BAB III

METODOLOGI PENELITIAN

3.1. Alat penelitian

Alat penelitian ini menggunakan software berupa program CFD Ansys Fluent 15.0 untuk pembuatan simulasi aliran *bubble*.

3.1.1. Prosedur penggunaan software CFD Ansys 15.0

Langkah-langkah umum yang dilakukan dalam analisis menggunakan CFD pada *Fluent* sebagai berikut:

- a. Membuat geometri dan mesh pada model
- b. Model transient/steady
- c. memilih solver yang tepat untuk model tersebut (2D atau 3D)
- d. Mengimpor mesh model
- e. Melakukan pemeriksaan pada mesh model
- f. Memilih formulasi solver
- g. Memilih persamaan dasar yang akan dipakai dalam analisis
- h. Menentukan sifat material yang dipakai
- i. Menentukan kondisi batas
- j. Mengatur parameter control solusi
- k. Initialize the flow field
- l. Melakukan perhitungan
- m. Memeriksa hasil iterasi
- n. Menyimpan hasil iterasi.

3.2. Diagram Alir Simulasi

Simulasi dilakukan dengan prosedur yang disampaikan pada gambar 3.1:

Gambar.3.1 Diagram alir simulasi CFD menggunakan Ansys Fluent 15.0

3.3. Proses Simulasi CFD

Secara umum proses simulasi CFD dibagi menjadi 3 yaitu pre-processing, solver dan post-processing.

3.3.1. *Pre-processing*

Pre-processing adalah tahap awal dalam simulasi CFD yang perlu dilakukan seperti membuat geometri dan pengecekan *mesh*.

a. Membuat Geometry

Dalam proses pembuatan geometri pada simulasi *Ansys Fluent*, selain menggunakan aplikasi tersebut dapat juga dilakukan dengn menggunakan *Solidwork*, Gambit, Auto CAD dan lainnya, lalu di impor ke aplikasi *Ansys Fluent*. geometri dalam penelitian ini menggunakan pipa annulus berbahan *acrylic* dengan spesifikasi diameter luar sebesar 25,4 mm diameter dalam sebesar 19 mm dan panjang pipa 1000 mm, dalam simulasi yang dilakukan pipa tidak di anggap melainkan hanya menggunakan diameter dalam saja untuk sisi bagian aliran yang akan disimulasikan sepanjang pipa karena pembuatan pola aliran bagian yang akan disimulasikan harus berbentuk pada dala artian bagian dalam pipa dibuat berisi padat atau tidak kosong.

Berikut gambar bagian dalam pipa yang di buat:

Gambar 3.2. Permukaan (tampak depan)

Gambar 3.3. Permukaan Pipa dalam (tampak samping)

b. Pembuatan mesh

Setelah geometri dibuat, langkah selanjutnya melakukan *meshing* (membagi volume menjadi bagian-bagian kecil) agar dapat dianalisis pada program CFD. Ukuran *mesh* yang terdapat dari suatu obyek akan mempengaruhi ketelitian data daya komputasi analisis CFD. Semakin kecil/halus *mesh* yang dibuat maka hasil yang didapat akan semakin teliti, namun dibutuhkan daya komputasi yang semakin besar pula.

Proses *meshing* dilakukan dengan menekan tombol printah *mesh* volume yang ada pada *operation toolpad* pertama volum yang diinginkan harus dipilih lebih dahulu. Kemudian, bentuk yang diingikan dapat dipilih pada tombol jenis elemen dan tipenya.selanjutnya mementukan ukuran dari *mesh* yang diinginkan.

Gambar 3.4. Proses Name Selection

Gambar 3.5. Hasil Meshing (tampak depan)

Gambar 3.6. Hasil Meshing (tampak samping)

3.3.2. Solver

Pada tahap ini banyak yang harus dilakukan kaitannya dengan penentuan kondisi batas dalam sebuah simulasi CFD. Proses ini merupakan bagian paling penting karena semua parameter di proses dalam tahap ini, seperti *General, models, material, cell zone conditions, boundary conditions, phase, solution methods, solution controls, solution initialization, calculation activities, run calculation dan terakhir graphics and animations.*

a. General

Pada tahap ini menggunakan metode solusi berdasarkan tekanan. Kemudian velocity formulation menggunakan absolute. Aliran dalam sistem bersifat transient. Serta menggunakan grafitasi untuk aliran.

lesh				_
Scale	e	Check	Report Qual	ity
Displa	ау			
olver				
Press Densi	ure-Based ty-Based	Abso Relat	Formulation lute tive	
Time Stead Trans	ly ient		Uni	ts
Time Stead Trans Gravity ravitation	ly ient ial Acceler	ation	Uni	ts.,
Time Stead Trans Gravity ravitation X (m/s2)	ly ient aal Acceler	ation	P	ts.,
Time Stead Trans Gravity ravitation X (m/s2) Y (m/s2)	ient al Acceler 0 -9.81	ation	P P	ts.,

Gambar 3.7. User Interface General Menu

b. Models

Pada tahap ini *energy* disetting *off* karena tidak memerlukan energi pada simulasi ini. Selanjutnya *multiphase* nya menggunakan *volume of fluid* lalu untuk *viscous* disetting menggunakan *k-epsilon* dengan model *realizable*.

Models Multiphase - Voli	ume of Fluid		
Energy - Off Viscous - Realiza Radiation - Off Heat Exchanger Species - Off Discrete Phase - Solidification & N Acoustics - Off Eulerian Wall Filr	able k-e, Scalable V - Off Off 1elting - Off m - Off	Vall Fn	

Gambar 3.8. User Interface Menu Models

c. Materials

Material yang digunakan untuk simulasi ini terbagi dari dua jenis yaitu *solid* dan *fluid*. Material solid yang digunakan adalah *acrylic* *fluxyglass* dan *alumunium* sedangkan untuk fluidanya menggunakan *liquid* dan *air*.

Materials			
4aterials			
Fluid water-liquid			
Solid			
glass			
auminum			
Create (Edit	Delate	L	
create/colt	Delete		

Gambar 3.9. User Menu Materials

d. Cell Zone conditions

Berisi daftar zona sel yang dibutuhkan. Pada tahap ini masingmasing zona disesuaikan dengan nama dan jenis materialnya.

one		
acrylic air		
alumunium		
water		
Phase	Туре	ID
hase mixture	Type Tuid	ID 7
hase mixture Edit	Type	Tofiles
hase mixture Edit Parameters	Type Type Copy Pr Operating Cone	Tofiles
hase mixture Edit Parameters Display Mesh	Type	ID 7 rofiles ditions

Gambar 3.10. User Menu Cell Zone Conditions

e. Boundary Conditions

Tahap ini merupakan proses untuk memberikan kondisi batas berupa data yang dibutuhkan pada simulasi ini. Data yang dimasukkan adalah kecepatan superfisial air dak kecepatan superfisial udara dan *volume fraction* dari air.

inlet_air					
inlet_water					
interior-solid					
wall-solid					
hase	Ţ	уре			ID
'hase mixture	×	ype velocity-	inlet	~	ID 7
hase mixture Edit	v Co	ype velocity-	inlet	~	ID 7
hase mixture Edit	V Co	ype velocity	inlet Profiles	v	ID 7
Phase mixture Edit Parameters	Co Ope	ype velocity- py erating C	inlet Profiles	>	ID 7
hase mixture Edit Parameters Display Mesh	Co Ope	ype velocity- py rating C iodic Coi	inlet Profiles onditions	> 	ID 7
hase mixture Edit Parameters Display Mesh Hidhlight Zone	V Co Ope	ype velocity py rating C iodic Cor	inlet Profiles onditions.	>	ID 7

Gambar 3.11. User Menu Boundary Conditions

f. Solution Methods

Simulasi ini menggunakan skema SIMPLE. Pada Spatial Discretization, untuk gradient-nya menggunakan Least Squares Cell Based, Pressure menggunakan PRESTO!, momentum menggunakan Second Order Upwind, Volume Fraction menggunakan Geo-recontruct, Turbulent Kinetic Energy menggunakan Second Order Upwind, Transient Formulation menggunakan First Order Implincit.

essure-velocity coupling	
Scheme	
SIMPLE	~
atial Discretization	
Gradient	
Least Squares Cell Based	~
Pressure	
PRESTO!	~
Momentum	
Second Order Upwind	~
Volume Fraction	
Geo-Reconstruct	~
Turbulent Kinetic Energy	
Second Order Upwind	~
ansient Formulation	
irst Order Implicit	~
Non-Iterative Time Advancem Frozen Flux Formulation High Order Term Relaxation	Ontions

Gambar 3.12. User Interface Solution Methods

g. Monitors

Pada tahap ini akan diatur parameter yang digunakan untuk memantau konvergensi secara dinamis . pada dasarnya konvergensi dapat ditentukan dengan merubah parameter pada residual, statistik dll. Pada kasus ini *equations* pada *residual monitors* disetting sesuai kebutuhan yaitu akan menampilkan *continuity*, *z-velocity*, *energy*, *k-epsilon*, dan *do-intensity*.

Options	Equations				
✓ Print to Console	Residual	Monitor C	heck Converge	nce Absolute Criteria	^
✓ Plot	continuity		•	0.001	
Window	x-velocity			0.001	
	y-velocity			0.001	
1000	z-velocity	•		0.001	
	Residual Values			Convergence Cr	iterion
terations to Store	Normalize		Iterations	absolute	
	Scale	ocal Scale			

Gambar 3.13. User Menu Residual Monitor

h. Solution initialization

Initialization methods yang digunakan adalah *Hybrid initialization* setelah itu melakukan *patch* satu kali untuk mengoptimalkan

Solution Initialization
Initialization Methods O Hybrid Initialization O Standard Initialization
More Settings Initialize Patch Reset DPM Sources Reset Statistics
Help

Gambar 3.14. User Menu Solution Initialization.

i. Run Calculation

Pada proses ini akan melakukan iterasi sehinggaa terjadi konvergensi. *Number of iteration* adalah batasan iterasi yang kita tentukan, sedangkan konvergensi tidak terpaku oleh jumlah data *number of iteration* yang dimasukkan. Konvergensi dipengaruhi oleh ketepatan dalam menentukan metode yang digunakan dalam simulasi ini.

Check Case	Preview Mesh Motion
Time Stepping Method	Time Step Size (s)
Fixed 🗸	0.001
Settings	Number of Time Steps
Options	
1	
Time Sampled (Sampling Options
1 Time Sampled (Aax Iterations/Time Step 20	Sampling Options 5) 0 Reporting Interval
1 Time Sampled (Sampling Options
1 Time Sampled (Max Iterations/Time Step 20 20 Profile Update Interval 1 1 Data File Quantities	Sampling Options

Gambar 3.15. User Menu Run Calculation

j. Graphics and Animations

Tahap ini adalah tahap pengecekan hasil dari iterasi yang telah selesai untuk mengetahui apakah pola aliran yang terjadi telah muncul dan dapat mengetahui pola aliran yang terbentuk pada simulasi. Dengan melakukan *Set Up* dan memilih *kontours* selanjutnya menambahkan *plane* agar dapat menampilkan hasil pola aliran yang terjadi.

Graphics and	d Animatio	ons	
Graphics			
Mesh			
Contours - Unav Vectors - Unav Pathlines - Unav Particle Tracks -	vailable ailable vailable • Unavailable		
Set Up			
Animations			
Sweep Surface	- Unavailable		
Scene Animation Solution Animat	n ion Playback		
Set Up			
Options	Scene	Views	
Lights	Colormap	Annotate	

Gambar 3.16 Tampilan Graphics and Animations

3.3.3. Post-Processing

Langkah selanjutnya setelah melakukan proses kalkulasi melihat hasil dari proses kalkulasi. Pada penelitian ini, hasil yang dibutuhkan adalah kontur tekanan yang terbentuk pada sistem akibat dai fluktuasi beda tekanan.

Ada 3 tahap yang dilakukan untuk mengetahui hasil simulasi yang berupa pola aliran serta kecepatannya yaitu :

a. Plane

Tampilan plane ditunjukkan dalam bentuk tampilan dua dimensi. Area tampilan dapat ditentukan berdasarkan sumbu koordinat geeometri.

Details of Plan	e		Details of Plane		
Geometry	Color Render View		Geometry C	Color Render View	
Domains	All Domains	•	Mode	Variable	•
Definition		Ξ	Variable	Velocity	•
Method	YZ Plane	•	Range	Global	•
x	0.0 [m]		Min	0 [m s^	-1]
Plane Bound	s	Ξ	Max	12.4178 [m s^	-1]
	-		Boundary Data	a 🔘 Hybrid 💿 Conservative	
Туре	None	•	Color Scale	Linear	•
Plane Type		Ξ	Color Map	Rainbow	- 8
Sice	○ Sample		Undef. Color [
Apply	Reset	Defaults	Apply	Reset	Defaults

Gambar 3.17. Tampilan Menu Pembuatan Plane

Gambar 3.18. Tampilan Plane

b. Contour

Dengan *contour* dapat diketaui dengan detail terkait pola hasil dari simulasi berdasarkan variabel yang diinginkan pada setiap *plane* yang telah ditentukan sebelumnya. *Contour* dideskripsikan dengan warna untuk membaca pola berdasarkan variael yang ditentukan.

etalls of Pla	ne press			Details of Con	tour pres	5			
Geometry	Color Render View		3	Geometry	Labels	Render	View		
Domains	All Domains	•	Â	Show N	umbers				Ξ
Definition		Ξ		Text Height	0.024	l.			
Method	YZ Plane	•		Text Font	Sans S	Gerif		•	
x	0.0 [m]		H	Color Mode	Defaul	t		•	
Plane Boun	ds	Ξ							
Туре	None	•							
Plane Type		⊡							
Slice	🔘 Sample		-						
Apply	Reset	Defaul	ts	Apply	i		Reset	De	faults

Gambar 3.19. Tampilan Menu Pembuatan Contour

Gambar 3.20 Tampilan Contour

c. Timestep selector

Dengan *timestep selector* ini dapat mengetahui seberapa lama waktu terjadinya pola aliran yang dilakukan dan dapat melihat setiap seperdetik dari hasil pola aliran yang terjadi. Berikut tampilan menu pada *timestep selector* :

gele	embung	0300				
Curr	ent Tim	estep: 100				
#	Step	Solver Step	Time [s]	Туре	^	
89	89	89	0.089	Full		2
90	90	90	0.09	Full		
91	91	91	0.091	Full		X
92	92	92	0.092	Full		
93	93	93	0.093	Full		П
94	94	94	0.094	Full		
95	95	95	0.095	Full		
96	96	96	0.096	Full		
97	97	97	0.097	Full		
98	98	98	0.098	Full		
99	99	99	0.099	Full		
100	100	100	0.1	Full		
101	101	101	0.101	Full		
102	102	102	0.102	Full	*	

Gambar 3.21 Tampilan Timestep Selector

d. Animation

Animation digunakan untuk membuat suatu hasil dari pola aliran yang terjadi menjadi sebuah video, dan dapat mengetahui gerakan dari pola aliran yang berjalan. Berikut tampilan dari *Animation* :

Ani	mation ? ×						
Quick Animation	O Keyframe Animation						
Select one or more objects to animate:							
Plane 1							
Timesteps							
Fast Slow							
	Bounce						
Repeat 1	¢ 00						
Save Movie	embung 0300.wmv 📴						
Format Windows Media Video 👻							
	Options						
	Close						

Gambar 3.22 Tampilan Animation