.
and noise. Another related work by Gucunski and Shokouhi (2005) proved the
advantage of using wavelet transform in spectral analysis since it is capable of
giving a more stable computation of phase velocity and can be used to characterize
layer interface. In this study, WSSW can be used to characterize and extract the

energy event of wave groups from the surface wave and reflected body waves.
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Figure 6 shows a comparison of the wrapped phase spectrum generated through
Fourier analysis and wavelet analysis. It is interesting to note that the wavelet
analysis extracted from phase spectrum of interest produced a better and smoother

pattern compared to the Fourier domain, as discussed above.

Figure 5 shows that the phase difference spectrum has a clear saw-tooth pattern in
the frequency domain of up to 25 kHz. With regards to the phase data, the high-
frequency mode of surface waves is represented as a pavement surface laver with a
high stiffness (elastic modulus). In this case, the coherence function was used to
inspect the quality of phase difference spectrum. Figure 6 shows that the phase
data with a frequency of up to 20 kHz has a cohcrence magnitude greater than
0.98.

For a given phase difference spectrum, the elastic modulus of a pavement surface
layer can be calculated by fitting a smooth curve of the weighing function. The
smoothed phase spectrum was generated and fitted to the raw data points of phase
difference. The phase spectrum was then unwrapped by counting the number of
cycles from the peak sequence of the wrapped phase spectrum. as shown in Figure
7. The lincar regression analysis was then generated on the phase spectrum as the
best fit trendline of the phase difference. The slope of the line is almost similar
with the measured frequency. The value of the slope was then substituted into
Equations 11, 13 and 14 to determine the elastic modulus of the surface layer
material. As can be seen in Figure 7. the trendline for the frequency range

coincides with the wavelengths that are less than the thickness of the surface layer.
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Figure 7 shows that the slope (m) of the trendline has a value of 0.0140 and is the
best-fit curve. Using Equation 13 to compute the phase velocity gives a value of
1.028.57 m/s. By using the calculated phase velocity, a field configuration with a
receiver spacing (d2) of 5 cm: assumed Poisson’s ratio of 0.25 for pavement
material such as asphaltic (Asphalt Concrete/AC) layer: and a unit weight of 2,200
kg/m’, the eclastic modulus was then computed to be 845,662,040.80 kg/m?
(8.456.62 MPa). This value was obtained when measurement was made at a
pavement surface temperature of 31.8°C. The measured modulus is the typical
value of an AC modulus when measured at a small strain level, which is similar to

the findings made by Nazarian and Stokoe (1986), Stokoe et al. (1991), Roesset et

al. (1991), Aouad et al. (1993), Aouad et al. (2000), and Yuan et al. (2015). Aouad
et al. (1993) have proven that the seismic method is effective for determining in

situ changes in stiffness (E) at temperatures ranging from 30°F to 143°F.

In general, this result indicates that the elastic modulus of the pavement surface
layer can be simply determined by using the WSSW technique. However, the
elastic modulus obtained in this study are relatively high. This is because the
seismic technique evaluates the modulus at a very low strain level (less than 10°
%). The behavior of material modulus at this strain level could be considered as
the maximum moduli due to its very small strain amplitude. This finding is
supported by a previous observation made by Roesset et al. (1990). In addition, if
the elastic modulus of asphalt concrete is a function of frequency, the modulus
obtained from seismic measurement will give higher stiffness values than other

dynamic and static tests due to the high frequency used in the seismic tests.

Consequently. adjustment should be made to the seismically determined stiffness
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(Stokoe et al. 1991) by constructing a master curve for temperature correction and
frequency shift (eon and Kim, 2006; Ryden, 2011: Gudmarsson et al. 2012). In
the attempt to illustrate the sensitivity and utility of WSSW method for measuring
changes in stiffness, in situ WSSW tests were performed on constructed road-
pavement and pavement overlay. Figure 8 shows that the different layers of
stiffness of both pavement profile have been investigated satisfactorily. The road-
pavement surface and overlay layer were evaluated using a 10- and 5-cm receiver
spacing configuration, respectively. The properties of both surface layers were
determined definitively without any complex inversion process that is usually
required in the SASW method. The change in e stiffness of the surface layer can
also be cvaluated non-destructively and quickly by using the WSSW technique.
The WSSW method. however, can only be used in two obvious conditions: first, it

(2]

is only effective when the wavelength is less than and/or equal to the uppermost
32

thickness of surface layer. When the wavelength is greater than thickness of the

layer, the dispersive surface wave velocity is significant influenced. Secondly, the

&

material properties of the pavement surface layer are assumed to be uniform and
(12]

modulus is measured at very low strain levels and high levels of frequency. The

elastic theory is used to explain the response of material associated with this

measurement where the response of material is predominantly linear (Luna & Jadi,

2000).

Validation by using the SASW and FWD Test
As shown in Figure 8, the result was then validated by conducting spectral-
analysis-of-surface-wave (SASW) tests at the same locations where the WSSW

tests were performed. In the SASW method. impact sources, i.e. ball bearings and
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hammers, were used to produce the energy of surface wave propagating
horizontally in the sub-surface layer of the pavement. Various receiver and source
configurations were used with mid-point receiver spacings of 5. 10, 20, 40, 80 and
160 cm to examine the pavement profile. h011 receiver spacings of 5 and 10 cm
were used with ball bearings as a source of high frequency to sample the pavement
surface layers: longer receiver spacings of 20 to 160 cm were used along with
small- to medium-sized sledge hammers as low frequencies sources to observe the
response of base and subgrade layers. DIB A/123/E piezoelectric accelerometer
and Harmonie 01 dB (IEC 651-804 Type-I) ADC (analog digital converter) were
connected to a computer and were used to receive and record both high and low
frequency seismic waves. Fast Fourier Transform was used to compute the phase
difference based on the signals and was displayed in the cross-power spectrum.
The phase information was then unwrapped and analyzed to produce a dispersion
curve of phase velocity versus wavelength. Figure 9 shows an example of the
composite experimental dispersion curve from the measurements made by all
receiver spacings. Subsequent to obtaining the dispersion, inversion analysis was
done based on the established theoretical model. In this analysis, the 3-D stiffness
matrix model proposed by Kausel and Peck (1982) was used. The final profile of

shear wave velocity was obtained after 16 iterations with a root-mean-square error

(RMS) of 35.47 m/s or an average deviation of about 5.92 %.

Figure 10 shows the equivalent shear wave profile obtained after inversion while
Figure 11 shows the equivalent dynamic clastic modulus profile which was
obtained using the dynamic material equation. The modulus profile in Figure 11 is

only valid at a depth of 10 cm where the asphaltic layer is located. The elastic
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modulus shown in the figure is congruent with the elastic modulus obtained when
using the WSSW and SASW methods. The difference between the two methods
is 0.01 % and 1.14 % for the first and second layer of pavement surface,
respectively.
a

The falling weight deflectometer (FWD) method was used to verify the elastic
modulus of pavement surface layer obtained through the WSSW test. Figure 12
shows e elastic modulus of pavement surface layer obtained using both the FWD
and WSSW methods. The elastic modulus obtained using WSSW is higher than
the value obtained through the FWD test. As mentioned previously, the modulus
measurcd at very low strain levels in the surface wave method is the maximum
value. has a high loading frequency. and is not determined by strain amplitude.
Contrarily, in the FWD test, the modulus was obtained from backcalculation of in
situ measurement of deflection basins. In this test, a falling weight was dropped to
obtain a target load of 40 kN in order to generate pavement basins. Nazarian et al.
(1999) and Stokoe et al. (1991) reported that the modulus measured in a FWD test
usually corresponds with the secant modulus of the alerials close to the loading
pad (i.e. pavement surface layer and base/subbase layer) and the itial tangent
modulus for the materials further from the impact/dropped weight (deeper
subgrade). On the contrary, the modulus obtained by using the proposed WSSW
method is measured directly using a small seismic source. The modulus thus
obtained always corresponds with the initial tangent modulus due to the small
impact. This is the reason why the modulus obtained from the proposed WSSW is

higher than that obtained via the FWD method. However. as presented in Figure

13, a correlation of data trend from field testing shows that the lower modulus
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obtained through the FWD method is also measured at lower modulus level when
using the WSSW. Additionally, the high frequency of the seismic method
generated greater stiffness values for pavement material. Roesset et al. (1990)
found that frequency has a significant effect on modulus value at the small strain
levels in the seismic and FWD tests. In FWD, modulus was measured at a
frequency of approximately 30 Hz (Figure14) calculated from peak frequency of
displacement in the auto-spectrum of wave propagation energy recorded by the
geophones. This is congruous with the results obtained by Stokoe et al. (1991).
These researchers measured the auto-spectrum of the velocity resulting from the
impact of an FWD on AC pavement layer. The results of their study show that the
impact energy of FWD is concentrated in a frequency range of 2 to 50 Hz with a
peak energy of between 25 to 30 Hz The peak frequency response of FWD
obtained in the present study is similar with that obtained by Roesset et al. (1990)

where the frequency of FWD was found to be 30 Hz.

Validation with Resilient Modulus Test

In this section, the results obtained via the WSSW test is compared with the result
of laboratory resilient modulus (Mr) test conducted at same location of the road
pavement on the UKM Campus, Bandar Baru Bangi, Malaysia. WSSW test with
identical configuration was conducted at 30 observation points and the data was
then processed as described in the previous section. After completing the WSSW
test, the specimens of the pavement surface layer to be used for laboratory resilient
modulus were cored from the same location. Laboratory resilient modulus, Mr, is
the clastic modulus based on recoverable strain under repeated load. The test was

conducted in accordance with the ASTM D 4123 under indirect tensile mode using
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309

310

a Universal Testing Machine (UTM). In the resilient modulus test, the time
dependent deformation by using constant compressive stress was set up to assess
the ability of the cored specimen to recover from repeated loading without
reaching failure limit. In this test, the specimens were tested in two orientations,
i.e. 0° and 90°. The resilient modulus was computed by assuming a Poisson’s ratio
of 0.35. A typical result for the resilient modulus obtained from a laboratory test
of the sample cored from the road pavement on the UKM campus is presented in
Table 1. The AC core was tested at a temperature of 36°C. This temperature is
similar with the field temperature when the WSSW test was conducted. Table 1
presents the results for air voids, tensile strain, indirect tensile strength, and
resilient modulus test obtained from the measurement of the cored samples of the
two testing sites. Statistical analysis of coefficient of variation (CV) and range of
acceptance (RA) indicate that the results of resilient stiffness data are statistically

sound.

The resilient modulus of all specimens and WSSW tests are presented in Figures
15 and 16. Figure 15 presents the regression analysis of elastic modulus for the
resilient modulus test and WSSW test at a surface layer temperature of 36°C. The
moduli obtained from the WSSW and laboratory resilient modulus tests are plotted
on the y-axis and the strain levels obtained from each measurement of the
specimens are plotted on the x-axis (Figure 16). Similar with the results of the
D test, the value of elastic modulus obtained from the WSSW test is higher
thaahe value produced by the laboratory resilient modulus test. This difference

is due to the different strain levels in both tests. The elastic modulus from the

WSSW test is a maximum value and is independent of strain amplitude.
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Application of WSSW on Rigid Pavement

In situ Measurement of Elastic Modulus

WSSW measurements were also made on a new rigid pavement in Yogyakarta.
Indonesia. The tests were conducted on slabs fabricated using concrete class Type
I cement with a maximum aggregate size of 0.019 m. The concrete mixtures for
the PCC slab casts were designed to have a minimum 28-day compressive strength
of 225 kg/em? (?2.04 MPa). The concrete has a cement-water ratio of 0.48 and an
average slump of 0.033 m. The 450-mm thick PCC slabs were placed over a

compacted layer of sand on subgrade soil. The tests were conducted on the slabs

after a curing time of 3, 14, and 28 days.

Figure 17 shows a typical result of time frequency spectrogram of GoD CWT
from the measured signals. Signals were recorded with a field measurement
configuration of 30 cm receiver spacing (D) on a PCC slab with a 14-day curing
time. Figure 17 clearly shows that several signal energy groups different
frequency bands were detected, which could result in interference at low and
higher mode of signals. The wave energy events occurred within 0.02 to 0.026
seconds of arrival time (received by accelerometers). It shows that the dominant
energy event occurred between 5 to 25 kHz in both signal CWT spectrograms.
Within this range, the events were investigated as energy group of surface waves
and interference of reflected body waves. The first energy group occurred at a high

frequency of between 5 to 16 kHz (channel 1) and 6 to 16 kHz (channel 2), which

arc identificd as surface wave propagation.
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The unwrapped raw phase spectrum was then computed and is shown in Figure 18.
A linear regression (v = mx) of phase angle versus frequency was generated, and
the best-fit line has a slope (m) of 0.0535. The phase velocity was calculated based
on the slope value and receiver distance using Equation 11 and was found to be
2.018.69 m/s. The unit weight of concrete in the PCC slabs were measured at each
elapsed time of the curing process. By assuming oisson’s ratio and unit weight
of concrete material for a 3-day curing time of 0.20 and 2,420 kg/m?®, respectively,
the elastic modulus of rigid pavement surface layer were obtained using Equations
13 and 14 and was found to be 23,660.99 MPa (23.66 GPa). Figure 19 shows the
measured clastic modulus for concrete PCC slabs at 3-, 14- andéS-day curing

time. It shows that WSSW test can also be used to monitor any changes in the

stiffness of the surface layer of rigid pavement during the curing of PCC slabs.

Validation with Laboratory Compressive Strength Test

A laboratory compressive test was conducted to validate the value of the stiffness
of rigid pavement obtained via the WSSW tests; the test was performed using a
standard 6 by 12-in cylinder sample in accordance with compression tests standard
ASTM C 39. The compressive tests were conducted to determine the average
compressive strength of three cylinders of PCC slab samples. The compression
tests were conducted 3, 14 and 28 days after casting. The results for the
compressive strengths are presented in Table 2. Figure 12 shows that elastic
modulus obtained via the WSSW tests is in good agreement with the compressive
strength obtained via the laboratory test with a coefficient of determination of
0.995. This indicates the feasibility of using WSSW to make a quick measurement

and predict the elastic modulus of the surface layer (PCC Slab) of rigid pavements.
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CONCLUSION
This paper introduces a technique for determining the surface layer stiffness of

flexible and rigid pavements by performing a wavelet-spectrogram analysis of
surface waves (WSSW). The technique employs a mc-frcquency analysis of
continuous wavelet transforms (CWT) spectrogram to identify energy events, filter
the wave modes of interest, and improve the quality of phase spectrogram of the
received seismic signals. The technique is also capable of enhancing the transfer
function spectrogram used to obtain the phase difference data. By using a simple
formulation of phase spectrum slope and material propertics of the pavement, the
clastic modulus of a pavement surface layer can be determined without having to
perform any complex inversion analysis. The WSSW method is a non-destructive

test which can be used for regular monitoring of the changes in the elastic

modulus of constructed pavement surface and its overlays.
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TABLE
Table 1. Typical result of indirect tensile and resilient modulus tests conducted on

the sample of AC cored from a pavement-road on the UKM Campus, Malaysia

Sampel Air Voids . c Mr
B No. (%) hetensil) qoGle)  (MPa)
04200 A-1 5.06 1890 21190 1735
04200 A-2 5.32 12010 21460 1739
04200 A3 489 14810 26170 1720
Mean 5.0 12903 22940 1731
SD* 10.02
cv* 0.58%
RA* 1.64%
Sampel Air Voids . c Mg
Bia No. (%)  Petensilo) ki) (MPa)
04300 B-1 465 8444 2070 2388
04300 B-2 5.12 85.03 20450 2343
04300 B-3 4.64 85.63 20330 2312
Mean 4.80 85.03 20490 2347
SD* 3821
cv* 1.63%
RA* 4.61%
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Table 2. Average compressive strength of PCC slabs of a new rigid pavement after

varying curing time

Elapsed time No. PCC Average Elastic Average
(curing Slabs Modulus from compressive
period) in Sample WSSW Test strength of PCC

days Test (MPa) Slab (MPa)

1 23,660 142

3 2 22,980 14.6

3 23.420 139

1 31.130 25.0

14 2 30.760 243

3 31.250 249

1 33.560 283

28 2 34,070 289

3 33,810 279
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