View Item 
      •   UMY Repository
      • 04. LECTURERS ACADEMIC ACTIVITIES
      • CONFERENCE
      • View Item
      •   UMY Repository
      • 04. LECTURERS ACADEMIC ACTIVITIES
      • CONFERENCE
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      MORPHOLOGY AND CRYSTALLINITY OF SISAL NANOCELLULOSE AFTER SONICATION

      Thumbnail
      View/Open
      AIP Conf Proc_Sosiati-2017.pdf (2.206Mb)
      Peer Review (2.053Mb)
      Turnitin (2.168Mb)
      Date
      2017
      Author
      SOSIATI, HARINI
      WIJAYANTI, DWI ASTUTI
      TRIYANA, KUWAT
      KAMIEL, BERLI
      Metadata
      Show full item record
      Abstract
      Different preparation methods on the natural fibers resulted in different morphology. However, the relationships between type of natural fibers, preparation methods and the morphology of produced nanocellulose could not be exactly defined. The sisal nanocellulose was presently prepared by alkalization and bleaching followed by sonication to verify changes in the morphology and crystallinity of nanocellulose related to the formation mechanism. The extracted microcellulose was subjected to scanning electron microscopy (SEM) and x-ray diffraction (XRD) analysis. The isolated cellulose nanospheres were examined with respect to morphology by SEM and transmission electron microscopy (TEM) and, to crystallinity by electron diffraction analysis. Bleaching after alkalization made the microfibrils clearly separated from each other to the individual fiber whose width of the single fiber was ranging from 6 to 13 μm. The XRD crystallinity index (CI) of microcellulose gradually increased after the chemical treatments; 83.12% for raw sisal fiber, 88.57% for alkali treated fiber and 94.03% for bleached fibers. The ultrasonic agitation after bleaching that was carried out at 750 Watt, 20 kHz and amplitude of 39% for 2 h produces homogeneous cellulose nanospheres less than 50 nm in diameter with relatively low crystallinity. The electron diffraction analysis confirmed that the low crystallinity of produced nnocellulose is related to the effect of chemical treatment done before sonication
      URI
      http://repository.umy.ac.id/handle/123456789/21624
      Collections
      • CONFERENCE

      DSpace software copyright © 2002-2015  DuraSpace
      Contact Us | Send Feedback
      Theme by 
      @mire NV
       

       

      Browse

      All of UMY RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      DSpace software copyright © 2002-2015  DuraSpace
      Contact Us | Send Feedback
      Theme by 
      @mire NV