View Item 
      •   UMY Repository
      • 04. LECTURERS ACADEMIC ACTIVITIES
      • JURNAL
      • View Item
      •   UMY Repository
      • 04. LECTURERS ACADEMIC ACTIVITIES
      • JURNAL
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      TWO-PHASE FLOW PATTERN OF AIR-WATER WITH LOW VISCOSITY IN A 5-DEGREE SLOPE OF A CAPILARY PIPE

      Thumbnail
      View/Open
      Bidang C.7-Sukamta (1.441Mb)
      Peer Review C.7-Sukamta (473.2Kb)
      Turnitin C.7-Sukamta (2.062Mb)
      Korespondesni C.7-Sukamta (2.706Mb)
      Date
      2020
      Author
      SUKAMTA, SUKAMTA
      Metadata
      Show full item record
      Abstract
      This paper describes a new corresponding between computational and experimental data of two-phase flow in mini pipe with low viscosity of fluid. Computational Fluid Dynamics is needed to predict the phenomenon before conducting experimental study in order to get an expected appropriate result. The simulation was carried out on the two-dimensional horizontal capillary pipe with a diameter of 1.6 mm and a length of 100 mm. The simulation used air-water with glycerin of 0%, 10%, 20%, and 30%, and liquid superficial velocity (JL) = 0.033 m/s – 4.935 m/s, gas superficial velocity (JG) = 9.62 m/s as well. The experimental research used same parameter relatively with the simulation. The results showed the good corresponding between simulation and experimental data for a slug-annular, annular and churn flow patterns. The viscosity affects significantly the abundance of liquid that clings to the inner walls of the pipe. The higher liquid viscosity will increase wave and stuck in the inner pipe wall.
      URI
      http://repository.umy.ac.id/handle/123456789/32231
      Collections
      • JURNAL

      DSpace software copyright © 2002-2015  DuraSpace
      Contact Us | Send Feedback
      Theme by 
      @mire NV
       

       

      Browse

      All of UMY RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      DSpace software copyright © 2002-2015  DuraSpace
      Contact Us | Send Feedback
      Theme by 
      @mire NV