BAB III

METODOLOGI PENELITIAN

3.1 Alat Penelitian

Pada penelitian ini software yang digunakan untuk simulasi adalah jenis program *CFD* ANSYS 15.0 FLUENT.

3.1.1 Prosedur Penggunaan Software Ansys 15.0

Setelah merencanakan analisis *CFD* pada model, langkah-langkah umum penyelesaian analisis *CFD* pada Fluent sebagai berikut :

- a. Membuat geometri dan *mesh* pada model
- b. Memilih *solver* yang tepat untuk model tersebut (2D atau 3D)
- c. Mengimpor *mesh* model
- d. Melakukan pemeriksaan pada mesh model
- e. Memilih formulasi solver
- f. Memilih persamaan dasar yang akan dipakai dalam analisis
- g. Menentukan sifat material yang akan dipakai
- h. Menentukan kondisi batas
- i. Mengatur parameter control solusi
- j. Initialize the flow field
- k. Melakukan perhitungan/iterasi
- 1. Memeriksa hasil iterasi
- m. Menyimpan hasil iterasi
- n. Jika perlu, memperhalus *grid* kemudian dilakukan iterasi ulang untuk mendapatkan hasil yang lebih baik.

Gambar 3.1 Diagram alir simulasi CFD menggunakan software Ansys Fluent 15

3.2 Proses Simulasi CFD

Secara umum proses simulasi *CFD* dibagi menjadi 3 yaitu *Pre-Processing*, *Processing dan Post-Processing*.

3.2.1 Pre-Processing

Pre-Processing adalah tahap awal dalam simulasi CFD yang perlu dilakukan, seperti membuat geometri, meshing, mendifinisikan bidang batas pada geometri dan melakukan pengecekan *mesh*.

a. Membuat Geometri

Dalam proses pembuatan geometri untuk simulasi pada *Ansys Fluent*, selain dengan menggunakan aplikasi tersebut dapat dilakukan juga dengan aplikasi lain seperti *solidwork*, *gambit*, *autocad* dan lain sebagainya yang selanjutnya di impor ke aplikasi *Ansys Fluent*.

Pada penelitian ini, geometri dibuat menggunakan aplikasi *Ansys Fluent* dikarenakan lebih efektif dalam proses pembuatnnya. Geometri dalam penelitian ini menggunakan pipa berbahan acrylic dengan spesifikasi seperti gambar berikut:

Gambar 3.2 Pipa (tampak depan)

Gambar 3.3 Pipa (tampak samping)

b. Pembuatan Mesh

Setelah geometri dibuat, perlu dilakukan proses *meshing* (membagi volume menjadi bagian-bagian kecil) agar dapat dianalisis pada program *CFD*. Ukuran *mesh* yang terdapat pada suatu obyek akan mempengaruhi ketelitian dan daya komputasi analisis *CFD*. Semakin kecil/halus *mesh* yang dibuat, maka hasil yang didapatkan akan semakin teliti, namun dibutuhkan daya komputasi yang makin besar pula.

Konsep pembuatan *mesh* mirip dengan membuat geometri. Proses *meshing* dilakukan dengan menekan tombol perintah *mesh* volume yang ada pada *operation toolpad*. Pertama-tama volume yang diinginkan harus dipilih terlebih dahulu. Kemudian, bentuk yang diinginkan dapat dipilih pada tombol jenis elemen dan tipenya. Terakhir, harus ditentukan juga ukuran dari *mesh* yang diinginkan. Selanjutnya setelah tahap *meshing* selesai kemudian kita lakukan tahap pengecekan *mesh* dengan *report quality*. Setelah itu tiap pipa diberi nama sesuai dengan fungsi dan bagian pipa. Disini kita memakai 2 *inlet* yaitu *inlet* air, *inlet* udara dan 1 *outlet*.

Dikarenakan supaya fluida air dan udara dapat bercampur dan menghasilkan sebuah pola aliran yang dikehendaki.

Mesh Scale Check Report Qu Display	lity	
Preparing mesh for display Done.		
Setting Post Processing and Surfa	ces information Done.	
Mesh Quality: Orthogonal Quality ranges from M Minimum Orthogonal Quality = 1. Maximum Aspect Ratio = 2.09733e	to 1, where values close to 0 correspond to low qualit 8183e-01 01	ality.

Gambar 3.5 Proses Name Selection

Bidang yang diidentifikasi adalah *inlet* dan *outlet* pipa baik untuk fluida air dan udara. Disini kita memakai 2 inlet yaitu inlet air, inlet udara dan 1 outlet. Dikarenakan supaya fluida air dan udara dapat bercampur dan menghasilkan sebuah pola aliran yang dikehendaki.

Gambar 3.6 Hasil meshing (tampak samping)

Gambar 3.7 Hasil meshing outlet

Gambar 3.8 Hasil *meshing body*

3.2.2 Processing

Pada tahap ini banyak yang harus dilakukan kaitannya dengan penentuan kondisi batas dalam sebuah simulasi *CFD*. Proses ini merupakan bagian yang paling penting karena hamper semua parameter penelitian diproses dalam tahapan ini, seperti *models, materials, cell zone conditions, boundary conditions, mesh,* interfaces, *dynamic mesh, references values, solution methods, solution controls, solution initialization, calculation activities,* dan terakhir *run calculation.*

a. General

Pada tahap ini menggunakan metoda solusi *default* berdasarkan tekanan. Kemudian untuk *velocity formulation* menggunakan *absolute*. Aliran dalam sistem ini bersifat *transient* dikarenakan memakai interval waktu dalam iterasinya sehingga menghasilkan sebuah pola aliran.

lesh				
Scale		Check	Repo	ort Quality
Display				
dver				
Type Pressure-I Density-Ba	Based ased	Absc Rela	Formulat olute tive	ion
Time Steady Transient				
Time Steady Transient Gravity avitational A	cceleratio	m		Units
Time Steady Transient Gravity ravitational A X (m/s2) 0	cceleratio	n	P	Units
Time Steady Transient Gravity ravitational A X (m/s2) 0 Y (m/s2) -9,	cceleratio 81	on	P	Units

Gambar 3.9 User Interface general Menu

b. Models

Dalam tahap ini viscous disetting menggunakan k-epsilon dengan model realizable. Pada kasus simulasi ini, Realizable k-epsilon dipilih karena memiliki tingkat akurasi yang lebih baik dibanding metode standard k-epsilon ataupun RNG k-epsilon.

10dels	Mahama a firth dal	
Energy - Off Viscous - Re Radiation - C Heat Exchar Species - Of Discrete Pha Solidification Acoustics - C Eulerian Wal	Volume of Huld alizable k-e, Scalable Wall Fr ff ger - Off ges - Off & Melting - Off Jff Film - Off	1
•		•

Gambar 3.10 User Interface Menu Models

c. Materials

Material yang digunakan untuk simulasi ini, yaitu fluid. Material solid yang digunakan adalah *acrylic flexyglass* sedangkan untuk fluidanya menggunakan *water-liquid* dan *air*.

naterials		
Fluid		
water-liquid		
air		
Solid		
glass		
aluminum		

Gambar 3.11 User Menu Materials

d. Cell Zone Conditions

Cell Zone Conditions berisi daftar zona sel yang dibutuhkan. Pada tahap ini masing-masing zona disesuaikan dengan nama dan jenis materialnya. Untuk *Porous Formulation* yang berisi opsi untuk mengatur kecepatan simulasi disetting *default* dengan memilih *Superficial Velocity*.

Gambar 3.12 User Menu Cell Zone Conditions

e. Boundary Conditions

Tahap ini merupakan proses untuk memberikan kondisi batas berupa data yang dibutuhkan pada simulasi ini. Data yang dimasukkan adalah data kecepatan pada *inlet*. Untuk data terkait air, pada *inlet* menggunakan data variasi *superfisial* air dan *superfisial* udara . Untuk *outlet* kita asumsikan aliran keluar ke atmosfer.

Boundary Conditions	
Zone	
In Line In Judeta In Judeta Interior - Jumpin-air Interior - Jumpin-air Interior - Jumpinum-udera Interior - Jumpinum-udera Interior - Jumpinum-udera Interior - Jumpinum-udera Interior - Jumpinum-udera Interior - Jumpinum-udera Interior - Jumpinum-udera	
•	•
Phase Type ID	
phase-1 pressure-outlet 11	
Edit Copy Profiles Parameters Operating Conditions Display Mesh Periodic Conditions	
Type ID Phase Type ID Increasure-outlet Increasure-outlet Increasure-outlet Edt Copy Profiles Display Mesh Periodic Conditions Highlight Zone	F

Gambar 3.13 User Menu Boundary Condition

f. Solution Methods

Simulasi ini menggunakan skema *SIMPLE*, persamaan yang digunakan untuk aliran *transient* atau untuk *mesh* yang mengandung *cells* dengan *skewness* yang lebih tinggi dari rata-rata. Metode ini didasarkan pada tingkatan yang lebih tinggi dari hubungan pendekatan antara faktor koreksi tekanan dan kecepatan.

Pada Spatial Discretization, untuk Gradient-nya menggunakan Least Squares Cell based, Pressure menggunakan presto!, dan untuk Momentum, Volume Fraction, Turbulent Kinetic Energy, Turbulent Dissipation Rate, dan Energy menggunakan First Order upwind.

Scheme	
SIMPLE	•
atial Discretization	
Gradient	
Least Squares Cell Based	-
Pressure	
PRESTO!	-
Momentum	
Second Order Upwind	-
Volume Fraction	
Geo-Reconstruct	-
Turbulent Kinetic Energy	
First Order Upwind	-
Turbulant Dissipation Data	
ansient Formulation	
irst Order Implicit	•
Non-Iterative Time Advancen	nent
Frozen Flux Formulation	

Gambar 3.14 User Interface Solution Methods

g. Monitors

Pada tahap ini akan diatur parameter yang digunakan untuk memantau konvergensi secara dinamis. Pada dasarnya konvergensi dapat ditentukan dengan merubah parameter pada residual, statistik, nilai gaya, dll.

Pada kasus ini *equations* pada *residual monitors* disetting sesuai kebutuhan yaitu akan menampilkan *continuity*, *z-velocity*, *energy*, *k-epsilon*, dan *do-intensity*.

Options	Equations				- 11
 ✓ Print to Console ✓ Plot 		Monitor C	neck Converger	0.001	Î
Window	x-velocity			0.001	
Iterations to Plot	s y-velocity			0.001	
1000	z-velocity		•	0.001	j.
	Residual Values			Convergence Cr	iterion
terations to Store	Normalize		Iterations	absolute	~
	Scale	ocal Scale	×	6	

Gambar 3.15 User Menu Residual Monitor

h. Solution Initialization

Initialization methods yang digunakan adalah Hybrid initialization.

Solution Initialization
Initialization Methods
 Hybrid Initialization Standard Initialization
More Settings Initialize
Patch
Reset DPM Sources Reset Statistics

Gambar 3.16 User Menu Solution Initialization

i. Run Calculation

Pada proses ini akan dilakukan iterasi. *Number of iterations* adalah batasan iterasi yang kita tentukan, dalam hal ini kita tidak menunggu konvergensi. Karena dalam simulasi ini kita menggunakan metode *transient*.

Run Calculation	
Check Case	Preview Mesh Motion
Time Stepping Method	Time Step Size (s)
Settings	Number of Time Steps
Options	
Extrapolate Variables Data Sampling for Time s Sampling Interval	Statistics Sampling Options
Max Iterations/Time Step	Reporting Interval
Profile Update Interval	Acoustic Signals,
Calculate	

Gambar 3.17 User Menu Run Calculation

3.2.3 Post-Processing

Langkah selanjutnya setelah melakukan proses kalkulasi yaitu melihat hasil dari proses kalkulasi. Pada kasus penelitian ini, hasil yang dibutuhkan adalah kontur kondisi batas yang terbentuk pada sistem akibat dari variasi kecepatan superfisial air dan udara.

Ada 3 tahap yang harus dilakukan untuk mengetahui hasil simulasi yang berupa pola aliran .

1. Plane

Tampilan *plane* ditunjukkan dalam bentuk tampilan 2 dimensi. Area tampilan dapat ditentukan berdasarkan sumbu koordinat geometri.

Details of Plan	ne 1				Details of Plane	1	
Geometry	Color Render View				Geometry (Color Render View	
Domains Definition	All Domains	•			Mode	Variable	•
Method	YZ Plane	•			Variable	Udara. Volume Fraction	
x	0.0 [m]				Range	Global	
Plane Bound	ds		Ξ	m	Min		U 1
Туре	None	-			Max Boundary Data	🔿 Hybrid	Onservative
Plane Type			⊡		Color Scale	Linear	•
Slice	Sample			-	Color Map	Default (Rainbow)	• 🖪
Apply	1	Reset	efaul	ts	Apply		Reset Default

Gambar 3.18 Tampilan Menu Pembuatan Plane

Gambar 3.19 Tampilan YZ Plane

Dalam penelitian ini, selain menentukan area tampilan *plane* berdasarkan koordinat YZ juga berdasarkan koordinat XY untuk mengetahui area tampilan hasil pada tiap titik di sepanjang sumbu Z pipa ini.

2. Contour

Dengan *countur* dapat diketahui dengan lebih detail terkait pola hasil simulasi berdasarkan variabel yang dikehendaki pada setiap *plane* yang

telah ditentukan sebelumnya. *Contour* dideskripsikan dengan warna untuk membaca pola berdasarkan variabel yang ditentukan.

Details of Pla	ne press			Details of Con	tour pres	55			
Geometry	Color Render	View		Geometry	Labels	Render	View		
Domains	All Domains	•		Show N	lumbers				Ξ
Definition		8		Text Height	0.024				
Method	YZ Plane	•		Text Font	Sans S	Serif		•	
x	0.0 [m]		H	Color Mode	Defau	lt		•	
Plane Boun	ds	Ξ		Ari					
Туре	None	•							
Plane Type									
Slice	🔘 Sa	mple	-						
Apply		Reset Defa	ults	Apply]		Reset	Def	faults

Gambar 3.21 Tampilan Menu Pembuatan Contour

Gambar 3.22 Tampilan YZ Contour

Gambar 3.23 Tampilan XY Contour pada titik Z di koordinat 50 cm dari inlet

3. Legend

Setelah menentukan area tampilan dan pola aliran berdasarkan warna dari hasil simulasi dengan *plane* dan *contour*, tahap selanjutnya adalah menentukan dimensi untuk membaca warna pola dengan menggunakan *legend*. Tiap *plane* atau *contour* dibuatkan *legend* tersendiri untuk mendapatkan dimensi yang lebih spesifik dan akurat.

Definition	Appearance	Definition	Appearance	
	Appendice	Sizing Param	neters	
lot	Plane press 👻 🛄	Size	0.6	
itle Mode	Variable	Aspect	0.07	
✓ Show Leg ● Vertical Location	jend Units 🔘 Horizontal	Text Parame Precision	eters 2 ▲ Fixed →	
Justification	Left 🔹	Value Ticks	10	
Justificatior	n Top 💌	Font	Sans Serif 🔹	
osition	0.02 0.15	Color Mode	Default 👻	
		Colour		3

Gambar 3.24 Tampilan Menu Pembuatan Legend

Gambar 3.25 Legend berdasarkan koordinat YZ