PENERAPAN JARINGAN SYARAF TIRUAN BACKPROPAGATION SEBAGAI SISTEM PERAMALAN BEBAN PUNCAK TRANSFORMATOR GARDU INDUK BUMIAYU
Abstract
The state electricity company (PLN) should have an estimated peak load of the substation transformer in the future. This is useful to be able to achieve transformer capability and can be used as a first step to anticipate the possibility of replacement of a new transformer. This research produces a peak load forecasting system transformer1 and transformer2 in Bumiayu substation using Backpropagation Artificial Neural Network (ANN). This study includes the procedures for establishing a network model and manufacture forecasting system based GUI (Graphic User Interface) using MATLAB 2015a. The formation of the network model refers to input variables consisting of GRDP data, population data and historical data of peak load of transformer. In this research the network model used is a multilayer network, which consists of 1 input layer, 2 hidden layers and 1 output layer. The peak load forecasting of transformer1 produces 5.7593e-08 for training MSE and 5.3784e-04 for testing MSE. Meanwhile, forecasting the peak load transformer2 generated 3.3433e-08 for training MSE and 9,4710e-04 for testing MSE.