View Item 
      •   UMY Repository
      • 04. LECTURERS ACADEMIC ACTIVITIES
      • PAK
      • View Item
      •   UMY Repository
      • 04. LECTURERS ACADEMIC ACTIVITIES
      • PAK
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      DETERMINATION OF DEFLECTION BASIN USING PAVEMENT MODELLING COMPUTER PROGRAMS AND FINITE ELEMENT METHOD

      Thumbnail
      View/Open
      jurnal utm-ok.pdf (776.4Kb)
      Date
      2020-06-22
      Author
      Rosyidi, Sri Atmaja P.
      Metadata
      Show full item record
      Abstract
      Several methods can be used to model pavement structures, namely multilayered elastic theory (MET), finite element method (FEM), or finite difference method (FDM). In this study, three computer programs, KENLAYER and EVERSTRESS 5.0 which are based on MET, and ANSYS, representing the FEM, are used in Falling Weight Deflectometer (FWD) test on a pavement structure to determine deflection basin. The deflection basin was developed by using the results of vertical deflection from each sensor of an FWD test. In this study, a pavement structure was modelled for three locations of FWD tests, namely CH 200, CH 1450, and CH 2300. Based on the comparative study, all computer programs show good potential in determining deflection basin, with small percentage of Root Mean Square Error (RMSE) of between 1.00% to 4.31% for all models developed by the computer programs and field measurement. In order to obtain a higher accuracy of the FEM, the models considered the dynamic loading, increasing size of model geometry, as well as the reduction of the mesh element sizes. Moreover, changing from static to dynamic loading led to the reduction of percentage in RMSE for CH 200 from 2.41% to 0.94%. Decreasing size of closer elements of loading region also results in lower percentages of RMSE, calculated at 4.21% to 3.63% and 1.20% to 1.18% for CH 1450 and CH 2300, respectively. FEM, therefore, is found to be the best method for determining deflection basin of FWD in comparison to other MET computer programs.
      URI
      http://repository.umy.ac.id/handle/123456789/35427
      Collections
      • PAK

      DSpace software copyright © 2002-2015  DuraSpace
      Contact Us | Send Feedback
      Theme by 
      @mire NV
       

       

      Browse

      All of UMY RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      DSpace software copyright © 2002-2015  DuraSpace
      Contact Us | Send Feedback
      Theme by 
      @mire NV