Show simple item record

dc.contributor.authorPRABASARI, INDIRA
dc.date.accessioned2019-12-21T10:07:22Z
dc.date.available2019-12-21T10:07:22Z
dc.date.issued2017
dc.identifier.issn0973-9769
dc.identifier.urihttp://repository.umy.ac.id/handle/123456789/31019
dc.description.abstractEstimation of maturity stage of mangosteen during harvest is critical because it affects the quality of mangosteen. Currently, the estimation is manually performed by labor using visual method. Since the visual method is not precise and consistent, the use of image processing technology promises a better result. The objective of this research is to develop an image processing method to optimize estimation of mangosteen maturity stage by combining Red-Green-Blue (RGB) color features and implementing Support Vector Machine. The methodology involves fruit collection, image acquisition and image processing step. In the image processing step, color features i.e. sum, mean and standard deviation of R, G and B component were extracted from images. These features were then combined and used as parameter input for SVM training-testing. The proposed method yielded a significant improvement on maturity stage estimation and was able to increase its accuracy up to 91% using combination of nine features.en_US
dc.publisherResearch India Publicationsen_US
dc.subjectmangosteenen_US
dc.subjectmaturity stageen_US
dc.subjectimage processingen_US
dc.titleOPTIMIZED ESTIMATION OF MANGOSTEEN MATURITY STAGE USING SVM AND COLOR FEATURES COMBINATION APPROACHen_US
dc.typeOtheren_US


Files in this item

Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

  • JURNAL
    Berisi tulisan dosen dalam yang telah dimuat dalam jurnal nasional maupun internasional yang tidak diterbitkan oleh UMY. Diharapkan menambahkan link dari jurnal yang asli dalam diskripsinya.maupun internasional

Show simple item record