ANALISIS COMPUTATIONAL FLUID DYNAMICS (CFD) TERHADAP PROFIL TEMPERATUR UNTUK KONDENSASI STEAM ARAH CIRCUMFERENTIAL PADA PIPA KONSENTRIK HORISONTAL DENGAN ALIRAN PENDINGINAN SEARAH DI DALAM RUANG ANULAR
Abstract
The objective of the present research is to obtain a computational fluid dynamics simulation results of temperature profile for circumferential steam condensation on a horizontal concentric pipe with parallel flow coolling in an annular space and comparing the simulation results with the results of the research based experiments conducted by Sukamta et al (2015).
This research used CFD Ansys Fluent 15 application. The geometry in this research is an horizontal concentric pipe with the material on the inside is copper (d1 = 17.2 mm, d2 = 19 mm), and the material on the outside is galvanized iron (d1 = 108.3 mm, d2 = 114.3 mm), and the length of pipe 1.6 m. The experiments were conducted at a static pressure Psteam = 108.325 kPa and variations in the mass flow rate of steam ṁst = 5.9 x 10-3 kg/s, ṁst = 8.9 x 10-3 kg/s, and ṁst = 1.9 x 10-2 kg/s.
The results of this research based modeling showed that the variation of a given mass flow rate affects the pattern of temperature decrease of steam in the pipeline. The highest temperature decrease in the variation ṁst = 5.9 x 10-3 kg/s and the lowest on the variation ṁst = 1.9 x 10-2 kg/s. The effects of temperature decrease is the occurrence of condensation phenomena that affect patterns of flow in the pipeline. As a results of instability of fluid flow within the system so that the flow pattern tend wavy.